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Abstract

Fresh-cut cantaloupe is particularly susceptible to contamination with pathogenic bacteria,

such as Escherichia coli O157:H7, Listeria monocytogenes, and Staphylococcus aureus.

Therefore, development of rapid, yet accurate detection techniques is necessary to ensure

food safety. In this study, a multiplex PCR system and propidium monoazide (PMA) concen-

tration were optimized to detect all viable pathogens in a single tube. A dual filtration system

utilized a filtration membrane with different pore sizes to enrich pathogens found on fresh-

cut cantaloupe. The results revealed that an optimized multiplex PCR system has the ability

to effectively detect three pathogens in the same tube. The viable pathogens were simulta-

neously detected for PMA concentrations above 10 μg/ml. The combination of a nylon mem-

brane (15 μm) and a micro pore filtration membrane (0.22 μm) formed the dual filtration

system used to enrich pathogens. The achieved sensitivity of PMA-mPCR based on this

dual filtration system was 2.6 × 103 cfu/g for L. monocytogenes, 4.3 × 10 cfu/g for E. coli

O157:H7, and 3.1 × 102 cfu/g for S. aureus. Fresh-cut cantaloupe was inoculated with the

three target pathogens using concentrations of 103, 102, 10, and 1 cfu/g. After 6-h of enrich-

ment culture, assay sensitivity increased to 1 cfu/g for each of these pathogens. Thus, this

technique represents an efficient and rapid detection tool for implementation on fresh-cut

cantaloupe.

Introduction

Cantaloupes (Cucumis melo L.) are an excellent source of vitamin A and C, as well as beta-car-

otene, potassium, dietary fiber, and iron [1]. The popularity of cantaloupes increases globally
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due to their high water content and low caloric value [2,3]. However, the relatively rough rind

of cantaloupes may easily be contaminated with pathogens from irrigation water, soil, and

fecal matter of animals [4–9]. Pathogens adhering to cantaloupe rinds can subsequently be

translocated into the flesh during cantaloupe dressing [10,11]. During the past decade, twenty-

nine foodborne disease outbreaks in the United States that were associated with cantaloupe

affected 1751 consumers, of which 34 died due to the resulting infection [12]. Such outbreaks

caused by the consumption of fresh produce have been associated with pathogens [13] and E.

coli O157:H7 and L. monocytogenes infections have been predominantly associated with canta-

loupes [14]. In 2011, an outbreak of L. monocytogenes due to cantaloupe contamination

affected 146 consumers in 28 states, led to 32 deaths, and one miscarriage [12]. S. aureus and

E. coli O157:H7 are able to survive and thrive on fresh-cut cantaloupes, although no cases of

food poisoning have been associated with pathogens from cantaloupe [15]. Pathogen out-

breaks and associated findings highlighted the significance for developing a highly specific,

sensitive, and rapid detection technique to assure the food safety of fresh-cut cantaloupes.

Traditional detection methods first need to enrich the target pathogens, isolate bacterial

pathogens from solid media, and confirm the infection and species via biochemical and sero-

logical tests. These procedures are extremely labor intensive and require significant time

investment (form days to weeks) to yield a conclusive result. Multiplex polymerase chain reac-

tion (mPCR) saves time and labor, and offers the advantage of simultaneous detection of

different types of pathogenic bacteria [16–22]. However, the downside of this detection tech-

nology is that it cannot selectively distinguish between viable and dead bacteria [23]. DNA

from dead bacterial cells can be amplified via mPCR. However, this technique shows several

disadvantages including the necessity to eliminate any trace of the bacterial DNA that is pres-

ent in the sample, limited sensitivity, reproducibility, and specificity [24]. Recently, the method

of ethidium monoazide (EMA) or propidium monoazide (PMA) in combination with mPCR

has been developed to enhance the accuracy of detection [25, 26]. The regent selectively pene-

trates only into the membrane-compromised structure of dead cells, where it intercalates into

nucleic acids [27]. However, EMA has been reported to also penetrate into integral cell mem-

branes and combined with genomic DNA during lighting, this results in the loss of partly

viable cells [28, 29]. This demonstrated that the ability of PMA surpassed that of EMA in dis-

tinguishing between viable and dead cells of various bacterial species [30]. In addition, the

PCR-base detection method for pathogens was affected by numerous factors, including acid-

based fruit residue [19]. Microfiltration via different pore sizes is a rapid and simple procedure

for filtering bacteria from mixed samples.

In this study, microfiltration-based multiplex PCR in combination with a PMA assay was

developed for detection and discrimination of E. coli O157:H7, L. monocytogenes, and S. aureus
on fresh-cut cantaloupes. Highly sensitive primers for specific pathogen genes were designed,

resulting in an assay that can indeed detect all three viable pathogens simultaneously, even

though cantaloupe debris can inhibit the PCR test. A microfiltration membrane was included

to eliminate cantaloupe pulp interference, enhance pathogen enrichment and thus shorten

detection time. The developed assay will represent a useful diagnostic tool during fresh-cut

fruits processing, enabling the prevention of contaminated food distribution.

