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Abstract

Researchers working on model plants have derived great benefit from developing genomic

and genetic resources using ‘reference’ genotypes. Onion has a large and highly heterozy-

gous genome making the sharing of germplasm and analysis of sequencing data compli-

cated. To simplify the discovery and analysis of genes underlying important onion traits, we

are promoting the use of the homozygous double haploid line ‘CUDH2107’ by the onion

research community. In the present investigation, we performed transcriptome sequencing

on vegetative and reproductive tissues of CUDH2107 to develop a multi-organ reference

transcriptome catalogue. A total of 396 million 100 base pair paired reads was assembled

using the Trinity pipeline, resulting in 271,665 transcript contigs. This dataset was analysed

for gene ontology and transcripts were classified on the basis of putative biological pro-

cesses, molecular function and cellular localization. Significant differences were observed

in transcript expression profiles between different tissues. To demonstrate the utility of our

CUDH2107 transcriptome catalogue for understanding the genetic and molecular basis of

various traits, we identified orthologues of rice genes involved in male fertility and flower

development. These genes provide an excellent starting point for studying the molecular

regulation, and the engineering of reproductive traits.

Introduction

Bulb onion (Allium cepa L.) is a monocot vegetable crop grown for edible bulbs and has eco-

nomic importance worldwide. The onion research community would benefit from improved

onion genomic resources [1, 2]. In recent years, next generation sequencing technologies have

been used in crop plants to generate genomic and transcriptomic data sets in a cost and time-
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effective manner. The use of RNA sequencing (RNA-seq) enables researchers to discover

genes and molecular markers associated with important traits for their breeding programmes

[3, 4]. RNA-seq is a particularly attractive approach in non-model crops that have large

genomes, where genomic sequencing is complex and expensive. To aid downstream analysis

and avoid detection of false SNPs, a good quality transcriptome assembly is essential [3, 5, 6].

However in species that are highly heterozygous, such as bulb onion, the development of a

high quality reference transcriptome is challenging, as it is hard to distinguish the transcripts

belonging to different members of a gene family from allelic variants of a particular gene [2, 3,

5]. In out-crossing crop plants, such as bulb onion, the complications of heterozygosity can be

overcome by using homozygous double haploids [1, 6]. Double haploid (DH) lines have been

developed in bulb onion and have proved useful for various genetic and genomic studies [7–

10]. There are many advantages in the use of a common reference double haploid line for

genetic and genomic studies by researchers throughout the world. Unfortunately the majority

of onion DH lines are neither vigorous nor have good seed production, which complicates

wider distribution and usage. In contrast, a set of DH lines developed from a synthetic back-

ground at Cornell University [7] have proved to be more widely usable for breeding [11]. We

have suggested that ‘CUDH2107’ be employed as a common reference line, as it is relatively

vigorous, produces adequate amounts of seed and produces a bulb that stores well [12].

The development of F1 hybrid onions has transformed the quality and yield of onion pro-

duction. However, there are concerns that the introduction of F1 hybrids has reduced the

diversity of germplasm being grown. As only two sources of male sterility (CMS-S and

CMS-T) have been utilized, it would be desirable to identify additional sources of male sterility

in bulb onion [2]. In other plant species, wide hybridization and induced mutagenesis have

been utilized to develop male sterile phenotypes [13]. The male sterile mutants often have

either abnormal development of sporophytic anther tissues (primarily tapta and meiotic cells)

causing lack of pollen or pollen abortion, or have abnormal development of gametophytic

anther tissues affecting microspore or pollen grain formation. There is a large body of research

into the genetics and molecular mechanisms of male sterility and fertility restoration in other

plants, especially monocots, such as rice and maize that could potentially be applied to onion

[13–15]. Recently, the CMS-S onion mitochondrial genome was sequenced, leading to the

finding that orf725 might be the most plausible candidate gene responsible for inducing male

sterility [16]. Further, a gene encoding PMS1, involved in the DNA mismatch repair pathway,

was identified as the possible candidate gene regulating fertility restoration [17]. However, the

molecular mechanisms of male sterility and fertility restoration in bulb onion is still poorly

understood [2].

