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Abstract

This paper presents a robust satisficing decision-making method for Unmanned Aerial

Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by

the info-gap decision theory, we formulate this problem as a novel robust satisficing optimi-

zation problem, of which the objective is to maximize the robustness while satisfying some

desired mission requirements. Specifically, a new info-gap based Markov Decision Pro-

cess (IMDP) is constructed to abstract the uncertain UAV system and specify the complex

mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is

obtained to maximize the robustness to the uncertain IMDP while ensuring a desired prob-

ability of satisfying the LTL specifications. To this end, we propose a two-stage robust

satisficing solution strategy which consists of the construction of a product IMDP and the

generation of a robust satisficing policy. In the first stage, a product IMDP is constructed

by combining the IMDP with an automaton representing the LTL specifications. In the sec-

ond, an algorithm based on robust dynamic programming is proposed to generate a robust

satisficing policy, while an associated robustness evaluation algorithm is presented to

evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our

algorithms is demonstrated on an UAV search mission under severe uncertainty so that

the resulting policy can maximize the robustness while reaching the desired performance

level. Furthermore, by comparing the proposed method with other robust decision-making

methods, it can be concluded that our policy can tolerate higher uncertainty so that the

desired performance level can be guaranteed, which indicates that the proposed method

is much more effective in real applications.

1 Introduction

Over the past decades, Unmanned Aerial Vehicles (UAVs) have been extensively employed in

many civil and military applications, such as search and rescue in the hazardous environment

[1, 2], environment surveillance [3], 3D terrain reconstruction [4], climate research [5], and

ground reconnaissance [6]. Various types of missions require high autonomy for UAVs to
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make proper decisions in complex environments. These complex missions may specify con-

straints on order, relative time, goal, safety, etc. Therefore, high-level mission specifications

using temporal logics have been employed to improve the expressiveness of complex missions

in recent years, such as the Linear Temporal Logic (LTL) [7–9]. The LTL provides a formal

high-level framework to specify the complex mission with a natural encoding of Boolean and

temporal operators, and atomic propositions, which will help enhance the interaction with

UAVs and realize a better understanding of the behaviors of UAVs. For instance, a complex

mission performed by an UAV can be described as “Take off from home A, search regions B,

C, and D in a given order while always avoiding the unsafe regions F, and finally return to A”.

Moreover, most missions for UAVs take place in complex and uncertain environments, which

will result in actuation or sensing uncertainties for the UAVs. How to make proper decisions

in face of uncertainties is an important aspect for UAVs decision making. Motivated by this

situation, some researchers have studied the Markov Decision Process (MDP), which provides

a general mathematical framework for sequential decision making under uncertainty [10].

MDPs use transition probabilities to model behavior uncertainties, which are caused by actu-

ation errors or environmental disturbances. Considering the complex missions for the UAVs

in a complex and uncertain environment, the synthesizing control method by combining the

MDP with LTL have been studied. The decision making problem for the UAV executing a

complex mission can be translated to generate a policy for the MDP in order to satisfy the LTL

specifications. Many synthesizing control algorithms [11–13] based on the model checking

theory [14, 15] have been provided in order to find an optimal control policy for the MDP

with maximal probability of satisfying the LTL specifications.

However, when a real UAV system is abstracted to the MDP, it may lead to modeling

uncertainties. And it is often prohibitively costly or even infeasible to obtain accurate transi-

tion probabilities in practice. Thus the estimated transition probabilities may deviate far

from the true value due to errors in the abstraction process. Based on the existing works, it

turns out that the optimal policy is often quite sensitive to even minor errors in the transition

probabilities [16]. Therefore, the assumption that the transition probabilities are exact, when

in fact they are uncertain, can lead to suboptimal decisions, or even degradation of system

performance [17]. For synthesizing the MDP with LTL specifications, the uncertain transi-

tion probabilities will lead to a low probability of satisfying the LTL specifications, which

means it will increase risks such as UAVs destruction and mission failure. So it is very impor-

tant that the UAV must make robust decisions with respect to the uncertain transition prob-

