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Abstract

Background

Alcohol dehydrogenase (ADH) activity is widely distributed in the three domains of life. Cur-
rently, there are three non-homologous NAD(P)*-dependent ADH families reported: Type |
ADH comprises Zn-dependent ADHs; type Il ADH comprises short-chain ADHs described
first in Drosophila; and, type 1ll ADH comprises iron-containing ADHs (FeADHSs). These
three families arose independently throughout evolution and possess different structures
and mechanisms of reaction. While types | and Il ADHs have been extensively studied, anal-
yses about the evolution and diversity of (type 1ll) FEADHs have not been published yet.
Therefore in this work, a phylogenetic analysis of FeADHs was performed to get insights
into the evolution of this protein family, as well as explore the diversity of FeADHs in
eukaryotes.

Principal Findings

Results showed that FeADHs from eukaryotes are distributed in thirteen protein subfamilies,
eight of them possessing protein sequences distributed in the three domains of life. Interest-
ingly, none of these protein subfamilies possess protein sequences found simultaneously in
animals, plants and fungi. Many FeADHs are activated by or contain Fe®*, but many others
bind to a variety of metals, or even lack of metal cofactor. Animal FeADHSs are found in just
one protein subfamily, the hydroxyacid-oxoacid transhydrogenase (HOT) subfamily, which
includes protein sequences widely distributed in fungi, but not in plants), and in several taxa
from lower eukaryotes, bacteria and archaea. Fungi FeADHSs are found mainly in two sub-
families: HOT and maleylacetate reductase (MAR), but some can be found also in other
three different protein subfamilies. Plant FeADHSs are found only in chlorophyta but not in
higher plants, and are distributed in three different protein subfamilies.

Conclusions/Significance

FeADHs are a diverse and ancient protein family that shares a common 3D scaffold with a
patchy distribution in eukaryotes. The majority of sequenced FeADHSs from eukaryotes are
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distributed in just two subfamilies, HOT and MAR (found mainly in animals and fungi).
These two subfamilies comprise almost 85% of all sequenced FeADHs in eukaryotes.

1. Introduction

Alcohol dehydrogenase (ADH) activity is widely distributed in numerous phyla, which include
organisms belonging to the three domains of life [1,2]. This activity is performed by different
enzymes in different organisms. Indeed, there are three non-homologous NAD(P)"-depen-
dent ADH families, which arose independently throughout evolution and possess different 3D
scaffolds and mechanisms of reaction [3,4]. Type I ADHs were discovered first one hundred
years ago by Federico Battelli and Lina Stern [5,6], who made the first preparation of a soluble
alcohol dehydrogenase obtained from horse liver. Some years later, Bengt Andersson [7]
showed that this enzyme requires the presence of co-zymase or diphosphopyridine nucleotide
(actually known as NAD™) to be active. In 1937, Erwin Negelein and Hans J. Wulff purified
and crystallized an alcohol dehydrogenase from brewers’ yeast [8], and in 1948, Roger K. Bon-
nichsen and Anders M. Wassen crystallized ADH from horse liver [9]. Few years later, Bert L.
Vallee and Frederic L. Hoch showed that zinc is a functional component of the yeast and horse
liver ADH [10,11]. Interestingly, horse liver ADH was also the first oligomeric enzyme for
which an amino acid sequence [12] and a three-dimensional structure were determined [13].

In contrast, a type II ADH from Drosophila melanogaster was purified for the first time in
1968 by William Sofer and Heinrich Ursprung, who showed that this enzyme possesses a
lower molecular weight as compared to that of liver and yeast ADHs, as well as a different sub-
strate specificity [14]. Partial primary structure of Drosophila alcohol dehydrogenase obtained
in 1976 [15] showed extensive differences with liver and yeast ADHs sequences, concluding
that large differences exist between the active sites of the Drosophila enzyme and the other pre-
viously reported ADHs [15,16]. In 1981, Jornvall and co-workers showed a distant but clear
relationship among zinc-containing ADHs and sorbitol dehydrogenase from sheep, and
between Drosophila ADH and ribitol dehydrogenase from Klebsiella, proposing that ADHs
can be divided in “long chain” (type I) and “short chain” (type II) alcohol dehydrogenases
[17].

A type III ADH was reported for first time by Christopher Wills and co-workers in 1981
[18] who found two ADHs with very different amino acid composition in Zymomonas mobilis.
This new ADH-II was purified by Robert K. Scopes and described as an iron-activated ADH
[19]. The gene which encodes this alcohol dehydrogenase II (adhB) from Zymomonas mobilis
was cloned and sequenced by Tyrrell Conway and co-workers in 1987 [20] showing no homol-
ogy with all previously sequenced ADHs. However, a few months later, Valerie M. Williamson
and Charlotte E. Paquin [21] cloned a reported ADH4 gene in Saccharomyces cerevisiae [22]
showing that the amino acid sequence encoded by this ADH4 gene was homolog to the iron-
activated ADH II from Z. mobilis. A third homolog protein (1,2-propanediol oxidoreductase)
encoded by fucO gene in E. coli was identified, allowing Tyrrell Conway and Lonnie O. Ingram
to propose that these unusual ADHs comprise a novel (type III) ADH family of enzymes [23].
Later, new protein homologs to the iron-activated alcohol dehydrogenase (FeADH) family dis-
playing different activities were found. Thus, glycerol dehydrogenase (GldA) from Escherichia
coli [24]; butanol dehydrogenase (BdhA and BdhB) from Clostridium acetobutylicum [25]; eth-
anolamine utilization protein (EutG) from Salmonella typhimurium [26]; and, 1,3-propanediol
dehydrogenase (DhaT) from Klebsiella pneumoniae [27] were all identified as homologs of the
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FeADH family. Although type III ADHs were initially described only in microorganisms,
Yingfeng Deng and co-workers identified and cloned, in 2002, a gene (ADHFETI) that encodes
an iron-activated ADH in humans [28].

