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Abstract

Background

Non-coding RNAs perform a wide range of functions inside the living cells that are related to

their structures. Several algorithms have been proposed to predict RNA secondary structure

based on minimum free energy. Low prediction accuracy of these algorithms indicates that

free energy alone is not sufficient to predict the functional secondary structure. Recently, the

obtained information from the SHAPE experiment greatly improves the accuracy of RNA

secondary structure prediction by adding this information to the thermodynamic free energy

as pseudo-free energy.

Method

In this paper, a new method is proposed to predict RNA secondary structure based on both

free energy and SHAPE pseudo-free energy. For each RNA sequence, a population of sec-

ondary structures is constructed and their SHAPE data are simulated. Then, an evolutionary

algorithm is used to improve each structure based on both free and pseudo-free energies.

Finally, a structure with minimum summation of free and pseudo-free energies is considered

as the predicted RNA secondary structure.

Results and Conclusions

Computationally simulating the SHAPE data for a given RNA sequence requires its second-

ary structure. Here, we overcome this limitation by employing a population of secondary

structures. This helps us to simulate the SHAPE data for any RNA sequence and conse-

quently improves the accuracy of RNA secondary structure prediction as it is confirmed by

our experiments. The source code and web server of our proposed method are freely avail-

able at http://mostafa.ut.ac.ir/ESD-Fold/.
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Introduction

RNA molecules play vital roles in some cellular processes including genetic information car-

rier, biological catalysis and gene regulation [1]. The activity and function of non-coding

RNAs are mainly related to their secondary structures formed by Watson-Crick and Wobble

base pairs. In the two last decades, many algorithms and computational methods are proposed

for the RNA secondary structure prediction based on maximizing the number of base pairs or

minimizing the free energy.

RNAfold [2, 3] uses a dynamic programming algorithm to predict minimum free energy

(MFE) structures as well as to compute partition functions and base pairing probabilities.

UNAfold [4] combines free energy minimization, partition function calculation and stochastic

sampling to predict RNA secondary structure using dynamic programming algorithm. MFold

[5] also uses dynamic programming approach to predict RNA secondary structure based on

energy minimization method [6]. RNAstructure [7] predicts and analyzes RNA secondary

structure using thermodynamics and nearest neighbor parameters.

Although MFE is known as a suitable physical measure for RNA secondary structure pre-

diction, the results show that this criterion does not have enough ability to predict the correct

structure.

Recently, a new technology entitled Selective 20-Hydroxyl Acylation analyzed by Primer

Extension (SHAPE) significantly improves the consistency between the natural and predicted

structures [8–10]. SHAPE technology could extract the reactivity information of almost all

nucleotides in an RNA sequence, calculated by chemical experiment methods as well as Shape-

Finder software [11]. For each RNA sequence, this experiment should be performed to find its

SHAPE reactivities. These SHAPE reactivities are then converted to pseudo-free energy for

increasing the prediction accuracy by adding them to the free energy function. Several

attempts have been done to overcome the existing noises in the experimental SHAPE data. A

bootstrapping method [9] was presented to estimate the variance and helix-by-helix confi-

dence levels of predicted secondary structures based on resampling the measured SHAPE

data. Jacknife approach [12] was also proposed to estimate the influence of a given experimen-

tal data set on SHAPE-directed RNA secondary structure modeling. In this method, by dis-

carding 35% of the data, the confidence levels of SHAPE-directed RNA secondary structure

prediction were significantly higher than those calculated by bootstrapping. After performing

the SHAPE experiment and producing the data, the SHAPE reactivities are converted to

pseudo-free energies and used in RNA structure prediction methods. Low et al. [13] composed

SHAPE data with the nearest-neighbor thermodynamic rules for the RNA structure prediction

based on dynamic programming algorithm implemented in RNAstructure method. GTFold

[14] is a parallel version of RNAstructure. This method reports one structure that minimizes

the summation of free energy and SHAPE pseudo-free energy as the best predicted RNA sec-

ondary structure. The main limitation of these methods is that the experimental SHAPE data

should be available for the given RNA sequences. To overcome this limitation, Sükösd et al.