abilities of the MDP. Many researchers have devoted efforts to modeling the uncertain

transition probability and mitigating its effect on the resulting policy in order to satisfy the

mission requirements. The study of the MDP with uncertain transition probabilities, which

is called an uncertain MDP, can date back to the 1970s [18–20]. There are many uncertainty

models to describe the uncertain transition probabilities. The most common approach is to

assume that the uncertain transition probabilities lie in an interval [13, 21]. The interval

model is motivated by statistical estimates of confidence intervals on the individual compo-

nents of the transition probability. Other statistic uncertainty models, which have been

explicitly described in [22], include the likelihood model, the Bayesian model, and the

entropy model. Relevant algorithms have been developed to handle uncertain MDPs, which

mainly employ the game theory, the queuing theory, or dynamic programming. The most

commonly used method is the min-max robust decision-making method [22], where the

principle of optimality criterion is to maximize the worst-case expected total utility. Based

on this optimality criterion, robust value iteration and robust policy iteration [23, 24] algo-

rithms are proposed to obtain a min-max robust policy, and they both depend on robust

dynamic programming, which may address the issue of designing an approximation method
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with an appropriate robustness to extend the power of the Bellman Equation. Iyengar [25]

and Nilim and El Ghaoui [22] suggest to find a policy to guarantee the highest expected total

utility at a given confidence level. To this end, a policy that maximizes the worst-case objec-

tive is determined. Bertuccelli et al [26] develop a robust adaptive MDP to optimize the UAV

decisions. Although a great deal of researches have been done, robust decision making for

uncertain MDPs with LTL specifications is rarely considered. To our knowledge, there are

only a few studies on this problem. Wolff et al [27] propose a robust version of dynamic pro-

gramming to work out a min-max robust policy, which maximizes the worst-case probability

of satisfying LTL specifications. The previous robust methods are disadvantageous in several

aspects. First, the uncertainty models require adequate knowledge of the uncertainty range

(e.g., the interval model) or probabilistic information (e.g., Bayesian and likelihood models)

in advance. It cannot handle the situation where the uncertainty is fuzzy, non-probabilistic

or unknown, which is called severe uncertainty [28]. Since severe uncertainty often occurs in

uncertain and dynamic environments [29], UAVs have to make robust decisions in order to

reduce the influence of severe uncertainty. Second, the min-max robust decision-making

method may lead to an overly conservative resulting policy, which indicates the policy will

be sub-optimal in any case but the worst case. Furthermore, determining the worst case

would become infeasible when the uncertainty is severe.

Motivated by the previous two limitations, another robust decision theory, namely the info-

gap decision theory [28], is proposed to solve the robust decision-making problem from

another perspective, which has been applied in a large spectrum of fields, including engineer-

ing, biology, and project management. It is a conceptual framework that can support making

decisions under severe uncertainty and that has substantive implications for the formulation,

evaluation and selection of desired goals and of the means to attain them. First, the uncertainty

model is non-probabilistic, defined by a family of nested sets. That is, it does not require one

to specify either a probability distribution or bounds on the uncertainty set. Second, the info-

gap decision theory derives a robust satisficing policy by maximizing the robustness (i.e., the

immunity to uncertainty) while satisfying a desired performance level, instead of seeking for

the optimal utility. The term ‘satisficing’, a combination of satisfy and suffice [30], is intro-

duced by Simon in 1956 [31]. Satisficing is a decision-making strategy aimed at a satisfactory

or adequate result, rather than the optimal solution. For our problem, when the UAV executes

complex civil or military missions, human operators often specify some critical mission criteri-

ons instead of the optimal ones, because the optimality is often difficult to attain or costly in

terms of pay in real applications. Moreover, the robustness is a reliable principle often used in

complex decision-making problems involving severe uncertainty [32, 33] because it provides

the maximum reduction of unknown risks. Therefore, we will propose a robust satisficing

decision-making method based on the info-gap decision theory to solve the robust decision-

making problem for the UAV executing complex missions under uncertainty, i.e., the synthe-

sizing control of uncertain MDPs with LTL specifications. The goal is to generate a robust

satisficing policy that can maximize the robustness while ensuring the desired probability level

of satisfying the LTL specifications. There are several works using the info-gap decision theory

to obtain a robust satisficing policy for their research areas, such as neural network [34], mul-

tiagent search [35], and path planning [36]. S. Gareth et al [34] use an info-gap model to quan-

tify the network response to uncertainty in the input data in order to evaluate the reliability of

the neural network. Itay et al [35] propose a robust satisficing approach based on the info-gap

decision theory to solve the spatial search-planning problem with imprecise probabilistic data.