Nowadays, it has been shown that Zn-dependent (type I) ADHs are homologous to several
other proteins that comprise the superfamily of medium-chain dehydrogenases/reductases
(MDR) [2,29]; concurrently, short-chain (type II) ADHs belong to the superfamily of short-
chain dehydrogenases/reductases (SDR), that comprise many different proteins with diverse
catalytic and non-catalytic activities [30,31]. Oppositely, Iron-activated (type III) ADHs have
not been extensively studied. According to NCBI’s conserved domain database [32], iron-
dependent ADHs are related to glycerol-1-phosphate dehydrogenases [33,34] and dehydroqui-
nate synthases [34-36].

Several papers have been published analyzing the origin and evolution of Zn-dependent
ADHs [37,38] and MDR superfamily [2], as well as the evolution of short-chain ADHs [1]
and SDR superfamily [39]. However, analyses about the evolution and diversity of iron-acti-
vated (type III) ADHs have not been published yet. Therefore in this work, a phylogenetic
analysis of iron-activated ADHs was performed, to get insights into the evolution of this pro-
tein family, as well as explore the diversity of iron-dependent ADHs in distinct eukaryotic
phyla.

2. Methods

Amino acid sequences from eukaryotes belonging to FeADH family were retrieved by BlastP
searches at the NCBI site [40] (http://blast.ncbi.nlm.nih.gov/Blast.cgi), or UniProt database
[41] (http://www.uniprot.org/). Progressive multiple amino acid sequence alignments were
performed with ClustalX version 2 [42] (http://www.clustal.org/clustal2/) using as a guide a
structural alignment constructed with the VAST algorithm [43] (http://www.ncbi.nlm.nih.
gov/Structure/VAST/vast.shtml) that included all non-redundant Fe-ADHs protein structures
deposited in the Protein Data Bank [44] (http://www.rcsb.org/pdb/home/home.do). Amino
acid sequence alignments were corrected manually using BioEdit [45] (http://www.mbio.ncsu.
edu/bioedit/bioedit.html).

To obtain the smallest unbiased representative sample of protein sequences that are homol-
ogous to FeADHs, protein sequence dataset were collected from Pfam version 29.0 [46] based
on representative proteomes [47] at 15% co-membership threshold (RP15). As FeADHs pos-
sess ca. 400 amino acids, only retrieved protein sequences with more than 200 residues were
included in alignments and phylogenetic analyses.

Phylogenetic analyses were conducted using MEGA?7 software [48] (http://www.
megasoftware.net). Four methods were used to infer phylogenetic relationships: maximum
likelihood (ML), maximum parsimony (MP), minimum evolution (ME), and neighborjoin-
ing (NJ). The amino acids substitution model described by Le-Gascuel [49], using a discrete
Gamma distribution with five categories, was chosen as the best substitution model, since it
gave the lowest Bayesian Information Criterion values and corrected Akaike Information
Criterion values [50] in MEGA7 [48]. The gamma shape parameter value (+G parame-
ter = 1.1824) was estimated directly from the data with MEGA7. Confidence for the internal
branches of the phylogenetic tree, obtained using ML method, was determined through
bootstrap analysis (500 replicates each).

Sequence logos were constructed using the WebLogo server (http://weblogo.threeplusone.
com/). Each logo consists of stacks of amino acid letters. The ordinate axis of the logos graphs,
indicate the stack for each position in the sequence. The height of the letters within the stack
indicates the relative frequency of each amino acid at that position [51].
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3. Results and Discussion
3.1. FeADH family definition

Iron-dependent (type-IIT) ADHs are reported as members of FeADH family in protein data-
bases. However, public protein database use different criteria to sort amino acid sequences
into different protein families and superfamilies; therefore, boundaries between related protein
families are not necessarily the same. The NCBI’s Conserved Domain Database [32] (http://
www.ncbi.nlm.nih.gov/cdd/) identify iron-dependent (type-III) ADHs as members of
DHQ-FeADH protein superfamily (cd07766), which comprises four related families: i) the
dehydroquinate synthase-like family (cd08169), which catalyzes the conversion of 3-deoxy-D-
arabino-heptulosonate-7-phosphate (DAHP) to dehydroquinate (DHQ) in the second step of
the shikimate pathway; ii) the family of glycerol-1-phosphate dehydrogenase and related pro-
teins (cd08549); iii) the glycerol dehydrogenase-like family (cd08550); and, iv) the iron-con-
taining alcohol dehydrogenase-like family (cd08551). Pfam database [52] (http://pfam.xfam.
org/) sorts these proteins into three different protein families: 1) the dehydroquinate synthase
family (PF01761); 2) the iron-containing alcohol dehydrogenase family (PF00465); and, 3) the
iron-containing alcohol dehydrogenase family 2 (PF13685).

To test the correspondence among the above described protein families, all identified
sequences retrieved from the NCBI's Conserved Domain Database (152 sequences from
cd08169 family; 66 sequences from cd08549 family; 118 sequences from cd08550; and 538
sequences from cd08551 family), were aligned with unbiased representative samples of protein
sequences (15% co-membership threshold) collected from the Pfam families related with iron-
containing ADHs (518 sequences from PF01761 family; 79 sequences from PF13685 family;
and 1080 sequences from PF00465 family). Fig 1 shows an unrooted tree illustrating the corre-
spondence between Pfam protein families and NCBI’s Conserved Domain Database families.
This figure shows that dehydroquinate synthase-like family (cd08169) shares the same branch
as that protein sequences from PF01761 family in the Pfam database. In the same way, the fam-
ily of glycerol-1-phosphate dehydrogenase and related proteins (cd08549) are located in the
same branch as that the iron-containing alcohol dehydrogenase family 2 from Pfam database
(PF13685). In contrast, the iron-containing alcohol dehydrogenase family (PF00465 from
Pfam database) comprises amino acid sequences that belong to two related protein families in
the NCBI’s Conserved Domain Databases: the glycerol dehydrogenase-like family (cd08550);
and the iron-containing alcohol dehydrogenase-like family (cd08551). Because glycerol dehy-
drogenases are reported as Zn-metallo-enzymes not containing iron [53,54], comprise a diver-
gent branch with respect to the other iron-containing alcohol dehydrogenases (Fig 1), and
conserve just one of the three conserved histidine residues involved in iron-binding (See
3.7 section), we centered the present analysis to the bona fide iron-dependent alcohol dehydro-
genase (FeADH) protein family, as defined in the NCBI’s Conserved Domain Database
(cd08551).