In this paper, we develop a transcriptome catalogue for ‘CUDH2107’ as a resource for the

Allium research community [12]. To demonstrate the utility of this data, we identified ortholo-

gues of rice genes involved in male fertility and restoration of CMS, which could be useful for

studying these processes in bulb onion. This information provides potential targets for the

development of novel sources of male sterility for hybrid seed production, by using new

genome editing such as CRISPR/cas9 to induce specific mutations in these genes.

Material and Methods

Plant material and transcriptome sequencing

Seed lots of the long day DH bulb onion ‘CUDH2107’ (line CUDH066607 in [11]) were pro-

vided by Cornell University (US). Total RNA was extracted from tissue samples pooled from

multiple plants grown in tunnel houses at Lincoln New Zealand (latitude 42˚ S) or in con-

trolled environments. The stages sampled were as follows: leaves (from plants grown in long
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day of 16 h light: 8 h dark), floral buds from unexpanded umbels, unopened florets from

expanded umbels, open florets with pollen, older flowers and roots. RNA was isolated using a

Qiagen RNA extraction kit following the manufacturer’s guidelines. Libraries were made

using the TruSeq v2 kit (Illumina), and were sequenced on the Illumina HiSeq 2000 platform

by NZGL Ltd.

De novo assembly of transcripts

The program fastq_quality_trimmer (FASTX_toolkit, version 0.0.13) was used to trim bases

with a quality score less than 30, subsequently any reads containing shorter than 20 bases were

removed. The cleaned reads from the CUDH2107 onion tissue libraries were assembled

together in a single reference de novo assembly using Trinity [18] following the protocol and

default parameters [19]. The combined de novo assembly is referred to as the ‘extensive tran-

scriptome dataset’, which was filtered based on a minimum fragments per kb of target tran-

script length per million (FPKM) value of 0.5 (41 reads per kb). As a result we compiled the

‘abundant transcriptome dataset’ of highly expressed transcripts, which was used in all the

analyses described in this paper. All the sequence data is deposited at NCBI as sequence read

archive (S1 Table).

The completeness of the extensive and abundant transcriptomes was assessed based on

assembly statistics achieved by running the script ‘TrinityStats.pl’ [18]. In addition, the eukary-

otic Benchmarking Universal Single-copy Orthologs (BUSCOs) dataset (http://busco.ezlab.

org/, accessed on 20 May 2015) was compared with our abundant transcriptome dataset using

BUSCO_v1.1 [20].

Sequence conservation and functional annotation

Standalone BLAST (ncbi-blast-2.2.27+, [21] was used to perform sequence similarity searches

of the current onion transcriptome assembly to a variety of transcriptome assemblies and rice

proteins. BLASTN with an E-value cut off of 10−4 was used to estimate the sequence conserva-

tion among rice and other transcriptomic assemblies of onion, bunching onion, and garlic [8,

10, 22–25]. BLASTX search with an E-value cut off of 10−4 was used to compare the peptides

encoded by the onion transcripts to rice proteins [26] and the results were used to obtain Gene

Ontology (GO) terms for the onion transcripts. This was achieved using GO annotations iden-

tifiers from the Rice Genome Annotation Project (http://rice.plantbiology.msu.edu/

downloads_gad.shtml).

To further identify transcripts potentially coding for full-length peptides, the abundant

transcriptome dataset was screened for Open Reading Frames (ORFs) using the ORF-predic-

tor server [27] http://proteomics.ysu.edu/tools/OrfPredictor.html). The resulting predicted

peptides were filtered, using custom python and R scripts (available on request), to only retain

transcripts with predicted peptides that are at least 100 amino acids long.