Mascareñas et al [36] develop a path planner anchored in the info-gap decision theory to gen-

erate non-deterministic paths that satisfy predetermined performance requirements in the

face of the uncertain actions of the hostile elements. However, all the previous works do not
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consider the system model as a MDP and the complex mission requirements, even with regard

to the synthesizing control problem of uncertain MDPs with LTL specifications. Therefore,

utilizing the info-gap decision theory to solve robust UAV decision making for complex mis-

sions under severe uncertainty is still an open problem.

Our work is carried out based on the combination of the MDP and the info-gap decision

theory. The LTL is utilized to describe the complex mission requirements of UAVs, which is

introduced as constraints of the optimization problem. The main contribution of this paper is

as follows. A robust satisficing decision-making method based on the info-gap decision theory

is proposed for the robust UAVs decision-making problem with complex mission require-

ments under severe uncertainty. First, motivated by the info-gap decision theory, we propose a

novel optimization problem for the robust UAVs decision-making problem, which can maxi-

mize the robustness while ensuring the desired mission requirements. Specifically, the uncer-

tain UAV system is modeled as a new info-gap based MDP, and a robustness function is

formulated to evaluate the robustness with the LTL formula specifying the mission specifica-

tions, so a robust satisficing policy is obtained to achieve the maximal robustness. To our

knowledge, this is the first work that extends the robust satisficing concept into UAV robust

decision making under severe uncertainty, with consideration given to critical mission specifi-

cations. Second, a two-stage robust satisficing solution strategy is proposed to solve the previ-

ous problem, which consists of the construction of a product IMDP and the generation of a

robust satisficing policy. In the first stage, the product IMDP is constructed by creating the

Cartesian product of the IMDP and DRA converted from the LTL formula, which is used to

compute the probability of satisfying the LTL formula. In the second stage: i) the monotonic

relationship between the uncertainty level and the worst-case probability of satisfying the LTL

formula is provided and proven, so that when the uncertainty level continuously increases, the

worst-case probability will reach the critical satisfying condition of the desired performance

level; ii) based on the previous monotonic relationship, the robust satisficing optimality theo-

rem is proved, which can help improve the policy towards the direction with a higher robust-

ness; and iii) an algorithm based on robust dynamic programming is proposed to generate a

robust satisficing policy, while an associated robustness evaluation algorithm is presented to

evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algo-

rithm is demonstrated on an UAV search mission under severe uncertainty so that the result-

ing policy can maximize the robustness while satisfying the desired performance level.

Further, by comparing the proposed method with the min-max robust decision-making

method and the robust decision making [37](another robust optimization method for han-

dling the severe uncertainty), it can be concluded that our policy can tolerate higher uncer-

tainty so that the desired performance level can be guaranteed, which indicates that the

proposed method is much more effective in real applications of the UAVs decision making

problem.

The remainder of this paper is organized as follows. Some preliminary definitions are pre-

sented in Section 2. The problem is formulated based on the info-gap decision theory and

the solution method is outlined in Section 3. In Section 4, a robust satisficing policy genera-

tion algorithm based on robust dynamic programming is proposed as well as a robustness

evaluation algorithm. In Section 5, our algorithms are illustrated by an example of the UAV

search mission, and the results are analyzed. The conclusion and future work are presented

in Section 6.

2 Preliminaries

In this section, we will present some preliminary definitions that will be used in this paper.
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2.1 LTL Specifications

The LTL formula is used to specify the complex mission with temporal constraints.