3.2. (Type Ill) FeADH family comprises proteins with distinct catalytic
activities

Several proteins reported as members from the FeADH family have been characterized exhib-
iting different catalytic activities. Thus, besides initial reports of iron-containing proteins

with ethanol dehydrogenase activity in Zymomonas mobilis or Saccharomyces cerevisiae
[18,21,23,55], other activities have been found: methanol dehydrogenase [56-58], lactalde-
hyde:propanediol oxidoreductase (lactaldehyde reductase) [23,59], propanol dehydrogenase
[60], butanol dehydrogenase [61,62], L-1,3-propanediol dehydrogenase [63-66], maleylacetate
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PF13685

(Fe-ADH 2)

0.1

PF01761 B

cd08169
(DHQ synthase)

. (DHQ-like)

cd08550 3
(GlyDH-like) 3

01 cd08551

PF00465 (Fe-ADH)

(Fe-ADH)

Fig 1. Unrooted tree constructed with protein sequences that possess homology to iron-dependent ADHs. 2459 nonredundant
protein sequences were retrieved from Protein Data Bank, Swiss Prot database, NCBI's Conserved Domain Database, and Pfam
database (using RP15 option to allow maximum representation of divergent proteins). Amino acid sequences were ascribed to protein
families as considered by Pfam database (A) or NCBI’s Conserved Domain Database (B).

doi:10.1371/journal.pone.0166851.9001

reductase [67-71], L-threonine dehydrogenase [72], and hydroxyacid-oxoacid transhydrogen-
ase [73] among others.

3.3. (Type-Ill) FeADH family comprises several protein subfamilies

According to NCBI’s Conserved Domain Database, sequences from FeADH protein family
(cd08551) are distributed in at least 19 different protein subfamilies (Table 1). To explore the
relationships between the different FeADH proteins, an alignment of 538 protein sequences
retrieved from the NCBI’s Conserved Domain Database, identified as members of any of the
above mentioned 19 protein subfamilies was constructed, and used to perform a phylogenetic
analysis. Fig 2 shows a maximum likelihood phylogenetic tree where it can be observed that
each of the 19 protein subfamilies proposed by the NCBI's Conserved Domain Database pos-
sesses a good bootstrap support. Blast reciprocal best hits were used as an additional criterion
(e.g., [74]) to corroborate that each of these families comprises a putative group of orthologous
proteins (data not shown). On the other hand, among the different protein subfamilies com-
prised by the FeADH family, just a few closely related protein subfamilies showed a good boot-
strap support between them. Thus, lactaldehyde:propanediol oxidorectuctase (LPO) subfamily
(cd08176) is related to FeADH4 subfamily (cd08188) (81% bootstrap support), and the C-ter-
minal domain of the acetaldehyde-alcohol dehydrogenase two-domain (AAD-C) subfamily
(cd08178) is related (95% bootstrap support) to butanol dehydrogenase (BDH) subfamily
(cd08179) and propanediol dehydrogenase (PDD) subfamily (cd08180).

3.4. Phyletic distribution of FeADHs

Our results show that the FeADH family members are found in the three domains of life:
archaea, bacteria, and eukarya (Table 1). In eukaryotes, FeADHs have a broad distribution and
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Fig 2. Phylogenetic analysis of 538 Fe-ADH protein sequences retrieved from the NCBI’'s Conserved Domain Database (CDD). The unrooted
phylogenetic tree was inferred using the Maximum Likelihood method based on the Le-Gascuel model [49]. Branches are colored according to the
Conserved Domain Database Fe-ADH subfamily they belong. The tree with the highest log likelihood (-2505413,5328) is shown. Similar trees were
obtained with maximum-parsimony, minimum-evolution and neighbour-joining methods. A discrete Gamma distribution was used to model evolutionary
rate differences among sites (5 categories (+G, parameter = 0.8682)). The tree is drawn to scale, with branch lengths measured in the number of
substitutions per site. There were a total of 783 positions in the final dataset. The proportion of replicate trees in which the associated taxa clustered
together in a bootstrap test (500 replicates) is given in color next to selected branches. Rectangles and triangles adjacent to each Fe-ADH subfamily
name, indicate the presence of protein sequences from archaea domain (triangles), or eukarya domain (rectangles with A (animals), F (fungi), V
(viridiplantae), and P (other eukaryotes) in each subfamily. Protein sequences from bacteria are present in all FeADH subfamilies.

doi:10.1371/journal.pone.0166851.9002
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can be found in animals, fungi, plants and many lower eukaryotes. S1 Table provides a com-
plete list of FeADH sequences from eukaryotes identified in this work. Fig 3 shows a phyloge-
netic tree that comprises all identified FeADH subfamilies that possess proteins from
eukaryotes. 656 protein sequences from eukaryotes (from a total of 868 sequences) are mem-
bers of the HOT subfamily (cd08190). Thus, 75% of all sequenced eukaryotic FeADHs belongs
to this subfamily. Indeed, all reported FeADH from animals (306 sequences), and 80% of
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Fig 3. Phylogenetic analysis of 867 Fe-ADH protein sequences from eukaryotes plus 352 non-redundant sequences
retrieved from the NCBI’s Conserved Domain Database (CDD). The evolutionary history was inferred using the Maximum
Likelihood method based on the Le-Gascuel model [1]. The tree with the highest log likelihood (-3414819.0869) is shown. Initial
tree(s) for the heuristic search was/were obtained automatically applying Neighbor-Join and BioNJ algorithms to a matrix of
pairwise distances estimated using a JTT model, and then selecting the topology with superior log likelihood value. A discrete
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Gamma distribution was used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.4901)). The
tree is drawn to scale, with branch lengths measured in the number of substitutions per site. The analysis involved 1219 amino acid
sequences. There were a total of 996 positions in the final dataset.

doi:10.1371/journal.pone.0166851.g003

FeADH found in fungi (334 sequences), belong to this protein subfamily. Other eukaryotes
with HOT proteins are amoebozoa like Acanthamoeba castellani, Polysphondylium pallidum,
Acytostelium subglobosum, Dictyostellium discoideum, D. lacteum, and D. purpureums; strame-
nopiles like Phaeodactylum tricornutum, Thalassiosira oceanica, Aphanomyces astaci, A. inva-
dens, Saprolegnia parasitica and S. diclina; icthyosporea like Capsaspora owczarzaki; Apuzoa
like Thecamonas trahens; and Rhizaria like the foraminifera Reticulomyxa filose. HOT
sequences were not found in plants.