Abundance estimation and differential expression analysis

The trinity protocol was followed for abundance estimation, differential expression and hierar-

chical clustering [19]. Transcript abundance was calculated by first aligning the trimmed reads

from each sample to the extensive transcriptome dataset using Bowtie then RSEM [28] was

used to estimate abundance of each transcript. The differential transcript expression between

different samples was calculated using the Bioconductor package EdgeR [29]. To compare

transcriptional profiles across samples, transcripts differentially expressed in at least one pair-

wise comparison were used to perform hierarchical clustering of transcripts and samples. For

the hierarchical clustering, the FPKM values (obtained from RSEM) were log2-transformed
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and median-centered. To compare correlation between each sample pair, TMM (Trimmed

Mean of M-values) normalized FPKM values were used to obtain a Spearman correlation

matrix, then the correlation matrix was hierarchically clustered and visualized as a heat map.

Identification of male fertility genes

The coding DNA sequence of rice flowering genes [26] was used as query to perform BLASTn

against bulb onion transcriptome data with an E value cut off of 1e-4. Top blast hits from bulb

onion were translated and use as query sequence in reciprocal BLASTp searches against rice

database. The bulb onion contigs retrieving rice genes after reciprocal blast were selected for

further analysis. The multiple sequence alignment using amino acid sequences was carried out

with GENEIOUS 6.1. The aligned sequences were used for generating trees based on Neigh-

bour Joining Method in the GENEIOUS 6.1 software package. The relative expression of bulb

onion genes in different samples was calculated based on FPKM values.

Quantitative real-time PCR

The differential expression of genes involved in flower development was validated using

qPCR. Total RNA was isolated from different development stages using Plant RNA Purifica-

tion Reagent (Invitrogen, USA) following manufacturer’s guidelines. Reverse transcription

was carried out with 1µg of total RNA using Invitrogen Super Script III following manufactur-

er’s guidelines. Quantitative real time PCR was carried out using 10µL SYBR reaction mixture

(Kapa Biosystems) in a Roche Light Cycler 480. Relative gene expression levels were calculated

using the 2 (2 delta delta C (T) method in Roche LC480 software. Actin and ß-tubulin were

used as the reference genes. The list of primer sequences used in present investigation was

given in S2 Table.

Results and Discussion

Transcriptome of bulb onion and its comparison with other alliums

Illumina sequencing was carried out on cDNA libraries developed from leaves, immature

flower heads, unopened flowers, opened flowers with pollen, older flowers, and roots. This

resulted in approximately 396 million 100 base pair paired reads. Using Trinity software,

cleaned reads were de novo assembly into 362,106 contigs representing what we called the

‘extensive transcriptome dataset’ of bulb onion. Transcripts had a total length of 218.6 Mbp

with an average length of 603bp and N50 length of 901bp. We filtered out the low abundance

contigs and mostly short contigs from the extensive transcriptome dataset using a minimum

FPKM value of 0.5, which represents an average base coverage of 8.2. This resulted in 271,665

highly expressed contigs with an average length of 653bp and N50 length of 1055bp (combined

transcript length 177Mbp) (Fig 1; Table 1). In the abundant transcriptome dataset, 266,427

transcripts were predicted to encode peptides, with 50,220 transcripts encoding peptides that

are at least 100 amino acids long.

Only 15% to 49% of the highly abundant transcripts identified by this study were similar to

those previously identified in bulb onion [8–10, 23], highlighting the value of our multiple

organ transcriptome assembly. The half of the transcripts from this transcriptome assembly

were present in an assembly from six week old seedling short and long day onions [23]. Also

in garlic, 78% of transcripts generated in multiple organ transcriptome were present in the

transcriptome developed from single tissue [22, 24]. Transcriptome assemblies have been

developed from other economically important Allium species (bunching onion and garlic) and

their comparison with bulb onion gives us an idea about the degree of transcriptome
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conservation in the genus Allium [22, 24, 25]. Only 22% and 10% of bulb onion transcripts

were highly similar to transcripts from bunching onion and garlic transcriptomes, respectively.

However, those that were similar shared 93% identity with bunching onion and 90% with gar-

lic (Table 2), supporting the fact that bulb onion is more closely related to bunching onion

than to garlic [30]. The common transcripts identified between different alliums in the present

investigation will be useful for better understanding of Allium comparative genomics.