Definition 1 (LTL [14]): An LTL formula ϕ can be defined recursively by a set of atomic

propositions AP and a set of unary and binary operators:

� ::¼ p j :p j � _ � j � ^ � j X � j � U � j F � j G �

where p 2 AP is an atomic proposition; ¬ (negation), _ (disjunction), and ^ (conjunction) are

the standard Boolean operators; X (next), U (until), F (eventually), and G (always) are the tem-

poral operators.

The semantics of LTL formulas are defined over infinite words in 2AP. Given an infinite

word σ = τ0τ1 . . . τi . . ., if the LTL formula ϕ is true at the first position, we say the word satis-

fies the LTL formula ϕ, denoted as σ⊨ ϕ. Xϕ means that ϕ becomes true at the next position of

the word; Gϕ means that ϕ is true at all positions of the word; Fϕ means that ϕ eventually

becomes true in the word; ϕ1Uϕ2 means that ϕ1 holds at each position in the word until ϕ2 is

true.

In quantitative probabilistic verification, an LTL formula needs to be translated into a

deterministic Rabin automaton (DRA) by the PRISM [38], a leading probabilistic model

checker.

Definition 2 (DRA [14]): A DRA is a tuple Aϕ = {Q, q0, S, δ, Acc}, where Q is a finite set of

states, q0 2 Q is the initial state, S = 2AP is an input alphabet, δ: Q × S! Q is the transition

function, and Acc � 2Q × 2Q is a set of accepting state pairs.

Let ω = ω0ω1 . . . be a string over S. A run ω denotes an infinite sequence q0q1 . . . of states

in Aϕ such that qi+1 = δ(qi, ωi) for i� 0. The run is accepted by a DRA, if for an accepting pair

(J, K) 2 Acc, the set of states J is finitely often visited and the set of states K is infinitely often

visited.

2.2 System Model

We consider the UAV system with noisy actuation of which the dynamics are described by a

stochastic differential equation [13]. It is assumed that the evolution of the stochastic system

satisfies the Markov property, which can be abstracted to an MDP.

Definition 3 (MDP [12]): A (labeled) MDP is defined as a tuple <S, A, P, R, s0, AP, L>,

where S is a finite set of states; A is a finite set of actions (A(s)� A denotes the actions available

at state s 2 S); P: S × A × S! [0, 1] is the transition probability function, such that for all s 2 S,

∑s02S P(s, a, s0) = 1 if a 2 A(s), and P(s, a, s0) = 0 if a =2 A(s); R : S� A! Rþ is the reward func-

tion; s0 2 S is the initial state; AP is a finite set of atomic propositions; and L: S! 2AP is a label-

ing function that establishes which atomic propositions are true in the given state s 2 S, i.e., L
relates discrete states with the proposition regions.

We use Paij as shorthand for the transition probability from state i to state j when using

action a. Pa: S × S! [0, 1] represents a transition matrix, where the (i, j)-th entry of Pa is Paij.
When the transition probabilities of the MDP are uncertain, it is only known that the corre-

sponding transition matrix Pa for each action a lies in some given subset Pa.

Definition 4 (Uncertain MDP [22]): The uncertain MDP is defined as

uM ¼< S;A;P;R; s0;AP; L >, where P ¼ P1 � . . .� P jAj is the uncertainty set for the transi-

tion probabilities. For all a 2 A, it is assumed that the sets Pa satisfy the rectangular uncertainty

property, i.e., Pa ¼ Pa
1
� . . .� Pa

n.
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2.3 Info-gap Decision Theory

The info-gap decision theory consists of three components: an info-gap uncertainty model, a

robustness function, and a robust satisficing policy.

Definition 5 (Info-gap uncertainty model [28]): Assuming the best estimation of an

uncertain parameter u is ~u, and the relative errors between these two values are unknown, the

info-gap uncertainty model can be represented as a family of nested sets:

Uða; ~uÞ ¼ fu : ju � ~uj � a~ug; a � 0 ð1Þ

where α is the unknown fractional deviation from the estimated value, i.e. the uncertainty

level. In this paper, it is assumed that ~u is the estimated transition probability of the MDP,

which will be explicitly described in the next subsection.