In fungi, FeADHs are sorted in two main protein subfamilies: 1) HOT subfamily
(cd08190; that includes 80% of fungal protein sequences), is apparently found in all fungal
taxa, with exception of some saccharomycetes which include yeast such as Saccharomyces
cerevisiae and Kluyveromyces lactis, and schizosaccharomycetes such as Schizosaccharomyces
pombe; and 2) MAR subfamily (cd08177), which includes almost 17% of fungal protein
sequences, was found mainly in ascomycetes, and basidiomycetes. All reported FeADHs
from saccharomycetes and schizosaccharomycetes belong to the LPO subfamily (cd08176)
and probably are involved in ethanol metabolism (only the saccharomycete Geotrichum can-
didum was found to possess a FeADH that belong to the HOT subfamily). Three reported
fungal sequences belong to the AAD-C (cd08178) subfamily (ADHE from Togninia minima
(ascomycota), Neocallimastix frontalis and Piromyces sp. E2 (neocallimastigomycota)).
However, the presence of ADHE in eukaryotes has been proposed to result from horizontal
gene transfer from different bacteria [75]. In contrast, the FeADH from c¢d08194 subfamily
found in Gonapodya prolifera JEL478 (chytridiomycota) is difficult to explain by horizontal
gene transfer since the gene encoding this protein possesses 9 exons. Therefore, the origin
of this last protein in fungi is uncertain.

FeADHs are absent in superior plants; only green algae (chlrorophyta) possess FeADHs.
Interestingly, different classes of green algae possess FeADH that belong to different protein sub-
families (Table 2). Thus, taxa from the chlorophyceae class possess only FeADH that belongs to
the bidomain acetaldehyde-alcohol dehydrogenase (AAD-C) subfamily (cd08178). Algae’s from
class Trebouxiophyceae possess FeADHs that belongs to AAD-C (cd08178) and lactaldehyde:
propanediol oxidoreductase (LPO) subfamily (cd08176); and algae’s from the Class Prasinophy-
ceae possess FeADHs that belong to LPO (cd08176) and one uncharacterized protein subfamily
(cd08183). The broad distribution of FeADHs in chlorophyta and its absence in higher plants,
suggests that genes encoding FeADHs were lost in the last common ancestor of terrestrial plants.
Here, it should be mentioned that a FeADH from 5-hydroxyvalerate dehydrogenase (HVD)
subfamily (cd08193) has been reported in the Mediterranean seagrass Posidonia oceanica. This
protein was sequenced from an isolated mRNA that changed its expression in response to cad-
mium treatment [76], and showed the highest identity (65%) with FeADHs from Rhizobium
genera (o-proteobacteria). It is not clear if this reported FeADH in Posidonia oceanica might
results from horizontal gene transfer from a bacterium, or if it is just the results of bacterial con-
tamination during the total RNA isolation procedure from leaves and apical tips. Because the
presence of FeADHs has not been confirmed in any other higher plant, and the absence of addi-
tional evidence, its presence in Posidonia oceanica should be considered dubious.

It is interesting that fungi and chlorophyta exhibit a patchy distribution of FeADHs, partic-
ularly if it is considered that the FeADHs that belong to different protein subfamilies are not
functionally equivalent and participate in different metabolic functions.
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Table 2. Number of FeADH proteins from plants found in different subfamilies.

Organism

Number of genes

Chlorophyta

Class Chlorophyceae

Chlamydomonas reinhardtii (CC-503 cw92 mt+)
Polytomella sp. Pringsheim 198.80

Volvox carterif. Nagariensis

Gonium pectoral

Monoraphidium neglectum SAG 48.87

Class Trebouxiophyceae

Chlorella variabilis NC64A

Auxenochlorella protothecoides 0710 (Chlorella protothecoides)
Class Prasinophyceae

Micromonas pusilla CCMP1545

Micromonas sp. RCC299 (Micromonas commoda)
Ostreococcus tauri

Ostreococcus lucimarinus CCE9901

Bathycoccus prasinos

Streptophyta, Tracheophyta (monocot)
Posidonia ocednica (Mediterranean seagrass)

doi:10.1371/journal.pone.0166851.1002

cd08178 cd08176 cd08183 cd08193
AAD-C LPO FeADH2 HVD

3 0 0 0
1 0 0 0
2 0 0 0
2 0 0 0
1

2 0 0
0 0 0
0 1 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 1 0
0 0 0 1?

3.5. FeADHs share the same scaffold

The three-dimensional structures of twelve FeADH proteins have been resolved. These
structures are sorted in five different protein subfamilies that belong to the FeADH family
(cd08551). All FeADHs have two distinct domains separated by a deep cleft. The o/B N-termi-
nal domain shows a Rossmann-fold structure and contains the coenzyme-binding site. The C-
terminal domain is composed of nine a-helices and contains the iron-binding site. In Fig 4 it
can be observed that this scaffold is conserved in all members of FeADH protein family as well
as in members of related protein families such as glycerol dehydrogenase (GDH) family
(cd08550), glycerol-1-phosphate (G1PDH) family (cd08549), and dehydroquinate synthase
(DHQ) family (cd08169), which belong to the DHQ-FeADH protein superfamily (cd07766).
However, in the DHQ family, the C-terminal domain comprises two or four B-strands in
addition to the nine o-helices. The sequence identity among proteins that belong to different
FeADH subfamilies is ca. 20% (30-40% sequence similarity), while the sequence identity
among proteins that belong to different protein families inside the DHQ-FeADH protein
superfamily (cd07766) is ca. 10% (20% similarity). Thus, although protein sequences from dif-
ferent subfamilies are divergent within the FeADH family, Fig 4 shows that they all share a
similar scaffold and similar domains.