Gene prediction and functional annotation

A total of 56,805 (20.91%) transcripts showed significant hits with rice proteins and shared

56% average identity. To further validate the gene predictions, we used the predicted bulb

onion peptides to search KOGs, the core genes from the Benchmarking Universal Single-Copy

Orthologues (BUSCOS) pipeline [20]. This search revealed that the transcriptome contains

82% complete BUSCOs (250) and 4% fragmented BUSCOs and indicates a near complete

transcriptome.

All predicted bulb onion peptides were functionally annotated following a consensus

approach using GO slims from the rice genome annotation database. The bulb onion

Fig 1. Length distribution of assembled transcripts in the extensive (Total) and abundant (Reduced)

transcriptome datasets.

doi:10.1371/journal.pone.0166568.g001

Table 1. Statistics of De novo assembly and abundance estimation.

Extensive (Total) Abundant (Reduced)

Number of Transcripts 362,106 271,665

Total transcripts length (bp) 218,643,405 177,424,188

Average Transcript length (bp) 603.81 653.10

Median Transcript length (bp) 341 355

Minimum Transcript length (bp) 201 201

Maximum Transcript Length (bp) 20,231 20,231

N50 (bp) 901 1055

GC % 36.96 37.12

doi:10.1371/journal.pone.0166568.t001
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transcripts were grouped into 95 functional groups (Cellular component, Biological Process

and Molecular Function) A similar number of GO terms were found in bulb onion and rice

but the number of genes with GO terms in various categories differed (Fig 2A), which might

reflect differences in life cycle, development stages and physiological pathways [31]. We found

24 categories within ‘Cellular Components’, 26 within ‘Biological Process’ and 45 within

‘Molecular Function’ categories (Fig 2). The top GO terms for ‘Cellular Component’ were cell

(7267), followed by cell wall (5912) and cellular components (4987) (Fig 2B). For ‘Biological

Processes’, top GO terms were Abscission (11,710), followed by Anatomical Structure Mor-

phogenesis (11,054) and Behaviour (10,775) (Fig 2C). In the case of ‘Molecular Function’,

Binding Domains (6811) was the most abundant GO term, followed by Carbohydrate Binding

(5294) and Catalytic Activity (5152) (Fig 2D).

GC content

GC content is a striking characteristic of genome organization and life history of plant species

[32]. Bulb onion has a lower GC content than grasses, which might be due to the large genome

size found in bulbous geophytes [32, 33]. The average GC content in the present transcriptome

dataset is ~38%, whereas bunching onion transcriptome have 40% GC content [25]. The GC

content in present investigation is lower than that previously reported based on small EST

dataset [33]. This difference might be due to variation in gene length, structure, expression

and methylation in these datasets, as these factors affect GC content [34]. Overall our findings

confirm the occurrence of low GC content in genus Allium.

Tissue specific expression

To study the expression pattern of transcripts across different bulb onion tissues, pairwise

comparisons were used to identify transcripts that are differentially expressed in at least one

tissue. Using a significance threshold of 0.001 False Discovery Rate and 4-fold change in

expression, we determined that there were 17 thousand transcripts differentially expressed

among different tissues. ‘Unopened flowers’ and ‘open flowers with pollen’ shared a more sim-

ilar pattern of expression, with the next most similar sample being ‘older flowers’ (Fig 3). How-

ever these samples demonstrated a quite different pattern of expression to that of ‘immature

flower heads’ (Fig 3). Transcripts from leaves and roots also showed distinct expression pat-

terns, as they grouped on separate nodes (Fig 3).

Table 2. Sequence conservation between the bulb onion abundant transcriptome dataset and other Allium species.