Materials and Methods

Bacterial strains

Bacterial strains used in this study are listed in Table 1. They were obtained from the China

Center of Industrial Culture Collection (CICC, Beijing, China), the China General Microbio-

logical Culture Collection Center (CGMCC, Beijing, China), the Guangdong Microbiology
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Culture Center (GIM, Guangdong, China), and the Microbiology safety laboratory of the

Dalian Nationality University, China. L. monocytogenes was cultured in trypticase Soy Broth-

Yeast Extract (TSB-YE), S. aureus was cultured in trypticase Soy Broth (TSB), and E. coli O157:

H7 was cultured in Luria-Bertani (LB). Other bacterial strains were cultured in Nutrient Broth

(NB). All pathogens were enumerated using L. monocytogenes chromogenic culture medium,

Table 1. List of all bacterial strains used in this study.

Bacteria strain (No.) Source

Listeria monocytogenes ATCC 19111

Listeria monocytogenes ATCC 19112

Listeria monocytogenes ATCC 19115

Listeria monocytogenes ATCC 15313

Listeria monocytogenes GIM 1.229

Staphylococcus aureus ATCC 6538

Staphylococcus aureus CICC 21600

Staphylococcus aureus CICC 10201

Staphylococcus aureus CICC 23656

Escherichia coli O157:H7 NCTC 12900

Escherichia coli O157:H7 CICC 21530

Escherichia coli O157:H7 CICC 10907

Listeria ivanovii ATCC 19119

Listeria grayi ATCC 25401

Listeria seeligeri ATCC 35967

Listeria welshimeri ATCC 35897

Listeria innocua ATCC 33090

Salmonella Typhimurium ATCC 14028

Samonella enterica subsp. enterica CMCC 50115

Salmonella paratyphi Type B CMCC 50094

Salmonella enterica subsp. enterica CICC 10871

Salmonella Typhi CMCC 50071

Micrococcus luteus CMCC 28001

Proteus mirabilis CMCC 49005

Bacillus cereus CMCC 63301

Escherichia coli CMCC 44102

Escherichia coli STEC CICC 10668

Escherichia coli ETEC CICC 10665

Escherichia coli ETEC O25: K19 CICC 10414

Escherichia coli EPEC O 127: K63 CICC 10411

Escherichia coli EIEC CICC 10661

Vibrio parahemolyticus CICC 21617

Vibrio cholerae CICC 23794

Enterobacter sakazakii CICC 21560

Pseudomonas aeruginosa CICC 20236

Campylobacter jejuni CICC 22936

Shigella flexneri CICC 10865

Shigella sonnei CICC 21679

Pseudomonas fluorescens CICC 20225

Yersinia enterocolitica CICC 10869

Bacillus subtilis CICC 10275

doi:10.1371/journal.pone.0166874.t001
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S. aureus chromogenic culture medium, and E. coli O157:H7 chromogenic culture medium,

respectively. All plates were incubated at 37˚C for 24–48 h in order to enable adequate patho-

gen growth. All media were purchased from Qingdao Hope Bio-Technology Co., Ltd (Hope-

bio, Qingdao, China).

DNA extraction

Cell suspensions of all three pathogens were centrifuged at 15,000 × g for 2 min, respectively.

Prior to DNA extraction, all samples were washed twice in an equal volume of sterile water.

Genomic bacterial DNA was extracted using the MiniBEST Bacterial Genomic DNA Extrac-

tion kit Ver. 2.0 (Takara, Shiga, Japan). Concentration and purity of DNA templates were

measured via Thermo Scientific Multiskan FC (Thermo Fisher Scientific, MA, USA). Subse-

quently, DNA templates with high purity within a ratio of 1.8–2.0 (A260 / A280) were diluted in

distilled water to identical concentrations and then stored at -20˚C.

Primer design and screening

The wzy gene (GenBank: AF061251.1) of E. coli O157:H7, the ina gene (GenBank: EU295422.1)

of L. monocytogenes, and the nuc gene (GenBank: DQ507379.1) of S. aureus were selected to

design primers via Primer Premier 5.0 software (Premier Biosoft, CA, USA). Primer pairs were

specifically designed and screened for this study to simultaneously detect three pathogens in a

single reaction. The information of the three target genes, primer pairs, and amplicon sizes are

listed in Table 2. Takara Bioengineering Co. (Dalian, China) synthesized the primers. Further-

more, specificity and verification of each primer pair was confirmed via single PCR using non-

target bacterial strains.