Figs 5 and 6 show a structure-based multiple sequence alignment of FeADHs with known
3D structure. It can be observed that the twenty-one secondary structures that exhibit the
FeADH scaffold are strictly conserved in all FeADHs reported structures (eight B-strains and
thirteen o-helices). The N-terminal domain comprises residues 1-229 (human ADHFE1
numbering), while the C-terminal domain comprises residues 230-467 (human ADHFE1
numbering) with the last nine a-helices. Thus, N-terminal domain is involved in binding the
coenzyme NAD(P)H; and C-terminal domain possesses the conserved amino acids important
for metal ion coordination. For comparative purposes, four structures of glycerol phosphate

PLOS ONE | DOI:10.1371/journal.pone.0166851 November 28, 2016 12/30



®PLOS | one

Evolutionary Analysis of FeADHs

HOT (cd08190)

G. thermoglucosidasius
(3ZDR) 1:21.1%; S:37.2%

E. coli (10J7
1:16.7%; S:32.8%

\ ‘,‘ .

"". - “'7‘
YA
LV
_ N 3
Vs
7\
K. pneumoniae (3BFJ)
1:22.9%; S:39.1%

0. oeni (4FR2)
1:23.4%; S:37.4%

LPO (cd08176)

Z. mobilis (30X4)
1:22.6%; S:36.7%

A. fabrum (3HLO)
1:15.7%; S:28.9%

C. necator (3JZD)
1:18.0%; S:29.9%

C. glutamicum (31V7)
1:16.5%; S:29.6%

Rhizobium sp. (3W5S)
1:16.6%; 5:29.9%

PPD (cd08181)

T. maritima (102D)

1:20.0%; S:35.3%

GlyDH (cd08550)

B. stearothermophilus
(1JQ5) 1:11.2%; S:23.8%

G1PDH (cd08549)

1: 10.3%; S:20.8%

DHQ (cd08169)

1:10.1%; S:19.5%

Fig 4. Comparison of the different FeADH proteins with a known three-dimensional structure. These proteins
belong to five different FeADH protein subfamilies (sorted inside blue rectangles according to the protein subfamily to
which they belong). Below each structure the scientific name of the organisms where the protein is found, as well as the
PDB accession number is indicated in parenthesis. In a red rectangle are included representative structures of proteins of
homolog protein families that belong to the DHQ-FeADH protein superfamily (cd07766). For reference, a structure
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prediction (performed with I-TASSER server; [77]) of human ADHFE1 (accession NP_653251), which belongs to HOT
subfamily (cd08190), is also included. Numbers in dark red show sequence identity (I) and similarity (S) between human
ADHFE1 sequence and the indicated proteins. Secondary structure elements are colored in rainbow successive colors,
starting from blue for the N-terminus and ending with red at the C-terminus. Protein structures were drawn using UCSF
Chimera version 1.9 [78]

doi:10.1371/journal.pone.0166851.9004

from the related protein family cd08550 are included in Figs 5 and 6. They show a similar scaf-
fold to FeADHs, but with some differences: the loop located between the 04 helix and the B5
strand is very short in glycerol dehydrogenases; the 06 helix is displaced eight residues, and
helices a7 and o8 are joined in one helix. All these differences, together with data from Fig 1,
support the idea that glycerol dehydrogenases must be considered as a related protein family
separated from bona fide FeADH family.

3.6. Coenzyme-binding site

As mentioned in the previous section, the N-terminal domain shows a Rossmann-type fold
that contains the coenzyme-binding site. Residues involved in coenzyme binding are con-
served in all FeADH subfamilies. A GGGS motif (residues 138 to 141 according to human
ADHFE]) is conserved in all FeADH subfamilies (Fig 5). This motif interacts with the pyro-
phosphate group of NAD(P)* and forms a loop that links the 4 strand and the o4 helix.

Experimental support about coenzyme preference in FeADHs is scarce, but available data
show that coenzyme specificity is mainly determined by the nature of the residue at position
81 (human ADHFEI numbering): Eight different enzymes have been crystallized with their
coenzyme as ligand: enzymes that bound NAD" possess aspartate or threonine at position 81,
and enzymes that bound NADP™ possess glycine at this position. Fig 7 shows the conservation
of residues at position 81 as found in a logo analysis.

FeADHs with aspartate at position 81 prefer NAD™ because the side-chain of this residue
electrostatically and/or sterically repels the 2’-phosphate group of NADP* (the carboxyl group
of Asp81 directly interacts with the hydroxyl group at C2 position of the adenine ribose).
Examples are FucO from E. coli [23,59], DhaT from Klebsiella pneumoniae [66], ADH II from
Zymomonas mobilis [18,23,55], MDH from Bacillus methanolicus [56-58], ADH4 from Saccha-
romyces cerevisiae [21,23], ADH2 from Entamoeba histolytica [79-81], and ADHE from E. coli
[82,83].

In contrast, the shorter side-chain of glycine at position 81 is distant from the ribose and
leaves room for binding the 2’-phosphate group of NADP™. Thus, enzymes having a residue
with a shorter side-chain, can bind both, NAD™ with less affinity, or NADP", even sometimes
with higher affinity than NAD" [84]. Examples of FeADHs with glycine at position 81 that
bind NADP" are: 1,3-propanediol dehydrogenase (TM0920) from Thermotoga maritima
[85], YqhD from E. coli [86], butanol dehydrogenase (TM0820) from Thermotoga maritima
(PDB: 1VL]), and FeADH from Thermococcus hydrothermalis, T. paralvinellae and T. sp. AN1
[87-90].