The set Uða; ~uÞ contains all parameters u of which fractional deviation from ~u is no greater

than α, as shown in Fig 1.

The info-gap uncertainty model obeys two axioms:

• Contraction: Uð0; ~uÞ ¼ f~ug.

• Nesting: a1 � a2 ) Uða1; ~uÞ � Uða1; ~uÞ.

From the contraction property, we can see that ~u is the only value if there is no uncertainty.

And the second property states that the higher the uncertainty level is, the more inclusive the

info-gap uncertainty model will be.

The robustness function of the info-gap decision theory measures the highest uncertainty

level for which a given policy will satisfy the performance requirements, thus allowing maximal

lack in the knowledge of a priori information.

Definition 6 (Robustness function [28]): In the info-gap theory, the robustness function of

a given policy π is defined as the highest level of uncertainty that can be tolerated, for which

the given policy will satisfy a desired performance level rc

âðp; rcÞ ¼ max a : min
u2Uða;~uÞ

Rðp; uÞ � rc

� �

ð2Þ

where Uða; ~uÞ is the info-gap uncertainty model, and R(π, u) is the performance evaluation

function for policy π and uncertain parameter u.

Definition 7 (Robust satisficing policy [28]): A robust satisficing policy is defined as the

policy that maximizes the robustness function Eq (2) while satisfying the desired performance

level rc

p�ðrcÞ ¼ arg max
p2P

âðp; rcÞ ð3Þ

where P represents the decision space that consists of a set of possible policies.

Fig 1. The space of possible values of uncertain variables.

doi:10.1371/journal.pone.0166448.g001
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The robust satisficing policy π�(rc) maximizes âðp; rcÞ conditional on the desired perfor-

mance level rc, and makes the condition R(π�(rc), u)� rc guaranteed for any u 2 Uða; ~uÞ.

3 Info-gap Based Robust Satisficing Decision-Making Problem

3.1 Info-gap based MDP

In this paper, we use the info-gap uncertainty model to represent the uncertain transition

probabilities of the MDP. Let P be the unknown true transition probability, ~P be the estimated

transition probability of the MDP, and Pa and ~Pa be the transition matrices of P and ~P for tak-

ing action a respectively. The info-gap uncertainty model of the transition matrix for taking

action a is defined as follows

Uaða; ~PÞ ¼ Pa : jpi � ~pij � a~pi; 0 � a � 1; pi1 ¼ 1; ~pi1 ¼ 1; pi � 0; ~pi � 0f g 8i ð4Þ

where pi and ~pi represent the ith row of Pa and ~Pa, and α is the unknown uncertainty level. The

uncertainty set of pi can be expressed as an interval ½p; �p�, where p ¼ ð1 � aÞ~p, �p ¼ ð1þ aÞ~p,

and p; �p � 0. Since α is unknown, the interval model is not fixed. The range of uncertainty

expands as α increases.

Definition 8 (IMDP): The info-gap based (labeled) MDP (IMDP) is defined as a tuple

IM ¼< S;A;Uða; ~PÞ;R; s0;AP; L > by replacing P in the uncertain MDP with U, where

Uða; ~PÞ ¼ U1ða; ~P1Þ � . . .� U jAjða; ~P jAjÞ are the sets of all possible transition matrices, as

defined in Eq (4).

A control policy for the IMDP is defined as a sequence π = {μ0, μ1, . . .}, where μi: S! A is a

control function such that μ(s) 2 A(s) for all s 2 S. If π = {μ, μ, . . .}, the control policy is called a

stationary policy.

3.2 Problem Formulation

Considering both the robustness of an IMDP model and the probability of satisfying the LTL

specifications, we propose an info-gap based robust satisficing decision-making method. The

objective is to maximize the robustness to uncertainty in the IMDP model while guaranteeing

the desired performance level satisfied. In this paper, the performance level is defined as the

desired mission success rate of the UAV, i.e., the desired probability level of satisfying the LTL

specifications.