[10] simulated SHAPE data for RNA sequences by estimating some probability distribution

functions for the nucleotides appeared in unpaired, stacked and helix-end regions using the

available SHAPE data on 16S rRNA and 23S rRNA. Even in this method, to simulate SHAPE

data for an RNA sequence, its secondary structure is required to be able to decompose the

given sequence into the mentioned regions.

In this paper, a new evolutionary algorithm is proposed to predict RNA secondary struc-

ture based on simulated SHAPE data. Since the RNA secondary structure is not available

for the given RNA sequence, a population of RNA secondary structures is generated using a

base pair probability matrix, which is constructed to represent the pairing probability of
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each pair of nucleotides. This population could help us to decompose the given RNA

sequence into unpaired, stacked and helix-end regions with respect to the generated struc-

tures, and simulate the SHAPE data for the nucleotides appeared in these regions. Then, all

the structures in the current population are improved using the evolutionary method. The

fitness value of each structure is considered as the summation of free energy and SHAPE

pseudo-free energy values. The new population is constructed using the best solutions

among the previous population and improved individuals. This process is continued until

the best fitness value remains constant during the two last populations. Finally, the structure

corresponding to the best fitness value is reported as output. The proposed algorithm is per-

formed on two real datasets of RNA sequences. The first dataset contains fifteen standard

RNA sequences with their available SHAPE data including Adenine-riboswitch, tRNA-Asp-
Yeast, tRNA-Phe, MDLOOP, HCV IRES domain2, 5S-Ecoli, ADDRSW, c-id-GMP-riboswitch,

RNASEP-B.subtilis, p546, 5srRNA, Glycine-riboswitch, TRP4, 16S rRNA and 23S rRNA [15].

The second dataset including available families of RNA-STRAND dataset named NDB,

PDB, RFA, SPR, SRP, ASE, TMR and CRW [16], in which SHAPE data is not available. The

validity and accuracy of our algorithm are investigated and compared with the RNAstruc-
ture method which supports RNA SHAPE data.

In Section 2, after providing several preliminaries, the details of our proposed method are

described. The results of our method as well as its comparison with the other methods are

shown and discussed in Section 3. Finally, the conclusion is provided in Section 4.

Materials and Methods

An RNA sequence is composed of four nucleotides, namely Adenine (A), Cytosine (C), Gua-

nine (G), and Uracil (U) which can be considered as a string over S, where S = {A, C, G, U}.

An RNA sequence is folded to itself and some base pairs are formed by the creation of hydro-

gen bonds between complementary bases. This set of base pairs is known as RNA secondary

structure. The simplest form of RNA secondary structure is pseudoknot free which is formally

defined as follows. An RNA (pseudoknot free) secondary structure ω for the RNA sequence δ
= δ1 δ2� � �δn of length n is a collection of base pairs (δi, δj), where for any two base pairs (δi, δj)
and (δs, δt) in ω, i = s, j = t and either i< s< t< j or i< j< s< t holds.

The RNA secondary structure contains some structural components including stems, hair-

pin loops, bulge loops, internal loops, multi loops, and external loops. A stem in the RNA sec-

ondary structure is a set of consecutive base pairs, while the different loops indicate unpaired

regions or regions of non-canonical pairs.

The thermodynamic free energy of an RNA secondary structure is assumed to be the sum

of its energies associated to its structural components. In other words, the free energy of an

RNA sequence δ over the structure ω, denoted by E(δ, ω), is the sum of free energies associated

to the stems (ΔGstems) and loops (ΔGloops) as written in Eq (1).

Eðd;oÞ ¼
P

DGstems þ
P

DGloops: ð1Þ

The free energy of a stem is defined as the sum of free energies associated to its adjacent base

pairs. The free energy of a loop is mainly dependent on its length, the start and end mismatch

of the loop, and specified sub-sequence [14]. For a given RNA sequence, the secondary struc-

ture is usually predicted based on minimizing free energy obtained by the nearest neighbor

thermodynamic model [17, 18]. In order to improve the prediction accuracy of RNA structure

prediction, SHAPE data is added to the free energy as pseudo-free energy. The derived

pseudo-free energy of SHAPE value for ith nucleotide is calculated according to the following
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equation:

DGi ¼ m� ln ðSRðiÞ þ 1Þ þ b; ð2Þ

where SR(i) shows the SHAPE reactivity value for ith nucleotide in the RNA. The parameters

m and b scale the strength of experimental contribution to the energy function. The intercept b
represents pseudo-free energy contribution of a paired nucleotide, whose SHAPE reactivity is

zero. The slope m shows the strength of the energetic penalty assigned for paired nucleotides

with high SHAPE reactivities. Default values for parameters m and b are set to 2.6kcal/mol and

−0.8kcal/mol, respectively [13].