Species Reference

databasea
Number of Reference

sequences

Number and % of hits in reference

database

Average Identity (%) of

hits

Reference

Bunching

onion

274623 54,903 59,923 (22.06) 93.63 25

Bulb onion 246669 367,683 133,547 (49.16) 98.04 23

Bulb onion 238142 128,598 114,151 (42.02) 98.79 8

Bulb onion 175446 33,162 52,297 (19.25) 97.59 10

Bulb onion 175449 26,995 42,264 (15.56) 97.58 10

Garlic 158177 79,143 27,383 (10.08) 90.92 22

a http://www.ncbi.nlm.nih.gov/bioproject/

doi:10.1371/journal.pone.0166568.t002
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Transcription factors in bulb onion

Transcription factors play an important role in plant development and stress responses [35]. A

wide range of TFs have been identified and characterized in different plant species [36]. We

identified 1837 bulb onion transcripts encoding orthologues of rice transcription factors and

grouped into 55 families (Fig 4). The most highly represented transcription factor families

were bHLH (162 transcripts), NAC (147 transcripts), EFR (132 transcripts), MYB (121 tran-

scripts), WRKY (109 transcripts) and C2H2 (105 transcripts) (Fig 4). These transcription

Fig 2. GO terms in bulb onion compared with rice. (A) Total number of GO terms associated with cellular component, molecular function and biological

process in onion (brown) and rice (green). (B-D) GO terms in onion (brown) and rice (green) associated with; (B) cellular component, (C) molecular function,

and (D) biological process.

doi:10.1371/journal.pone.0166568.g002
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factors regulate various processes of flower development; functional characterization of these

genes will allow us to have a better understanding of bulb onion growth and development to

enhance onion breeding programmes [35].

Fig 3. Comparisons of transcriptional profiles across samples. Heat map showing hierarchical clustered Spearman

correlation matrix resulting from a pairwise comparison of transcript expression values.

doi:10.1371/journal.pone.0166568.g003

Fig 4. Number of onion sequence contigs encoding transcription factors belonging to different families.

doi:10.1371/journal.pone.0166568.g004

Bulb Onion Transcriptome and Identification of Transcripts Associated with Male Fertility

PLOS ONE | DOI:10.1371/journal.pone.0166568 November 18, 2016 8 / 17



Identification and expression analysis of male fertility genes

Male reproductive development and fertility are important agronomical traits in crop plants.

The identification of genes involved in these processes allows better understanding of the

molecular mechanism of male fertility [13] and will assist breeders to develop male sterile lines

to utilize in heterosis breeding [13, 37]. Using our transcriptome data which was derived from

developing flower buds and flowers (and other tissues) of normal male fertile plants, we found

potential orthologues of a range of rice genes involved in male fertility and flower development

(Table 3). These genes are also present in other plant species and have conserved functions

indicating common mechanisms of flower development [38–39].

We identified a number of flower development genes, including the MADS box genes PIS-
TILLATA, AGAMOUS, SEPALLATA3, APETALLA3 and AGAMOUS LIKE6. These MADS

box genes determined flower organ identity, and mutations in some of these genes can result

in male sterility [66–69]. The expression pattern of floral meristem genes varies in different

developmental stages across a wide range of plants [31, 70–71]. We found that AGAMOUS,

AGL6, AP3 and SEPALLATA3 were expressed in bulb onion flowers (from unopened flowers

to older fully open flowers) but not in immature flower heads (Fig 5). PISTILLATA had a simi-

lar expression pattern to AP3 and the floral meristem identity genes, but was also detected at

relatively high levels in bulb onion leaves (Fig 5). PISTILLATA has been found to be also

expressed in the leaves and roots in different plants but their function in vegetative organs is

still unknown [72–75]. The flower specific MADS genes we have identified in bulb onion

could be mutated to generate male specific mutants. For example, the rice AGAMOUS (also

known as OsMADS3) mutant plants show severe defects in stamen identity and lodicule num-

ber which leads to male sterility [76]. A naturally occurring mutation induced by retrotranspo-

son insertion in OsMADS3 has recently been identified, which causes recessive male-sterility

but retains good agronomical performance, so it could be used as an elite line for recurrent

selection [68].