Multiplex PCR assay

Primer concentrations and reaction conditions were further optimized for multiplex PCR. The

utilized reaction system contained 1.32 ng/μL, 1.40 ng/μL, and 1.25 ng/μL of extracted DNA as

templates of L. monocytogenes, S. aureus, and E. coli O157:H7, respectively. The system further-

more contained, 5 μL of 10 × PCR buffer (Mg2+ plus), 0.20 mM of dNTPs, 0.08 μM each of for-

ward and reverse ina primers, 0.1 μM each of forward and reverse wzy primers, 0.1 μM each of

forward and reverse nuc primers, 0.5 U of Ex Taq DNA polymerase, and RNase-free water was

used to replenish to a final volume of 50 μL. All regents for the PCR test were purchased from

the Takara Bio company (Dalian, China).

The samples were amplified in an ARKTIKThermal Cycler (Thermo Fisher Scientific, MA,

USA). The mPCR reaction conditioning started with pre-denaturing with 95˚C for 3 min, fol-

lowed by 32 cycles of denaturing at 94˚C for 40 s each, annealing temperature of 50˚C for 30 s

and an extension at 72˚C for 40 s, followed by a final extension step at 72˚C for 10 min. Subse-

quent to mPCR amplification, the products were subjected to 3% agarose gel including Gelred

Table 2. Primer pairs designed for the multiplex PCR in this study.

Microorganism Primer sequence (5’-3’) Length (bp)

L. monocytogenes ina-F:GAGCTAACCAAATAAGTAACA 285

ina-R:AGGTCGCTAATTTGGTTA

S. aureus nuc-F:TTCGCTACTAGTTGCTTA 159

nuc-R:CGCAGGTTCTTTATGTAA

E. coli O157:H7 wzy-F:GTTCCATATGTTGTTTCTGA 193

wzy-R:CTGCTCCATACGTAGTAA

doi:10.1371/journal.pone.0166874.t002
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dye (Biotium, Inc., Hayward, CA, USA) for electrophoresis. The image was studied with the

UVP BioSpectrum Imaging System (UVP, LLC, CA, USA).

Internal verification and primer specificity

Multiplex PCR was performed on the mix of genomic DNA of the three pathogens (concentra-

tion for each at 108 CFU/ml) using optimized conditions as described above. To test for the

existence of disturbances among target pathogens, three DNA templates were amplified using

two random primer pairs in a single reaction tube, using mPCR for the three pathogens as pos-

itive control. To investigate whether the presence of non-target bacteria disturbs identification

and detection of target bacteria, non-target bacteria strains were detected via mPCR in the

same assay. DNA templates were prepared as described above and immediately tested after

isolation.

Sensitivity test of the multiplex PCR

To determine the sensitivity of the mPCR assay, the pathogen cell suspension was serially

diluted 10-fold with 0.1% peptone water after washing twice, resulting in concentrations from

108 to 100 CFU/mL. The suspensions were subjected to DNA extraction and were subsequently

tested with the mPCR detection assay.

Optimization of PMA treatment

E. coli O157:H7, L. monocytogenes, and S. aureus were cultured in LB, TSB-YE, and TSB media

for 24 h. The suspensions were heat-treated at 100˚C for 15 min and immediately immersed in

ice for 2 min to obtain dead cells. Heat-treated cells and viable cells were confirmed onto LB

plates, TSA media, and TSA-YE media.

PMA (Biotium, Inc., Hayward, CA, USA) was dissolved in 20% dimethyl sulfoxide and

stored at -20˚C in the dark. 5 μL, 10 μL, 20 μL, and 40 μL of PMA (1 mg/ml) were respectively

added to 1 mL of bacterial suspension in a light-transparent 1.5 mL microcentrifuge tube. The

tube was incubated in the dark at room temperature for 5 min, mixing every 30 s [31], to allow

PMA to penetrate the dead cells and intercalate with the DNA. The sample was then placed on

crushed ice at a distance of 15–20 cm from the light source and exposed to a 500-W halogen

light source for 5 min [32]. The tube was shaken every 30 s to guarantee homogeneous light

exposure. Genomic pathogen DNA (viable and dead) was extracted from PMA treated samples

using the method described above. The sample was tested with the newly developed mPCR as

described above.