Definition 9 (LSP and DLSP): The probability of satisfying the LTL specification ϕ (LSP)

by the IMDP IM under the control policy π is defined as Prπ(s0 ⊨ π). And the desired probabil-

ity level of satisfying the LTL specification (DLSP) is set as a constant value within (0, 1) by the

UAV operator.

A control policy π of the IMDP IM can produce a path rp
IM ¼ s0s1 . . . si . . . over IM, which

will further generate a corresponding infinite word σ = τ0τ1 . . . τi . . . over the atomic proposi-

tions of the LTL such that τi = L(si). Thus, the probability of satisfying the LTL formula ϕ (LSP)

for a path produced by policy ϕ over IM can be represented as Prpðs0 � pÞ ¼ PrfLðrp
IMÞ � �g,

which is measurable [14].

Formally, the robust satisficing decision-making problem can be formulated as follows:

Problem 1: Let IM ¼< S;A;Uða; ~PÞ;R; g; s0; L;AP > be an IMDP, and ϕ be an LTL for-

mula over AP. The objective is to generate a robust satisficing policy π�(pc) that maximizes the
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robustness while guaranteeing the DLSP pc satisfied

p�ðpcÞ ¼ arg max
p2P

a ð5Þ

s:t: min
P2Uða;~PÞ

Prpðs0 � �Þ � pc ð6Þ

where P represents the decision space consisting of a set of possible policies, and Prπ(s0 ⊨ ϕ) is

defined as the LSP of the LTL formula ϕ by IM under the control policy π from an initial state

s0.

For a DLSP pc, the robustness of a policy π can be defined as

âðp; pcÞ ¼ maxa ð7Þ

s:t: min
P2Uða;~PÞ

Prpðs0 � �Þ � pc ð8Þ

Remark 1: For a set of feasible policies, the preference can be determined by the robustness

of each policy. The higher the robustness is, the higher the preference will be.

3.3 Robust Satisficing Decision-Making Framework

In this subsection, we will present a robust satisficing decision-making framework for Problem

1, which is a computational framework that produces a policy that maximizes the robustness

to uncertainty while guaranteeing the DLSP satisfied, as shown in Fig 2. This framework con-

sists of two main parts, the construction of the product IMDP and the generation of a robust

satisficing policy, which will be described in detail in the following.

3.3.1 Construction of the Product IMDP. According to the model checking theory [14],

the LSP for the IMDP is equivalent to the probability of reaching an accepting maximal end

component (AMEC) of the product IMDP for a given policy and a given transition probability.

By constructing the product IMDP, the LSP can be computed. Therefore, we start by con-

structing the product IMDP, which is used for computing the LSP in order to determine

whether the DLSP in Problem 1 is satisfied or not. First, the LTL formula should be converted

into a DRA as defined in Def. 2. The product IMDP is constructed by creating the Cartesian

product of the IMDP and DRA.

Definition 10 (Product IMDP): Let IM ¼< S;A;Uða; ~PÞ;R; s0;AP; L > be an IMDP. The

LTL formula is converted into a DRA as Aϕ = {Q, q0, S, δ, Acc}. The product IMDP is defined

by P ¼< SP;AP;UPða;
~PÞ;RP; sP0; LP;AccP >, where

• SP = S ×Q.

• AP(s, q) = A(s).

• For PP 2 UPða; ~PÞ and P 2 Uða; ~PÞ, PP((s, q), a, (s0, q0)) = P(s, a, s0) if q0 = δ(q, L(s)); other-

wise, 0.

• RP((s, q), a) = R(s, a).

• sP0 = (s0, q0).

• LP(s, q) = q.

• AccP ¼ fðJP1 ;KP1 Þ; ðJP2 ;KP2 Þ; . . .g. For (Li, Ji) 2 Acc, state ðs; qÞ 2 JPi if q 2 Ji, and state

ðs; qÞ 2 LPi if q 2 Li.