Based on the evolutionary algorithm, we propose a new method for predicting the RNA

secondary structure that uses both free energy and SHAPE pseudo-free energy values. The

main steps of our proposed method, entitled ESD-Fold, are depicted in Algorithm 1. More

details about these steps are provided in the following sub-sections.

Algorithm 1 Evolutionary algorithm for RNA secondary structure prediction based on simu-

lated SHAPE data.

ESD-Fold(RNA sequenceδ)
1i Sδ All potentialstemsin δ
2i P[0] The initialpopulationof m secondarystructures
3i Evaluate(P[0])
4i best[0] Argminω{fitness(ω)|ω2 P[0]}
5i i 0
6i do
7i for each ω 2 P[i] do
8i ω0 modifyω by replacingone of its stems
9i Add ω0 to the temporarypopulationQ

10i end for
11i Evaluate(Q)
12i P[i + 1] Selectthe m best solutionsamongP[i] and Q
13i best[i+ 1] Argminω{fitness(ω)|ω2 P[i + 1]}
14i i i + 1
15i while(fitness(best[i]) 6¼ fitness(best[i− 1]))
16i return(best[i])

Evaluate(PopulationP)
17i for each ω 2 P do
18i SimulateSHAPEdata for ω
19i fitness(ω) E(δ,ω) + PE(δ,ω)
20i end for

Constructing all potential stems

In order to generate a population of secondary structures for the given RNA sequence, it is

required to construct all potential stems (Line 1 of Algorithm 1). To do this, a base pair proba-

bility matrix is constructed for the given RNA sequence δ = δ1 δ2� � �δn as follows:

1. The RNAfold software is executed on δ to obtain the base pair probability matrix P = [pij]n×n,

where each element pij (0� pij� 1) indicates the pairing probability between bases δi and δj,
where 1� i< j� n. It should be noted that the RNAfold software is free of charge for aca-

demic users and available in address “http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi”.

2. Based on these probabilities, a potential stem s =<rs, cs, ℓs, ps> is identified in which (rs, cs)
shows the starting row and column of stem s in the matrix, ℓs represents the length of s, and

ps indicates the summation of base pair probabilities in s (ps = ∑(i, j)2s pij). The following
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conditions should be satisfied when identifying potential stems:

P½rs þ k; cs � k� 6¼ 0 8k ¼ 0 � � � ‘s � 1; ð3Þ

P½rs � 1; cs þ 1� ¼ 0 if 1 < cs & rs < n; ð4Þ

P½rs þ ‘s; cs � ‘s� ¼ 0 if 1 � rs � ‘s & cs þ ‘s � n; ð5Þ

3. Among the identified potential stems, those having length greater than or equal to three (ℓs
� 3) are selected and stored in the set Sδ. By considering the length 3 as a cutoff, we elimi-

nate all the stems of length 1 or 2 (less stable stems) from further processes. If not, these

stems are more likely to be selected in the constructed structure that make it less stable.

Therefore, this elimination helps us to produce more stable structures as well as to speed-

up the running time of our algorithm.

As an example, Fig 1 represents the base pair probability matrix calculated for sequence δ =

GUGCACGACGCCGU. In this figure, five different potential stems are indicated in gray and

all the probabilities are presented with one decimal digit.

Generating a population of RNA secondary structures

For generating the initial population P[0] of RNA secondary structures (Line 2 of Algorithm

1), a Roulette-Wheel method is employed. This Roulette-Wheel is constructed based on the

assigned probability ps to each potential stem s. Then, each secondary structure is formed by

iteratively selecting stems from the Roulette-Wheel until k different stems (without any over-

lap) are obtained. During this process, if stem s overlaps with some stems in the structure, the

overlapped segments are eliminated from s and the remaining segments are added to the struc-

ture. It is worth noting that these remaining segments might have small length (less than 3).