Optimizing the filtration membrane for fresh-cut cantaloupe

Whole cantaloupes were cleaned and cut into cubes of 1 cm × 1 cm × 1 cm using a sterile knife

and cutting board in a sterile room. L. monocytogenes, S. aureus, and E. coli O157:H7 were

inoculated on 10 g of fresh-cut cantaloupe at 108 CFU/ml and then air dried for 1 h. Samples

were mixed for 1 min using a homogenizer (Interscience, France) after adding 90 mL of 0.1%

peptone water. Samples were removed using a filtration apparatus (Hangzhou Hengqing Tech-

nology Co., Ltd, China) with different types of filtration membranes (polypropylene mem-

brane of 10, 20, and 40 μm; nylon membrane of 15, 40, and 60 μm). The homogeneous

solution and pathogens were absorbed into sterile conical flasks using circulating water pumps

(SHZ-II-type, Shanghai Eguiding Analytical Instrument Co., Ltd. China). The filtrate was

diluted with 0.1% peptone water and enumerated via Chromogenic media. The filtrate was col-

lected through 0.22 μm or 0.45 μm filtration membranes, respectively. The diagram was
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designed about this dual filtration system (S1 Fig). Filtration membranes were put into a cen-

trifuge tube containing 10 ml of 0.1% peptone water and vibrated using a vortex mixer for 2

min. The mixture was enumerated using Chromogenic media (see above).

Detection limit of pathogens in artificially contaminated fresh-cut

cantaloupe

Cantaloupes were purchased from a local supermarket (Newmart, Dalian, China) to test the

newly-developed filtration-based PMA-mPCR. Fresh-cut cantaloupes were tested for contami-

nation with L. monocytogenes, S. aureus, and E. coli O157:H7 via conventional methods. Each

sample was inoculated with 107–1 cfu/g of L. monocytogenes, S. aureus, and E. coli O157:H7,

respectively. The treated samples received additional 90 mL of 0.1% peptone water, followed

by homogenization for 1 min with a homogenizer (Interscience, Saint Nom la Breteche,

France). The suspension was microfiltered and PMA treated, before the genomic pathogen

DNA was extracted using the method above and amplified with mPCR. Each sample treatment

was performed in triplicate.

Incubation enrichment

Each sample (10 g) was inoculated with 1 mL of L. monocytogenes, S. aureus, and E. coli O157:

H7 with 103–1 cfu/g, respectively. Treated samples were topped up to 90 mL TSB for culture.

Incubation durations were 0 h, 3 h, and 6 h and samples were homogenized for 1 min with a

homogenizer. The suspension was then microfiltered and PMA treated, pathogen colonies

were counted, while genomic DNA of pathogens was simultaneously extracted using the

method described above, then amplified via multiplex PCR. Each treatment sample was per-

formed in triplicate.

Results

Optimization of multiplex PCR

Reaction condition, annealing temperature, extending time, primer concentration, dNTP, and

enzyme activity of mPCR were optimized to obtain three similar bands in a single tube, while

preventing non-specific reactions in the control sample. Fig 1 shows the results of gel electro-

phoresis comparing the mPCR method that was established for three pathogens with specific

PCR reactions for each pathogen individually. As control, the amplification result of ddH2O

used the three pairs of primers that were studied in this paper. The target genes specific to L.

monocytogenes, S. aureus, and E. coli O157:H7 produced amplicons at 285 bp, 159 bp, and 193

bp, respectively. This revealed distinct and bright bands at each band. No amplification band

was found at the negative control.

Primer specificity

Efficiency and specificity of the primers were assayed with target and non-target strains.

Under optimized multiplex PCR conditions, a DNA mixture of three pathogens produced

three bands (Fig 2, lane 1), which included L. monocytogenes (285 bp), S. aureus (159 bp), and

E. coli O157:H7 (193 bp). Lanes 2 to 4 show two bands containing two random pathogens,

each. Fig 2, lane 5 shows the result of the negative control. A total of 41 type strains including

29 non-target strains were evaluated via this multiplex PCR assay to confirm the specificity of

three primer pairs (Fig 2). The result demonstrates that L. monocytogenes, S. aureus, and E. coli
O157:H7 are amplified effectively and that no target pathogen produced a negative result

(Fig 3).
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The sensitivity of the developed multiplex PCR

To investigate the sensitivity of this optimized multiplex PCR, the genomic DNA of three path-

ogens was mixed (containing 108 cfu/ml), serially diluting the suspension 10-fold to a concen-

tration of 10 cfu/ml (Fig 4). The result revealed a sensitivity of the multiplex PCR for mixed

genomic DNA of L. monocytogenes (2.3 × 103 cfu/ml), E. coli O157:H7 (1.8 × 103 cfu/ml), and

S. aureus (3.4 × 103 cfu/ml). The sensitivity of L. monocytogenes was 2.3 × 103 cfu/ml, that of E.

coli O157:H7 was 1.8 × 10 cfu/ml, and that of S. aureus was 3.4 × 102 cfu/ml. All experiments

were performed in triplicate.