Robust Satisficing Decision Making for UAV Complex Missions under Severe Uncertainty
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Fig 2. Robust satisficing decision-making framework.

doi:10.1371/journal.pone.0166448.g002
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The policy pP ¼ fmP
0
; mP

1
; . . .g on the product IMDP is denoted as mP

i : S� Q! A. There is

a one-to-one correspondence between the paths on the IMDP and the product IMDP, which

induces a one-to-one correspondence between the policies on the IMDP and the product

IMDP. Therefore, given a policy pP ¼ fmP
0
; mP

1
; . . .g on the product IMDP, one can induce a

policy π = {μ0, μ1, . . .} on the IMDP by setting mP
i ðs; qÞ ¼ miðsÞ for i = 0, 1, . . ..

With the product IMDP, the detailed procedure of obtaining the AMECs is outlined in

[14].

Definition 11 (AMEC [14]): The accepting maximal end component is defined as ð�SP; �APÞ,

consisting of a set of states �SP � SP and a function �APðsPÞ � APðsPÞ, which implies that by tak-

ing actions enabled by �AP, all states in �SP can reach every other state in �SP and cannot reach

any state outside of �SP.

Once an AMEC is reached, all states in �SP are infinitely often reached with probability 1, by

taking all actions in �AP. The LSP is the maximum probability of reaching any states in �SP from

an initial state sP0 2 SP. We can find the set of states that can never reach �SP under any policy

via the graph theory, denoted as B0. The set of the rest states is BP ¼ SP=ð�SP
S
B0Þ. According

to the model checking theory, the LSP from the initial state sP can be determined as: 1 if

sP 2 �SP, or 0 if sP 2 B0. For sP 2 BP, the LSP can be obtained through linear or dynamic pro-

gramming [14] [11] if there is no uncertainty. However, in this paper the system is abstracted

into the IMDP model, and the transition probability lies in an info-gap uncertainty model,

which requires the robust satisficing solution method. In the next subsection, the solution

scheme will be presented for obtaining a robust satisficing policy for Problem 1.

3.3.2 Solution Scheme. It can be seen that Problem 1 for finding the robust satisficing pol-

icy is essentially a complex optimization problem. Both the policy π and the uncertainty level α
will affect the value of the worst-case LSP, so they will affect determining whether the DLSP is

satisfied or not. In order to clarify the solution procedure of generating a robust satisficing pol-

icy, it is compared with that of the min-max decision-making method. The solution schemes

are shown in Fig 3.

Considering the IMDP model and the LTL specification, the min-max robust decision-

making method is to create an optimal robust policy to maximize the worst-case LSP at a spec-

ified uncertainty level �a. It can be regarded as a game between the environment and the deci-

sion maker, and the optimal robust policy is

p� ¼ arg max
p2P

min
P2Uð�a;~PÞ

Prpðs0 � �Þ ð9Þ

This min-max optimization problem written as Eq (9) can be solved to find an optimal

robust policy through robust dynamic programming. The solution scheme can be seen in Fig

3(A). However, it is only feasible when the uncertain transition probability set is fixed, i.e., the

uncertainty level �a is known in advance.

The solution scheme for Problem 1, i.e., the robust satisficing decision-making method, is

shown in Fig 3(B). In order to simplify the computation, the uncertainty level within [0,1] will

be divided into N uniform divisions. We start by choosing the uncertainty level αt as zero. For

each specified uncertainty level αt, a policy with the highest worst-case LSP will be found, and

the highest worst-case LSP will be compared with the DLSP. If the highest worst-case LSP is

higher than or equal to the DLSP, the value of the uncertainty level will be increased by αt+1 =

αt+1/N, and the above procedures will be repeated; otherwise, the last policy with the highest

worst-case value is the robust satisficing policy, and its corresponding uncertainty level is its

robustness for the DLSP.
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The solution scheme is designed based on several lemmas and theorems which will be pro-

vided in next section. The solution procedure for Problem 1 can be outlined as follows:

1. The monotonic relationship between the uncertainty level and the worst-case LSP will be

established (Lemmas 1 and 2), which supports the division scheme of the uncertainty level.

As the uncertainty level increases, the worst-case LSP will decrease such that a critical value

of satisfying the DLSP will be reached.