Serine and threonine are two short-chain residues that have been associated in other
NADP"-dependent enzymes, as residues that can bind to the 2’-phosphate group of NADP*
[84,91]. However, HxqD from Cupriavidus necator JMP134, and MacA from Agrobacterium
fabrum, are two enzymes that belong to the maleylacetate reductase subfamily (cd08177),
which were crystallized with NAD" as ligand (PDB: 3]ZD and 3HLO0), and both possess threo-
nine at position 81. In addition, maleylacetate reductase (Ncgl1112) from Corynebacterium
glutamicum can use both coenzymes NAD* and NADP* [92], despite having a glycine at posi-
tion 81. Therefore, although the residue at position 81 is the most important determinant of
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Fig 5. Multiple structure-based sequence alignment of FeADHs with a known 3D structure (residues 1-250
according to human ADHFE1). These proteins belong to five different subfamilies of the FeADH family. For comparison,
ADHFE1 sequence from human is included in the alignment, as well as four glycerol dehydrogenase sequences with a
known three-dimensional structure. PDB accession number of each sequence is indicated at the left side of alignment,
whereas the protein subfamily to which each sequence belongs, is in the right side of the alignment. Conserved -strands
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and a-helices for each structure are indicated in yellow and green, respectively. Residue position determinant for coenzyme
specificity is indicated with a red square. Residues involved in the binding of Fe atom are highlighted in pink; residues
involved in the binding of Zinc atom in glicerol dehydrogenases are highlighted in grey. Amino acid residues from human
ADHFE1 sequence, highlighted in blue and grey indicate positions that belong to the N-terminal or C-terminal domains,
respectively. The three-dimensional alignment of FeADH structures was performed using the VAST tool at the NCBI's

doi:10.1371/journal.pone.0166851.9005

coenzyme preference, additional residues must be considered. A similar conclusion has been
obtained in other NAD(P)-dependent enzymes as for example aldehyde dehydrogenases
[84,93,94].

On the other hand, Gonzélez-Segura et al. [84] analyzed the coenzyme preference of differ-
ent aldehyde dehydrogenase (ALDH) families and found that coenzyme preference is a vari-
able feature within many ALDH families, consistent with being mainly dependent on a single
residue that apparently has no other structural or functional role, and therefore can easily be
changed through evolution and selected in response to physiological needs. Considering that
residues at position 81 are not conserved in some FeADH subfamilies (e.g., MAR subfamily
(cd08177), hydroxyethylphosphoate dehydrogenase (HEPD) subfamily (cd08182), FeADH2
subfamily (cd08183) and FeADHS8 subfamily (cd8186)), it is likely that in these subfamilies,
coenzyme preference is a variable feature also.

3.7. Metal-binding site

The majority of FeADH subfamilies, contain a divalent metal M>*, which is tetrahedrally coor-
dinated through an ion dipole interaction with four conserved residues: Asp242, His246,
His330, and His357 (according to human ADHFE1 numbering) (Figs 5-7). Interestingly, mal-
eylacetate reductases (MAR subfamily; cd08177) are active in absence of metal ions, and do
not have a divalent metal M?" at their active center [69,95-97]; this may be due to the substitu-
tion of Asp242 by asparagine or arginine (Figs 5-7), which probably makes that MAR enzymes
lose affinity for metal ions [95]. Considering this, members of the uncharacterized subfamily
FeADH2 (cd08183), and some members of the HEPD subfamily (cd08182), probably are also
functional in absence of divalent metal because Asp242 is replaced by glutamine in these pro-
teins (Fig 7).

In a previous study using site-directed mutagenesis [98], the Fe**-binding participation of
His267 from E. coli FucO was proposed (Tyr334 according to human ADHFE1). However, the
crystal structure of E. coli FucO showed that His267 is not coordinated with Fe?" ions [59].
Recently, Fujii et al., [95] performed an structural comparison between E.coli FucO and Rhizo-
bium sp. MTP-10005 GraC (an enzyme with maleylacetate reductase activity; MAR subfamily;
¢d08177), and proposed that His267 of FucO correspond to His 243 of GraC, and that both
residues could interact with the substrate, and therefore should be involved in catalysis, but
not in metal-binding.

It is important to note that despite the members of the FeADH family (cd08551) are
described as “iron-activated” alcohol dehydrogenases, these enzymes are activated by a range
of divalent cations, among which, besides iron, we can find others such as zinc, nickel, magne-
sium, copper, cobalt, or manganese (e.g., [64,86,99,100]). Moreover, in enzymes activated by
iron such as E. coli FucO or Z. mobilis ADH II (from LPO subfamily; cd08176), iron can be dis-
placed by zinc [59,101]. E. coli FucO is an interesting example, because although FucO is active
only with Fe** (Zn" inactivates the enzyme), FucO has in vitro a higher affinity for Zn>* than
for Fe** [59].

In the glycerol dehydrogenases, iron is absent but they contain a zinc-atom coordinated by
two histidines and one aspartate [102,103]. Thus, only one histidine residue at position 357
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FeADH subfamilies, whose members putatively use NADP* as coenzyme, are enclosed with a blue box, those that use NAD*
as coenzyme, are enclosed with a red box, and those that use both NAD* and NADP*, are enclosed in a green box. FeADH
subfamilies with experimental support for coenzyme preference are indicated with an asterisk. Sequence logos were made
using WebLogo 3 (http://weblogo.threeplusone.com) [51].

doi:10.1371/journal.pone.0166851.9007

(according to human ADHFE1 numbering) is conserved in both families, and is used to coor-
dinate either an iron-atom in FeADHs, or a zinc-atom in glycerol dehydrogenases (see Figs 5
and 6). The differences in metal-binding residues between FeADHs and glycerol dehydroge-
nases support the idea that these latter proteins are members of a different, but related protein
family.