Fig 1. Multiplex PCR result of L. monocytogenes, E. coli O157:H7, and S. aureus, respectively. M: 1000 bp DNA marker. Lane 1 shows

PCR amplicons, specific to L. monocytogenes (285 bp), E. coli O157:H7 (193 bp), and S. aureus (159 bp). Lanes 2–4 show individual PCR

amplicons, specific to S. aureus (159 bp) (lane 2), E. coli O157:H7 (193 bp) (lane 3), and L. monocytogenes (285 bp) (lane 4). Lanes 5–6 show

results for the negative control.

doi:10.1371/journal.pone.0166874.g001
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Concentration optimization with PMA treatment

Following the development of the mPCR assay for L. monocytogenes, S. aureus, and E. coli
O157:H7, the concentrations of the PMA treatment were optimized. Whole cells of all patho-

gens were heat-killed prior to PMA treatment, resulting in a colony count of zero on corre-

sponding media. Dead cells treated with 5 μg/ml PMA resulted in the indistinct PCR signal of

lane 2 of Fig 5. No target genes were detected on dead cells treated with PMA of concentrations

of 10, 20, or 40 μg/ml. However, treating viable cells with PMA of different concentrations (5,

10, 20, or 40 μg/ml) resulted in three distinct PCR signals (Fig 5, lanes 6–9). The intensity of

the band revealed a weakening tendency for viable cells for PMA concentrations of 20 and

40 μg/ml. A PMA treatment with 10 μg/ml was chosen, considering both the result for viable

cells and economic cost.

Fig 2. Internal verification and specificity of primers for L. monocytogenes, E. coli O157:H7, and S. aureus.

Lane M: 1000 bp DNA marker. Lane 1 shows PCR amplicons specific to L. monocytogenes (285 bp), E. coli O157:

H7 (193 bp), and S. aureus (159 bp). Lane 2 shows PCR amplicons specific to S. aureus (159 bp) and E. coli O157:

H7 (193 bp). Lane 3 shows PCR amplicons specific to L. monocytogenes (285 bp) and S. aureus (159 bp). Lane 4

shows PCR amplicons specific to E. coli O157:H7 (193 bp) and L. monocytogenes (285 bp). Lane 5 shows results

for the negative control.

doi:10.1371/journal.pone.0166874.g002
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Fig 3. Primer specificity for L. monocytogenes, E. coli O157:H7, and S. aureus. Lane M: 2000 bp DNA marker;

Lanes 1, 12, and 23 show the PCR amplicons specific to L. monocytogenes (285 bp), E. coli O157:H7 (193 bp), and

S. aureus (159 bp); Lanes 2–11 show PCR amplicons specific to Listeria ivanovii (ATCC 19119), Listeria grayi

(ATCC 25401), Listeria seeligeri (ATCC 35967), Listeria welshimeri (ATCC 35897), Listeria innocua (ATCC 33090),

Salmonella Typhimurium (ATCC 14028), Samonella enterica subspenterica (CMCC 50115), Salmonella paratyphi

Type B (CMCC 50094), Salmonella enterica subsp. enterica (CICC 10871), and Salmonella Typhi (CMCC 50071);

Lanes 12–22 show PCR amplicons specific to Micrococcus luteus (CMCC 28001), Proteus mirabilis (CMCC 49005),

Bacillus cereus (CMCC 63301), Escherichia coli (CMCC 44102), Escherichia coli STEC (CICC10668), Escherichia

coli ETEC (CICC10665), Escherichia coli ETEC O25:K19 (CICC 10414), Escherichia coli EPEC O127:K63 (CICC

10411), Escherichia coli EIEC (CICC 10661), and Vibrio parahemolyticus (CICC 21617); Lanes 23–32 show PCR

amplicons specific to Vibrio cholera (CICC 23794), Enterobacter sakazakii (CICC 21560), Pseudomonas

aeruginosa (CICC 20236), Campylobacter jejuni (CICC 22936), Shigella flexneri (CICC 10865), Shigella sonnei

(CICC 21679), Pseudomonas fluorescens (CICC 20225), Yersinia enterocolitica (CICC 10869), and Bacillus subtilis

(CICC 10275); Lane 33 is the negative control.

doi:10.1371/journal.pone.0166874.g003
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Optimizing the filtration membrane for fresh-cut cantaloupe

Different types of filtration membranes were chosen (polypropylene and nylon membranes) to

enhance detection limit and reduce detection time. The initial inoculation level was respec-

tively 8.90 log cfu/ml of L. monocytogenes, 8.70 log cfu/ml of E. coli O157:H7, and 8.38 log cfu/

ml of S. aureus. The enrichment and filtration result of target pathogen based on polypropyl-

ene membrane was approximate 107 cfu/ml (Table 3). Table 4 lists the colony count using a

nylon membrane filtration, representing a filtration level of 108 cfu/ml. This result was more

similar to the number of inoculations level than that on polypropylene membrane. Nylon

membranes with three different pore sizes (15 μm, 40 μm, and 60 μm) all demonstrated a simi-

lar ability to elute bacteria. The nylon membrane with 15 μm pore size was chosen for canta-

loupe residue removal, considering that pore sizes of 40 μm and 60 μm would allow more

residue to pass through during filtration. The capacity to enrich bacteria using a filtration

membrane of 0.22 μm pore size was superior to that of a 0.45 μm filtration membrane. Thus, a

re-filtration membrane with pore size of 0.22 μm was chosen to enrich bacteria using identical

filtration equipment.