The timely degradation of tapetal cells is a prerequisite for the development of viable pollen

grains. PERSISTANT TAPETAL CELL1 (PTC1) is a rice orthologue of Arabidopsis MALE STE-
RILITY1 (MS1) gene encoding a Plant Homeodomain (PHD) protein that regulates pro-

grammed tapetal development and pollen formation [77–79]. MALEMEIOCYTEDEATH1
(MMD1) is another PHD protein involved in the regulation of gene expression during meiosis

mutations [51]. Mutations in these genes results in complete male sterility in Arabidopsis, rice

and barley [51, 77–80]. In the bulb onion transcriptome dataset we found two contigs having

characteristic PHD domains encoding PERSISTANT TAPETAL CELL1 (PTC1) and MALE
MEIOCYTEDEATH1 (MMD1). Other transcripts encoding proteins that are required for

male fertility are listed in Table 3 (the sequences of onion contigs corresponding to these genes

is given in S3 Table). As the molecular mechanism controlling floral development is largely

conserved across plant species [38–39], some of the candidate male fertility genes we have

identified in bulb onion could provide excellent targets for engineering new male sterile lines.

A new method of generating hybrid seed has been developed in maize [81]. This involves

identifying or generating a male sterile mutant and then adding three transgenes to firstly

complement the mutant to recover male fertile plants; second to prevent pollen formation so

that the restoration of male ferility can only be maternally inherited, and thirdly to provide a

easily detected fluorescent reporter protein ensuring any contaminating seed containing the

transgenes is easily detected [81]. This system provides a simple way of generating male sterile

female plants for hybrid seed production, however it is necessary to first generate a male sterile

mutant. This has now been done using the CRISPR/Cas9 genome editing technique [82–83].
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Table 3. Bulb onion orthologues of rice genes involved in male fertility and floral development identified using BLAST searches.

Gene Name Bulb onion

contigsa
Rice % a.a

Identity

Mutant References

CARBON SATRVED

ANTHERS (CSA)

c244438_g1_i1 LOC_Os01g16810 51.70 Reduced levels of carbohydrates in anthers and it

causes male sterility.

[40]

PISTILLATA (OsMADS4) c95167_g1_i1 LOC_Os5g34940 55.50 Abnormal lodicule development [41]

AGAMOUS (OsMADS3) c34046_g1_i1 LOC_Os01g10504 60.40 Defective anther wall, aborted microspores [42]

SEPALLATA3 (OsMADS7) c216523_g1_i1 LOC_Os08g41950 53.50 homeotic changes of lodicules, stamens and carpels

into palea/lemma-like organs, and a loss of floral

determinacy.

[43]

AGAMOUS LIKE 6

(OsMADS6)

c129731_g1_i1 LOC_Os02g45770 70.90 Abnormal palea and lodicule development [44]

TGA9 c151564_g1_i1 LOC_Os11g05480 66.40 Abnorlam anther [45]

JAGGED (STAMENLESS) c30443_g1_i1 LOC_Os01g03840 48.40 Abnormal lemma and palea, Defective stamen [46]

MPK3 c121397_g1_i1 LOC_Os03g17700 82.90 Defective anther [47]

MPK6 c123481_g1_i1 LOC_Os06g06090 86.70 Defective anther [47]

SWI1 (OsAM1) c201101_g1_i1 LOC_Os03g44760 50.00 Arrested Meiosis at earlyt prophase 1 [48]

TPD1 (TDL1A) c21970_g1_i1 LOC_Os12g28750 47.20 Multiple megaspore mother cells [49]

EMS1 (MSP1) c101027_g1_i1 LOC_Os01g68870 69.70 Excessive number of male and female sporocytes, lack

of the tapetum

[50]

MMD1 c3619_g1_i1 LOC_Os03g50780 42.10 Male sterile due to a defect in meiosis II [51]

WAX-DEFICIENT ANTHER

1

c115430_g1_i1 LOC_Os10g33250 64.70 Defect in pollen exine formation [52]

REDUCED ADH ACTIVITY c78051_g1_i1 LOC_Os09g35000 50.70 - -

PERSISTENT TAPETAL

CELL1

c179910_g1_i1 LOC_Os09g27620 45.60 Mutants fail to make functional pollen; pollen

degenerates after microspore release and the tapetum

also appears abnormally vacuolated.