3.8. Protein subfamilies that possess FeADHs from eukaryotes

All sequenced eukaryotic FeADHs are sorted in thirteen different protein subfamilies that
belong to the FeADH family. Only one FeADH found in Vitrella brassicaformis CCMP3155
(Alveolata; Protein accesion number: CEM34088) could not be ascribed to any of above identi-
fied protein subfamilies. However, because no Blast reciprocal best hits could be identified for
this protein, we propose that this FeADH is just a divergent sequence and not a member of a
new FeADH protein subfamily. Four of the FeADH subfamilies found in eukaryotes contain
more than 92% of all FeADH sequences identified in these organisms. These subfamilies are:

3.8.1. HOT subfamily (cd08190). Some proteins of this subfamily have been character-
ized in mammals and possess activity as hydroxyacid-oxoacid transhydrogenase (HOT), cata-
lyzing the conversion of y-hydroxybutyrate into succinic semialdehyde in a reaction coupled
with the reduction of o-cetoglutarate [73,104,105]. In humans, the gene encoding HOT was
denominated ADHFE] [28] by the HUGO gene nomenclature committee. In animals, y-
hydroxybutyrate (GHB) is a naturally occurring compound present in micromolar concentra-
tion in brain and peripheral tissues [106], and HOT is the most active enzyme that oxidizes
GHB [107]. GHB is of interest because it is a natural compound with neuromodulatory prop-
erties at central GABAergic synapses [108], is an energy regulator that promotes the release of
growth hormone [109], and has been illegally used by athletes as a performance-enhancing
drug [110]. Indeed, endogenous GHB metabolism appears to be associated with natural ath-
letic ability [111]. This idea is supported by data that identify ADHFE] as an athletic-perfor-
mance candidate gene, which has been a target for positive selection during 400 years in
Thoroughbred horses [112].

The ADHFEI gene is expressed mainly in adult liver, kidney, hearth, adipocytes [28,73,113],
in hypothalamus and neuroblastoma cells [73], and diverse fetal tissues [28], as well as surface
epithelium and crypt top of colorectal mucosa [114]. In contrast, ADHFEI transcript is non-
detectable in lung, intestine, stomach, seminiferous tubules, muscle and testis [113]. Tae et al.
[114] showed that ADHFEI expression in colon is higher in well-differentiated tissues than in
poorly differentiated tissues, and that colorectal cancer cell lines show a down-regulation of
ADHFEI mRNA and ADHFEL protein due to hypermethylation of ADHFEI promoter. There-
fore, ADHFEL1 has an important role in organs with a high metabolic activity, as well as in dif-
ferentiation and embryonic developmental processes.

Immunocytochemical staining reveals mitochondrial localization for mouse ADHFE1
[113]. Predictions performed with MITOPRED [115] WoLF PSORT [116], and PredSL [117],
suggest that all animal ADHFE1s are also mitochondrial (data not shown). These enzymes
conserve both the NAD(P)*-binding site and an iron-binding motif (see Figs 5-7). ADHFE1
contain a tightly bound cofactor and did not require the addition of NAD(P)" to display cata-
Iytic activity [118]. Since ethanol oxidation requires coupling with the reduction of a second
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molecule such as free NAD(P)*, participation of ADHFE1 on ethanol metabolism seems
improbable. Furthermore, in human adipocytes exposure to ethanol (1-100 mM) does not
modify the ADHFEI transcript levels [113], reinforcing the idea that this enzyme is not
involved in ethanol metabolism in animals.

With no exceptions, all ADHFEI in animals corresponded to a single-copy gene, in spite of
several whole genome duplications observed through the evolution of vertebrates. Because all
animals have one ADHFEL1 that belongs to HOT subfamily, it can be assumed that this protein
is performing essential activities in animals.

Al HOT proteins possess two insertions: the first is a 19-residue insert (residues 256-274
in human ADHFE]1) in a loop located between helices o5 and 0.6, and the second is a 13-resi-
due insert (residues 342-354 in human ADHFEL1) in a loop located between helices o8 and o9
(see Fig 6). This insert is absent in other iron-containing ADH members of FeADH family and
even in the glycerol dehydrogenase protein family.

Because members of this protein subfamily are found in the three domains of life (archaea,
bacteria and eukarya), this group is probably one of the most ancient protein subfamilies
inside the FeADH family. However, the activity performed by this protein in non-animal
organisms is unknown.

3.8.2. LPO subfamily (cd08176). This protein subfamily includes proteins with different
catalytic activities (Table 1). Among the reported activities, we found: lactaldehyde:propane-
diol oxidoreductase (lactaldehyde reductase) [23,59], L-1,3-propanediol dehydrogenase [63-
66], methanol dehydrogenase [56-58], alcohol dehydrogenase [18,21,23,55,119], and L-threo-
nine dehydrogenase [72]. In eukarya, proteins that belong to this subfamily have been reported
in fungi (saccharomycetes); chlorophyta (Micromonas pusilla), euglenozoa and heterolobosea.
Of these proteins, only the ADH4 from Saccharomyces cerevisiae has been thoroughly charac-
terized [120-122]. S. cerevisiae possess five alcohol dehydrogenase (Adh) isoenzymes. Cultiva-
tion with glucose or ethanol as carbon substrate revealed that ADH1 was the only alcohol
dehydrogenase capable of efficiently catalyzing the reduction of acetaldehyde to ethanol [120].
A mutant yeast strain with the sole intact ADH4 gene was able to grow on glucose but at much
slower rates than the wild-type strains, to produce even less ethanol from glucose and was
unable to utilize ethanol as carbon source [120]. In contrast, high levels of glycerol and acetal-
dehyde were observed in this mutant (op. cit.). Because ADH4 transcription is not observed in
strains grown on ethanol, and strains with ADH4 as the only intact isoenzyme gene, were
unable to grow on ethanol [120], it is likely that ADH4 expression is not related to ethanol con-
sumption, in spite of that the kinetic properties of ADH4 compared with those of other yeast
ADHs isoenzymes, showed that ethanol is a suitable substrate for ADH4 [121,122]. Indeed,
ethanol and n-propanol are the best substrates for yeast ADH4 [121]. Thus, although the
kinetic properties of ADH4 make it suitable for ethanol metabolism, it is possible that this
enzyme develops different physiological role(s).