Detection limit of viable pathogens on artificially contaminated fresh-cut

cantaloupe

The mPCR sensitivity test was further investigated using fresh-cut cantaloupe that had been

inoculated with different concentrations of the three pathogens (107–1 cfu/g). DNA was

directly extracted via PMA treatment from the sample subsequent to filtration and without

prior enrichment step. The mPCR result revealed a detection limit for a combination of L.

monocytogenes of 2.6 × 103 cfu/g, E. coli O157:H7 of 4.3 × 103 cfu/g, and S. aureus of 3.1 × 103

cfu/g, while for L. monocytogenes alone, the detection limit was 2.6 × 103 cfu/g, for E. coli

Fig 4. The sensitivity of the multiplex PCR assay using 10-fold serial dilutions of L. monocytogenes,

E. coli O157:H7, and S. aureus. Lanes 1 to 8 show amplicon results for L. monocytogenes (from 2.3 × 108

cfu/ml to 2.3 × 10 cfu/ml), E. coli O157:H7 (from 1.8 × 108 cfu/ml to 1.8 × 10 cfu/ml), and S. aureus (from

3.4 × 108 cfu/ml to 3.4 × 10 cfu/ml). Lane 9 and Lane 10 show the results of the negative controls.

doi:10.1371/journal.pone.0166874.g004
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Fig 5. Result of multiplex PCR detection for dead and viable pathogens via PMA treatment. Lane M

shows the 1000 bp DNA marker. Lanes 1–4 show genomic DNA extracted from dead L. monocytogenes, E.

coli O157:H7, and S. aureus following PMA treatment (5 μg/ml, 10 μg/ml, 20 μg/ml, and 40 μg/ml,

respectively). Lanes 5–8 show genomic DNA extracted from viable L. monocytogenes, E. coli O157:H7, and

S. aureus after PMA treatment (5 μg/ml, 10 μg/ml, 20 μg/ml, and 40 μg/ml).

doi:10.1371/journal.pone.0166874.g005

Table 3. Number of bacterial colonies for Listeria monocytogenes, Escherichia coli O157:H7, and Staphylococcus aureus inoculated on fresh-cut

cantaloupe based on Polypropylene membrane.

Filtration (log cfu/ml) Polypropylene membrane (log cfu/ml)

10 μM 20 μM 40 μM

Re-filtration 0.22 μM 0.45 μM 0.22 μM 0.45 μM 0.22 μM 0.45 μM

L. monocytogenes (8.90±0.03) 7.19±0.06 7.09±0.07 7.44±0.03 7.22±0.04 7.82±0.02 7.64±0.03

E. coli O157:H7 (8.70±0.02) 7.57±0.01 7.18±0.08 7.71±0.02 7.50±0.03 7.84±0.02 7.62±0.03

S. aureus (8.38±0.03) 7.69±0.04 7.39±0.04 7.79±0.02 7.56±0.03 7.98±0.01 7.73±0.03

doi:10.1371/journal.pone.0166874.t003

Table 4. Number of bacterial colonies for Listeria monocytogenes, Escherichia coli O157:H7, and Staphylococcus aureus inoculated on fresh-cut

cantaloupe based on nylon membrane.

Filtration (log cfu/ml) Nylon membrane (log cfu/ml)

15 μM 40 μM 60 μM

Re-filtration 0.22 μM 0.45 μM 0.22 μM 0.45 μM 0.22 μM 0.45 μM

L. monocytogenes (8.90±0.03) 8.59±0.04 8.19±0.09 8.60±0.05 8.48±0.09 8.64±0.04 8.11±0.12

E. coli O157:H7 (8.70±0.02) 8.15±0.13 7.97±0.03 8.26±0.13 7.94±0.03 8.35±0.08 8.16±0.16

S. aureus (8.38±0.03) 8.06±0.09 7.95±0.03 8.10±0.12 8.10±0.11 8.25±0.09 7.98±0.04

doi:10.1371/journal.pone.0166874.t004
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O157:H7 alone, it was 4.3 × 10 cfu/g, and for S. aureus alone, the detection limit was 3.1 × 102

cfu/g (Fig 6).