According to this approach, the initial population P[0] of m (m is equal to the length of RNA

sequence) secondary structures is generated. The appropriate value for the number of initial

stems in each secondary structure (namely k) is considered as n/5. This value is obtained by

analyzing the number of stems in the available structures taken from RNA-STRAND dataset

[16] (see S1 File).

Simulating SHAPE data

For simulating the SHAPE data corresponding to each RNA secondary structure ω in the cur-

rent population (Line 18 of Algorithm 1), three different probability distribution functions are

employed [10]. These probability distribution functions are computed by fitting a curve on

available SHAPE data corresponding to nucleotides appeared in unpaired, stacked, and helix-

end regions in 16SrRNA and 23SrRNA sequences [15].

Computing fitness value

In order to evaluate the accuracy of the generated secondary structures, a fitness function is

employed. This fitness function incorporates both free energy and pseudo-free energy values

(Line 19 of Algorithm 1). Formally, the fitness value for the secondary structure ω is deter-

mined as follows:

FitnessðoÞ ¼ Eðd;oÞ þ PEðd;oÞ; ð6Þ

RNA Secondary Structure Prediction Based on Simulated SHAPE Data
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where PE(δ, ω) is the SHAPE pseudo-free energy of the structure ω over the sequence δ. Analy-

sis of the relationship between SHAPE data and thermodynamic free energy was previously

done in [19]. This SHAPE pseudo-free energy is computed as:

PEðd;oÞ ¼ 2�
X

di2stacked

DGi þ
X

di2helix� end

DGi; ð7Þ

where stacked and helix–end indicate the nucleotides appeared in stacked and helix-end

regions of the structure, respectively.

Evolutionary algorithm

For each secondary structure ω in the current population, an evolutionary algorithm is

employed to improve the quality of that structure (Lines 6 – 15 of Algorithm 1). To this end, a

Fig 1. Base pair probability matrix.

doi:10.1371/journal.pone.0166965.g001
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stem is randomly selected from ω and it is replaced by another stem from Sδ to form a new

structure ω0. The new stem is also selected from the potential stems using the constructed Rou-

lette-Wheel. This process is iteratively continued until the following condition is satisfied:

fitnessðo0Þ � fitnessðoÞ: ð8Þ

Among the structures ω in the current population and the corresponding modified structures

ω0, the number of m best structures (having lower fitness values) are selected to form the next

population (Line 13 of Algorithm 1). The generation of new populations is continued until the

best fitness value of the structures remains fixed during the two last populations (Lines 6-15 of

Algorithm 1).

Results

The evaluation of our proposed method is provided in this section and the results are com-

pared with the other competitors. All methods have been executed on a machine with dual-

Core Intel(R) Duo processor T6670 2.20 GHz and 4 GB of installed memory. A dataset con-

taining fifteen RNA sequences with their available experimental SHAPE data is employed [15]

in our first evaluation. This dataset includes Adenine-riboswitch, tRNA-Asp-Yeast, tRNA-Phe,
MDLOOP, HCV IRES domain2, 5S-Ecoli, ADDRSW, c-id-GMP-riboswitch, RNASEP-B.subtilis,
p546, 5srRNA, Glycine-riboswitch, TRP4, 16S rRNA and 23S rRNA. The prediction accuracy is

calculated using Eq (9):

Accuracy ¼ ðSnþ PPVÞ=2; ð9Þ

where Sensitivity (Sn) and Positive Predictive Value (PPV) are defined as follows:

Sn ¼ TP=ðTP þ FNÞ; ð10Þ

PPV ¼ TP=ðTP þ FPÞ: ð11Þ

In the above formulas, TP, FP and FN indicate the number of correctly predicted base pairs,

false predicted base pairs, and the unpredicted base pairs, respectively. Using this measure, we

have compared the accuracies of our proposed method, RNAfold, and RNAstructure over this

dataset. As presented in Table 1, the accuracies are provided for MFE RNAfold (Column 3),

RNAstructure when it uses MFE (Column 4) and experimental SHAPE data (Column 5), as

well as ESD-Fold when experimental and simulated SHAPE data are employed (Columns 6-7).