3.8.3. AAD-C subfamily (cd08178). The C-terminal alcohol dehydrogenase domain of
the bifunctional acetaldehyde dehydrogenase-alcohol dehydrogenase bidomain protein corre-
sponds to one of the FeADH subfamilies found in bacteria, fungi, chlorophyta, and in several
lower eukaryotes. These bifunctional bidomain enzymes are also known as ADHEs, and are
found in many fermentative microorganisms. They catalyze the conversion of an acyl-coen-
zyme A to an alcohol via an aldehyde intermediate. This is coupled to the oxidation of two
NADH molecules to maintain the NAD" pool during fermentative metabolism. ADHE
enzymes form large helical multimeric assemblies or ‘spirosomes’ [79,83,123], and consist of
an N-terminal acetylating aldehyde dehydrogenase domain, which belongs to ALDH20 pro-
tein family of the ALDH superfamily, and a C-terminal alcohol dehydrogenase domain
(ADH), which is a member of the AAD-C subfamily of the FeADH family.
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ADHEs have been described in many fermentative microorganisms that grow in anaerobic
conditions, and it is generally accepted that ADHEs perform the important function of regen-
erating NAD™ from NADH under anaerobic conditions to maintain a continuous flow of gly-
colysis through alcoholic fermentation [80,124]. The fact that ADHE inhibition in Entamoeba
histolytica induced a significant accumulation of glycolytic intermediates and lower ATP con-
tent [80], as well as the fact that ADHE knockout strains from bacteria and E. histolytica show
the complete abolition of ethanol production and an inability to survive under anaerobic
conditions [100,123], strongly support the role of ADHE in ethanol production. Indeed, the
expression of the adhE gene is greatly increased under anaerobic conditions [81].

Atteia et al. [125] reported the presence of an ADHE in isolated mitochondria from the col-
orless chlorophyta Polytomella sp. Expression at ambient oxygen levels of ADHE in an oxy-
gen-respiring algae extends the occurrence and expression of this enzyme to aerobic
eukaryotes growing under aerobic conditions, and suggests that ADHE could be involved in
either the maintenance of redox balance (ethanol production), or in ethanol assimilation (pro-
ducing acetyl-CoA and NADH for respiration); and, depending upon environmental condi-
tions, in both.

Finally, it is interesting to mention that E. coli ADHE can bind to 70S ribosome, exhibiting
a substantial RNA unwinding activity, which can account for the ability of the ribosome to
translate through downstream of at least certain mRNA helices [126]. Thus, ADHE can func-
tion in E. coli as a ribosomal regulatory protein, revealing an unexpected moonlighting action
that opens the door to find additional functions in other ADHEs.

3.8.4. Maleylacetate reductase (MAR) subfamily (cd08177). Proteins that belong to this
subfamily have been described mainly as maleylacetate reductase (MAR), a key enzyme for
degradation of ring-fission products derived from the aerobic microbial degradation of aro-
matic compounds [71]. They catalyze the NADH- or NADPH-dependent reduction of maley-
lacetate, at a carbon-carbon double bond, to 3-oxoadipate. We found MAR homologs in the
three domains of life (Table 1). In eukaryotes, MARs are present mainly in fungi, including
both ascomycetes and basidiomycetes. In lower eukaryotes, MAR homologs were found in
Haptophyceae (Emiliania huxleyi) and stramenopiles (Nannochloropsis gaditana). In fungi,
maleylacetate reductases contribute to the catabolism of very common substrates, such as tyro-
sine, resorcinol, phenol, hydroquinone, gentisate, benzoate, 4-hydroxybenzoate, protocatechu-
ate, vanillate, and even, aromatic pollutants [96,127-132]. In Fusarium verticilloides, a MAR
homolog gene identified as FUM7 was found in a cluster of genes involved in fumonisin bio-
synthesis [133].

Fumonisins are polyketide mycotoxins that can accumulate in plants infected with this fun-
gus and cause several fatal animal diseases, including leukoencephalomalacia in horses, pulmo-
nary edema in swine, cancer in rats and mice, and esophageal cancer in humans [133,134].

FUM?7-deletion mutants produce fumonisin analogs with an alkene function [135]. This
suggests that FUM7 likely catalyzes the reduction of an alkene intermediary of fumonisin bio-
synthesis, in a reaction similar to that performed by maleylacetate reductases.

4. Conclusions

FeADHs belong to an ancient protein family that can be found in the three domains of life.
These proteins comprise a complex family with at least 19 different subfamilies with proteins
that develop different metabolic functions. Many FeADHs are activated by or contain Fe**,
but many others contain other divalent metals as Zn>*, or even lack of metal cofactor. In
eukarya, the majority of FeADHs belongs to the hydroxyacid oxoacid transhydrogenase
(HOT) subfamily (cd08190). Indeed, 100% of FeADHs found in animals, and 80% of FeADHs
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found in fungi, belong to this protein subfamily. Interestingly, HOT proteins are absent in
plants. The rest of FeADHs from eukaryotes shows a patchy phyletic distribution, and are
sorted in twelve additional protein families being the more important, the maleylreductase
(MAR) subfamily (cd08177) found mainly in fungi, the lactaldehyde:propanediol dehydroge-
nase (LPO) subfamily (cd08176) and the bidomain aldehyde dehydrogenase-alcohol dehydro-
genase (AAD) subfamily (cd08178) found in fungi, chlorophyta and lower eukaryotes. Several
protein families with a patchy phyletic distribution have been reported previously, such as glu-
cosamine-6-phosphate isomerase, alcohol dehydrogenase E, hybrid-cluster protein (prisS), A-
type flavoprotein [75], glycerol-1-phosphate dehydrogenase [136], aerolysin [137], hemery-
thrin, hemocyainin, tyrosinase [138], phycocyanin-like phycobilisome proteins [139], and cir-
cularly permuted RAS-like GTPase domain [140] among others. The patchy distribution of
these protein families has been explained mainly through intra- and inter-domain lateral gene
transfer events, or gene transfer through endosymbiotic events in lower eukaryotes. Indeed,
many genes of bacterial origin in eukaryotes were obtained through endosymbiotic events
that generated actual mitochondria and chloroplast. Even more, many microbial eukaryotes
obtained additional genes through secondary and tertiary eukaryote-eukaryote endosymbiosis
events (e.g., [141-143]). This results in a very complex evolutionary history of lower eukary-
otes and open the door to multiple events of gain/loss of protein genes and an extensive
horizontal gene transfer. Thus, the scattered distribution of many FeADHs subfamilies in
eukaryotes suggests that it is likely its presence/absence in different taxa results from events of
lateral gene transfer or endosymbiotic gene transfer.

Supporting Information

S1 Table. Proteins identified in eukaryotes as members of different iron-containing alco-
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(PDF)
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