Pathogen enrichment on artificially contaminated fresh-cut cantaloupe

Three pathogens were used for multiplex PCR amplification at different levels of inoculation

(1.8 × 103–1 cfu/g for L. monocytogenes, 1.1 × 103–1 cfu/g for E. coli O157:H7, and 1.4 × 103–1

cfu/g for S. aureus) either immediately (Fig 7, lanes 1–4), after 3 h (Fig 7, lanes 5–8), or after 6

h (Fig 7, lanes 9–12) of enrichment culture. The result revealed three evident, but hazy target

bands from all three pathogens for an inoculation level of 103 cfu/g immediately subsequent to

enrichment (Fig 7, lane 1). DNA from S. aureus and E. coli O157:H7 could be amplified for an

inoculation level of 102 cfu/g (Fig 7, lane 2). No target band was obtained with an inoculation

level of 10 cfu/g and 1 cfu/g without prior enrichment (Fig 7, lane 3–4). The result revealed

three hazy target bands when the initial level of inoculation was 102 cfu/g after 3 h of enrich-

ment (Fig 7, lane 6). The band representing DNA of L. monocytogenes was faint and minor

compared to other bands. No single band was amplified with this multiplex PCR method with

an initial inoculation level of 1 cfu/g after 3 h of enrichment (Fig 7, lane 8). Three target bands

were effectively amplified for initial inoculation levels from 103 to 1 cfu/g following 6 h enrich-

ment (Fig 7, lane 9–12). This demonstrates that this multiplex PCR detection method worked

under inoculation levels as low as 1 cfu/g with prior enrichment of 6 h. The colony number of

target pathogen was enumerated after corresponding enrichment time (0, 3h, 6h) (S1 Fig)

Discussion

Many studies of L. monocytogenes, S. aureus, and E. coli O157:H7 food sample infection inci-

dences have been reported. These studies included pathogen contaminations of cooked foods

Fig 6. Detection limit of the multiplex PCR assay using 10-fold serial dilutions of populations of L.

monocytogenes, E. coli O157:H7, and S. aureus on fresh-cut cantaloupe. Lane M shows the 1000 bp

DNA marker. Lanes 1 to 8 show amplicon results for L. monocytogenes (from 2.6 × 107 cfu/g to 1 cfu/g), E.

coli O157:H7 (from 4.3 × 107 cfu/g to 1 cfu/g), and S. aureus (from 3.1 × 107 cfu/g to 1 cfu/g). Lanes 9 and 10

show results for the negative control.

doi:10.1371/journal.pone.0166874.g006
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[33], raw vegetables [34], and broilers [35,36]. In addition, outbreaks of pathogen contamina-

tion in minimally processed fruits from street merchants were significantly higher compared

to those from supermarkets [37].

Culture-based detection methods have been widely used so far; however, they pose severe

limitations, such as long detection duration, false negatives, and high labor-intensity. Numer-

ous methods of molecular biology have been developed to detect pathogenic bacteria in food

[38,39]. Prominent examples are PCR [40], real time PCR [41,42], loop-mediated isothermal

amplification (LAMP), and DNA microarray analysis [43,44]. However, multiplex PCR with

simultaneous detection of more that one pathogen, low cost, and low labor intensity is far

more convenient and quicker than other methods of molecular biology.

To our knowledge, this is the first report that uses a filtration-based PMA-mPCR detection

method to distinguish between dead and viable L. monocytogenes, S. aureus, and E. coli O157:

H7 on fresh-cut cantaloupe. Compared to conventional biochemical tests that require more

labor, material, and time, the method presented in this study has definite advantages [45]. In

order to establish this mPCR system, three primers were designed to specifically amplify differ-

ent sizes of target genes. Three primer pairs were used to simultaneously ensure identification

of L. monocytogenes, S. aureus, and E. coli O157:H7 within the same reaction tube and even in

the presence of other related and non-related bacterial strains.

Such mPCR assays using specific primers have been indicated to be efficient for the detec-

tion of pathogenic bacteria on food products [46]. However, a DNA-based detection method

cannot discriminate between viable and dead cells. The number of viable cells on food samples

has been overestimated due to false positives [47]. To remove the effects introduced by dead

cells within the PCR signals, EMA, PMA, and Reagent D treatment was applied to crosslink

with the DNA of dead cells [48].

In this study, PMA was selected due to superior selectivity in penetrating dead cells, while

EMA and Reagent D have also been confirmed to penetrate membranes of viable cells [49–51].

Fig 7. Detection of multiplex PCR assay on fresh-cut cantaloupe inoculated with 103–1 cfu/g following prior

enrichment. Lane M shows 1000 bp DNA marker. Lanes 1 to 4, lanes 5 to 8, and lanes 9 to 12 show amplicon

results after 0, 3, 6 h enrichment, respectively for L. monocytogenes, E. coli O157:H7, and S. aureus on fresh-cut

cantaloupe that had been inoculated with 1.8 × 103–1 cfu/g, 1.1 × 103–1 cfu/g, and 1.4 × 103–1 cfu/g.

doi:10.1371/journal.pone.0166874.g007
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A PMA concentration optimization revealed that a PMA concentration of 40 μg/mL did not

inhibit the amplification of target DNA from the viable three pathogens. This was higher than

the 20 μg/mL reported for E. coli [52]. However, the minimum PMA concentration that

completely inhibited DNA amplification from dead cells was 10 μg/mL, notably higher than

the 3 μg/mL previously reported for E. coli [52]. The indistinct band in lane 1 of Fig 5 revealed

that the test could not distinguish between viable and dead cells for a PMA concentration of

5 μg/mL. A further study reported that false positive results still occured for the quantitative

detection of Vibrio parahaemolyticus for a PMA concentration below 8 μg/ml [32]. Based on

the obtained result, a final PMA concentration of 10 μg/mL resulted in complete elimination

of PCR signals from dead target bacteria cells, without PCR signal reduction from viable cells.