The computational time (minutes) of ESD-Fold on this dataset is also shown in the last column

of Table 1. Based on the average accuracies in this table, our method performs better than the

other two competitors. For this dataset, two other measures are also employed to evaluate the

performance of the ESD-Fold algorithm as presented in S1 File.

As it is observed in Table 1, the accuracy of ESD-Fold is decreased for some RNA sequences

such as HCV- domain2 and CIDGMP. The accuracy of RNAstructure is also decreased for

these sequences when the SHAPE data is utilized. Therefore, it seems that the experimental or

simulated SHAPE data for these sequences could not improve the accuracy.

The accuracies of ESD-Fold are also decreased for longer sequences, namely 16S rRNA and

23S rRNA. Although, longer potential stems are selected with higher probability (using Rou-

lette-Wheel selection mechanism), the number of stems is also important. For longer RNA

sequence, the number of shorter potential stems is huge and these stems are more likely to be

selected. Therefore, the overlapped segment of longer potential stems are eliminated and the

remaining shorter segments (that are less stable) are considered as potential stems. This obvi-

ously decreases the accuracy of ESD-Fold for longer RNA sequences.

RNA Secondary Structure Prediction Based on Simulated SHAPE Data
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In order to calculate the other statistics, namely TP, FP, FN, Sn, PPV, Accuracy, and the

number of generations, we have performed 100 independent executions of our proposed

method over the fifteen RNA sequences. The obtained values for these statistics are provided

in Table 2.

We also investigated the effect of simulated SHAPE data on prediction accuracy for each fif-

teen RNA sequences. To this end, the correlation between the prediction accuracies of ESD--

Fold (for 100 independent executions for each sequence) and MFE RNAstructure (no SHAPE

Table 1. Comparison of the results obtained by the MFE RNAfold (Column 3), and RNAstructure when it uses MFE (RNAstr. MFE, Column 4) and

real SHAPE data (RNAstr. real, Column 5), and our proposed method (ESD-Fold) when the real and simulated SHAPE data are employed (real and

simulated, Columns 6-7). The computational time (minutes) of ESD-Fold is represented in Column 8. Here, the values are rounded to one decimal digit.

RNA sequence Length RNAfold (MFE) RNAstr. (MFE) RNAstr. (real) ESD-Fold (real) ESD-Fold (simulated) Comp. time (minutes)

Adenine 71 100 100 100 100 100 0.8

tRNA-Asp 75 88.4 73.9 73.9 93.1 88.6 0.9

tRNA-Phe 76 22 97.6 100 100 100 0.9

MDLOOP 80 91.7 87 100 100 100 0.9

HCV- domain2 95 57.4 88.3 88.3 73.2 77.5 1

5S-Ecoli 120 26.4 26 71.9 75.7 75.5 1.7

ADDRSW 121 100 95.7 95.7 100 100 1.3

CIDGMP 135 83.8 88 77 68 69.3 1.5

RNASEP4 154 69.9 50 75.7 71.8 71.8 1.9

p546 155 43.1 43.1 94.3 96.5 86 2.1

5srRNA 170 24.8 24.3 24.2 79.8 69.7 2.2

Glycine-riboswitch 198 62.7 88.1 88.1 95.5 77.9 2.4

TRP4P6 202 77.7 87.3 86.14 84.9 84.9 2.9

16S rRNA 1542 40.6 35.1 74.3 46.5 48.7 54.7

23S rRNA 2904 47 46.3 63.6 49.1 40.8 204

Average 62.4 68.7 80.9 82.3 79.4

doi:10.1371/journal.pone.0166965.t001

Table 2. The average values of TP, FP, FN, Sn, PPV, Accuracy ± standard deviation (Acc ± sd), and number of generations for 100 independent exe-

cutions of the proposed method over the fifteen RNA sequences. Here, the values are rounded to two decimal digits.