[53]

AP3 SUPERWOMAN1

(OsMADS16)

c229753_g1_i1 LOC_Os06g49840 67.80 transformation of the lodicule and the stamen into mrp-

and carpel-like organs, respectively

[54]

ENT-KAURENE OXIDASE c117603_g1_i2 LOC_Os06g02019 57.80 Defects in exine formation [55]

RAS-RELATED NUCLEAR

PROTEIN GTPASE

c112324_g1_i1 LOC_Os05g49890 92.30 - -

IMPORTIN BETA1 c223739_g1_i1 LOC_Os05g28510 69.60 - -

ATSIZ1/SIZ1 c119191_g13_i1 LOC_Os05g03430 75 - -

SOLO DANCERS c104859_g1_i1 LOC_Os03g12414 25.20 Defects in homolog interaction, bivalanet and meiotic

crossover formation

[56]

SUCROSE

TRANSPORTER

c87072_g1_i1 LOC_Os03g07480 66.80 - -

CYTOCHROME P-450B c74282_g1_i1 LOC_Os03g07250 68.10 Aborted pollen grains [57]

MYOSIN XI B c106734_g1_i1 LOC_Os02g57190 68.40 male sterility under short-day-length (SD) and fertility

under long-day-length (LD) conditions

[58]

APOPTOSIS INHIBITOR 5 c81284_g1_i1 LOC_Os02g20930 66.80 Inhibition of tapetal PCD and aborted pollen [59]

ENT-KAURENE

SYNTHASE

c83938_g1_i2 LOC_Os02g17780 58.60 - -

SHOOTLESS2 c78229_g1_i2 LOC_Os01g34350 59.30 Abnormal stamen development [60]

DMC1 c43784_g1_i1 LOC_Os11g04954 87.10 Defects synapsis and crossing over [61]

ZEP1 c116971_g1_i3 LOC_Os04g37960 44.60 Defects in synaptoneal complex assembly [62]

POLLEN SEMI-STERLITY1 c115973_g1_i1 LOC_Os08g02380 40 Reduced pollen viability and anther dehiscence [63]

REC8 c107330_g1_i3 LOC_Os01g67250 26.80 Defects in homologous chromosome pairing and

telomere formation

[64]

LIS1 c65717_g1_i1 LOC_Os08g06480 81.20 Defects in male gametophyte and male sterlity [65]

a The sequence of these contigs is provided in S3 Table.

doi:10.1371/journal.pone.0166568.t003

Bulb Onion Transcriptome and Identification of Transcripts Associated with Male Fertility

PLOS ONE | DOI:10.1371/journal.pone.0166568 November 18, 2016 10 / 17



Fig 5. Relative expression of the floral meristem identity genes AGAMOUS (AG), APETALLA3 (AP3),

PISTILLATA (PI) and SEPALLATA3 (SEP3) across different onion organs. Expression determined from the

RNAseq data is shown in red and RT-PCR data is shown in blue, with data represented by an average ± S.E. of

three samples, with transcripts normalized to actin and β-tubulin.

doi:10.1371/journal.pone.0166568.g005
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Conclusions

High heterozygosity and inbreeding depression hampers onion improvement and genetic pro-

grams but can be counteracted by using double haploid lines in genetic and molecular biology

research projects. In this context we developed a transcriptome dataset using double haploid

“CUDH2107” as reference line to provide more genomic resources for the Allium research

community. The development of a transcriptome assembly from different development stages

of bulb onion is a valuable genomic resource for better understanding the genetic and molecu-

lar basis of various traits. In the present investigation, a transcriptome dataset has been gener-

ated from different vegetative and reproductive organs. This dataset was explored to identify

genes involved in male fertility and examine their expression in different organs. The next step

would be to functionally characterize these genes to identify those that could be mutated to

develop male sterile lines for hybrid production. A variety of approaches have been used for

the production of a transgenic male sterility–fertility restoration system [37, 81–86]. Targeted

mutagenesis has been utilized in maize to induce mutations in male fertility genes [81–83].

The use of genome editing techniques, such as CRISPR/cas9, provides a new way to induce

specific mutations in genes regulating anther and pollen development. The ability to engineer

sterility in bulb onion would remove the limitation of using a single source of male sterility

(CMS-S), and could broaden the genetic base of F1 hybrids.
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