However, factors such as inhibition and residue of samples can affect direct detection of

pathogens on contaminated samples via this PCR system. To circumvent this problem, meth-

ods were developed, such as microfiltration [53], IMS [21], and filtration [54]. In this study, fil-

tration system-based methods proved effective in removing residue and inhibition from fresh-

cut cantaloupe. A filtration membrane pore size beyond 10 μm allows most pathogens to pass.

However, large particles such as fruit pulp were blocked from passing the filtration membrane.

Most of the viable bacteria can be recovered on the surface of both 0.22 and 0.45 μm filtration

membranes. This agrees with published data on pore sizes enabling different bacterial species

to pass through a filtration membrane [54]. The passing ability of pathogens strongly depends

on the type of filtration membrane. Polycarbonate screen membranes enabled cells to pass

more effectively and had a very distinct threshold at which no further cells would pass the

membrane. Cellulose ester membranes showed a more gradual reduction of cell numbers in

the filtrate as pore size decreased and cells ceased to pass through the membranes [55].

Moreover, the sensitivity of the multiplex PCR assay described in this study was in agree-

ment with a previous report by Patricia and Rosa [56]. The authors tested a multiplex PCR

assay on artificially inoculated fresh and minimally processed vegetables, revealing a sensitivity

of 103 CFU/g for direct detection of E. coli O157:H7, Salmonella spp., and S. aureus. Similarly,

the report revealed that a detection limiting of 104 CFU/ml could be achieved for L. monocyto-
gens, S. aureus, Strep. agalactiae, Ent. sakazakii, E. coli O157:H7, V. parahaemolyticus, Salmo-
nella spp., and P. fluorescens without relying on a prior enrichment step via multiplex PCR

[57]. However, the detection limits of viable E. coli O157:H7 and S. aureus in this study were

lower than in both of these reports. Several studies have confirmed that the sensitivity of multi-

plex PCR for the detection of pathogens can be further enhanced after enrichment. Ferretti

et al. [58] have obtained excellent results using a 12-h enrichment and PCR-based test for Sal-
monella spp. in naturally contaminated salami. The report revealed a detection limit of 103 cfu/

ml for Campylobacter spp. and 106 cfu/ml for Salmonella spp. of spiked chicken meat rinse

without a prior enrichment step. Following 24-h enrichment, assay sensitivity was increased

and detected up to 1 cfu/ml in samples contaminated with 1−105 cfu/ml via multiplex real-

time PCR for both pathogens [59]. E. coli O157:H7, Salmonella enterica, and L. monocytogenes
were inoculated at 10 cfu/g. Similarly, samples of spinach, egg, and hotdog were inoculated

with 10 CFU/g of E. coli O157:H7, Salmonella enterica, and L. monocytogenes, respectively

could be detected via quantitative PCR (qPCR) after an enrichment period of 7 h [60]. This

demonstrated that enrichment is a helpful step to remove inhibitors, improve the recovery of

pathogens, and enhance the reaction stability for detection. In this study, three pathogens

could be amplified via multiplex PCR under different inoculation levels after 6 h of enrichment

culture. The achieved detection sensitivity was 1 cfu/g. This result was consistent with other

reports; however, the shorter necessary enrichment time of 6 h reveals the superiority of the

detection method introduced in this study.
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Conclusions

In conclusion, the novel filtration-base PMA-mPCR assay designed for this study was sensi-

tive, swift, and specific for the simultaneous detection of viable L. monocytogenes, S. aureus,
and E. coli O157:H7 on fresh-cut cantaloupe. The combination of the PMA-mPCR assay with

the appropriate filtration membrane effectively eliminated the inhibitory effect of food sam-

ples. With this method, target pathogens can be detected after 6 h in a single reaction, reducing

time and labor costs. In addition, the rapid detection of these pathogens, allows food supply

monitors to immediately take appropriate measures to prevent the distribution of contami-

nated food. Thus, this assay promises to be an efficient diagnostic tool for the implementation

on fresh-cut cantaloupe. This study revealed the combination of PMA-multiplex PCR and the

filtration membrane method increased the detection success of L. monocytogenes, S. aureus,
and E. coli O157:H7.
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