RNA sequence TP FP FN Sn PPV Acc ± sd Num. of Generations

Adenine 21 0 0 1 1 1 3.18

tRNA-Asp 17.98 4.02 0.23 0.82 0.99 0.9 ± 0.03 3.23

tRNA-Phe 20.77 0.23 0.12 0.99 0.99 0.99 ± 0.02 3.33

MDLOOP 10 0 0 1 1 1 3.06

HCV- domain2 17.81 8.19 3.06 0.69 0.86 0.77 ± 0.05 3.28

5S-Ecoli 19.86 15.14 7.04 0.57 0.74 0.65 ± 0.17 3.17

ADDRSW 20.96 0.04 0.11 1 1 1 ± 0.01 2.96

CIDGMP 20.32 4.68 8.09 0.81 0.72 0.77 ± 0.03 3.34

RNASEP4 32.55 12.45 5.21 0.72 0.86 0.79 ± 0.08 3.21

p546 48.51 9.49 5.81 0.84 0.89 0.86 ± 0.1 3.4

5srRNA 16.65 17.35 7.77 0.49 0.72 0.6 ± 0.1 2.84

Glycine-riboswitch 32.96 7.04 9.19 0.82 0.78 0.8 ± 0.12 3.3

TRP4P6 43.76 4.24 9.27 0.92 0.83 0.87 ± 0.01 3.03

16S rRNA 212.26 244.74 158.47 0.46 0.57 0.52 ± 0.01 3.47

23S rRNA 346.59 483.41 483.41 0.42 0.55 0.48 ± 0.01 3.44

Average 0.77 0.83 0.8 ± 0.05

doi:10.1371/journal.pone.0166965.t002
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data) are calculated and presented in Fig 2. As it is understood from this figure, using ESD--

Fold with simulated SHAPE data greatly improves the prediction accuracy of RNA secondary

structure. The same analysis is performed for the case of RNAstructure (real SHAPE data) as

well as maximum expected accuracy (MEA) of RNAfold method. The results of these analysis

are presented in Figs 3 and 4, respectively. The effect of simulated SHAPE data on individual

base pairs is also analysed. Let M and D respectively denote the set of base pairs predicted by

MFE RNAstructure (no SHAPE data) and ESD-Fold (using simulated SHAPE data). The PPV

of the MFE structure M is calculated for each RNA sequence as shown in column 2 of Table 3.

For each RNA sequence, the PPVs corresponding to the subsets M \ D (common base pairs)

and MnD (remaining MFE base pairs) for 100 independent executions of ESD-Fold are also

calculated (Table 3, columns 3 and 4, respectively). As it is observed in this table, the average

PPV of the common base pairs (M \ D) is high for each sequence. Likewise, the average PPV

of the remaining MFE base pairs (MnD) is low. The higher PPV for common base pairs indi-

cates the great impact of simulated SHAPE data in the RNA secondary structure prediction.

Our proposed method is also applied on RNA sequences taken from the RNA-STRAND

dataset, where no SHAPE data is available for them. This dataset includes eight families of

RNA-STRAND, namely NDB, PDB, RFA, SPR, SRP, ASE, TMR and CRW, where for each fam-

ily, the first ten sequences (according to their identification numbers) are selected. Column 2

in Table 4 shows the average length of the selected sequences for each family. Our method,

RNAfold and RNAstructure are applied on this dataset and the average accuracies for each

family are depicted in Table 4 (Columns 3, 4 and 5, respectively). The average computational

time of the proposed method on this dataset is also presented in the last column of this table.

As it can be seen, our method predicts RNA secondary structures with higher accuracy com-

pared to the other competitors.

Fig 2. Boxplots of simulated SHAPE data prediction accuracy versus accuracy of the MFE prediction of RNAstructure software.

In each box, the midline marks the median accuracy for 100 predictions.

doi:10.1371/journal.pone.0166965.g002
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Fig 3. Boxplots of simulated SHAPE data prediction accuracy versus accuracy of the real SHAPE prediction of RNAstructure

software. In each box, the midline marks the median accuracy for 100 predictions.

doi:10.1371/journal.pone.0166965.g003

Fig 4. Boxplots of simulated SHAPE data prediction accuracy versus accuracy of MEA structure of RNAfold software. In each box,

the midline marks the median accuracy for 100 predictions.

doi:10.1371/journal.pone.0166965.g004
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All the previously mentioned statistics are also computed for this dataset, using 200 execu-

tions of ESD-Fold for each family (20 executions per each RNA sequence), and presented in

Table 5.

Conclusions

As it is mentioned in the manuscript, the SHAPE data could not be simulated for an RNA

sequence without knowing its secondary structure. The main achievement of our proposed

method is to computationally simulate the SHAPE data for a given sequence with secondary

structure obtained by using an evolutionary algorithm. To do this, a population of RNA sec-

ondary structures is generated and employed in the SHAPE data simulation phase. These

structures are further improved by an evolutionary method. The results show the high accu-

racy and efficiency of the proposed method in comparison to the RNAstructure.

Table 3. PPV(M) shows the number of native base pairs in the MFE structure M. PPVs corresponding to the sets of common base pairs and remaining

MFE base pairs were computed. Values in columns 3 and 4 are the average of 100 independent executions of ESD-Fold ± standard deviation. Here, the val-

ues are rounded to two decimal digits.

RNA sequence PPV(M) PPV(M \ D) PPV(MnD)

Adenine 1 1 0

tRNA-Asp 0.76 0.99 ± 0.01 0.32 ± 0.18

tRNA-Phe 1 1 0.13 ± 0.23

MDLOOP 0.71 1 0

HCV- domain2 0.32 1 0

5S-Ecoli 0.25 0.89 ± 0.15 0 ± 0.01

ADDRSW 0.91 1 0.01 ± 0.02

CIDGMP 0.8 0.81 ± 0.04 0.77 ± 0.1

RNASEP4 0.5 0.96 ± 0.06 0.08 ± 0.06

p546 0.44 0.97 ± 0.05 0.04 ± 0.06

5srRNA 0.23 0.68 ± 0.15 0

Glycine-riboswitch 0.84 0.9 ± 0.05 0.31 ± 0.3

TRP4P6 0.83 0.92 ± 0.02 0.44 ± 0.06

16S rRNA 0.34 0.77 ± 0.07 0.08 ± 0.02

23S rRNA 0.44 0.77 ± 0.02 0.23

doi:10.1371/journal.pone.0166965.t003

Table 4. Comparison of the results obtained by the MFE RNAfold (Column 3), and RNAstructure when it uses MFE (Column 4), and our proposed

method (ESD-Fold) when the simulated SHAPE data is employed (Column 5). The average of computational time (minutes) of ESD-Fold on each family

is shown in Column 6. Here, the values are rounded to one decimal digit.

RNA sequence Length RNAfold (MFE) RNAstr. (MFE) ESD-Fold (simulated) Comp. time (minutes)

NDB 16 100 100 100 0.3

PDB 32 80.7 46.1 83.6 0.5

RFA 54 86.3 86.2 92.4 1

SPR 76 72.6 89.4 96.4 1

SRP 206 65.4 68.9 68.5 3.8

ASE 302 50.1 51.8 54.8 9.2

TMR 358 33.1 46 41.6 7.2

CRW 752 41.3 53.4 56.8 34

Average 66.2 67.7 74.2

doi:10.1371/journal.pone.0166965.t004
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In our proposed method, a matrix representation of pairing probabilities of each two nucle-

otides in an RNA sequence was created. First of all, a population of RNA secondary structures

for the given RNA sequence is constructed based on Roulette-Wheel selection. Then, SHAPE

data was simulated for each secondary structure in the population. Here, the fitness value for

each structure was considered as summation of free energy and pseudo-free energy values.

Afterwards, an evolutionary algorithm was applied on each secondary structure in the popula-

tion to improve it. Generation of population is continued until the best structure in the two

last populations remains constant. Finally, the structure with minimum summation of free

and pseudo-free energies is reported as the predicted RNA structure.

As it is mentioned in the results, the accuracy of ESD-Fold is not high enough for longer

RNA sequences. One direction to further improve the ESD-Fold is to find a mechanism for

selecting the stable stems with higher probability prior to those stems that are less stable, inde-

pendent of the number of these stems. This would enable the ESD-Fold to produce more accu-

rate structures, specially for longer sequences.
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(PDF)
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