Fig 3. The solution schemes for the min-max robust decision-making method and the robust satisficing decision-making method.

(A) Solution scheme for the min-max robust decision-making method. (B) Solution scheme for the robust satisficing decision-making method.

doi:10.1371/journal.pone.0166448.g003
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2. The robust satisficing optimality theorems are provided and proved (Theorems 1 and 2),

which will help improve the policy towards a higher robustness. A trade-off relationship

between the robustness and the DLSP is also proved (Theorem 3).

3. The highest worst-case LSP is calculated as well as the corresponding optimal robust policy

based on robust dynamic programming, which will be compared with the DLSP to deter-

mine whether the uncertainty level increases or not. And the robust satisficing policy gener-

ation algorithm is presented (Algorithm 1).

4. Furthermore, a robustness evaluation algorithm is presented, which can be used to evaluate

the robustness of a fixed policy for a given DLSP (Algorithm 2).

4 Solution Method

In this section, we will explain each step of the solution procedure for Problem 1 in detail.

First, we begin with a simple claim. It is obvious that the choice of the DLSP will influence

the robustness. Thus, a proper DLSP is determined such that a robust satisficing policy with

nonzero robustness can be generated.

Let V�
p
ðsP; aÞ ¼ minPP2UPða;~PÞPr

p denote the worst-case LSP of a given policy π starting from

sP at the uncertainty level α.

Claim 1: If the given DLSP pc is higher than the LSP of the optimal policy without consider-

ing uncertainty, the robustness of all the policies for this DLSP will be zero.

Proof: The proof will be provided by contradiction. First, we assume that π1 is the optimal

policy without considering uncertainty, and the worst case LSP of π1 is V�
p1
ðsP; 0Þ < pc. Assum-

ing that there is an arbitrary policy π2 with robustness α2 6¼ 0 for the DLSP pc, we have

V�
p2
ðsP; a2Þ ¼ min

P2Uða2 ;
~PÞ
Prp2 � pc ð10Þ

According to the assumption of the optimal policy π1, the following inequalities can be

established

V�
p2
ðsP; a2Þ ¼ min

P2Uða2 ;
~PÞ
Prp2 � min

P2Uð0;~PÞ
Prp2 � min

P2Uð0;~PÞ
Prp1 ¼ V�

p1
ðsP; 0Þ < pc ð11Þ

It’s obvious that the relationship of Eq (11) contradicts the assumption in Eq (10). Thus, the

arbitrary policy π2 with non-zero robustness π2 does not exist.

According to Claim 1, if the given DLSP is higher than the LSP of the optimal policy with-

out uncertainty, there would be a robust satisficing policy. In this case, the given DLSP cannot

be satisfied by any policy, which means the mission specifications cannot be met. Therefore, if

we would like to generate a robust satisficing policy, the desired satisfaction probability must

be proper. Besides, as defined in the info-gap uncertainty model (4), the maximum robustness

lies in [0, 1], which corresponds to a robust satisficing policy with the proper DLSP satisfied.

In the subsequent section, it is assumed that the given DLSP is proper, i.e., not higher than the

LSP of the optimal policy without considering uncertainty.

Remark 2: For a given proper DLSP, the maximum robustness Eq (5) will be achieved by

the robust satisficing policy, i.e., âðp�ðpcÞ; pcÞ. The robust satisficing policy π�(pc) Eq (7) maxi-

mizes âðp; pcÞ, which is conditional on some pc, and makes the condition Prπ
�(pc)(s0 ⊨ ϕ)� pc

guaranteed for any P 2 Uðâ; ~PÞ.
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4.1 Monotonicity

The monotonic relationship between the uncertainty level and the worst-case LSP of a given

policy is presented.

Lemma 1 (Monotonicity 1): For a given policy π, the worst-case LSP does not increase

along with the uncertainty level, i.e., if α1 < α2, then V�
p
ðsP; a1Þ � V�

p
ðsP; a2Þ.

Proof: If the uncertainty level increases from α1 to α2, by the nesting axiom, the uncertainty

set UPða2;
~PÞ will contain UPða1;

~PÞ, i.e., UPða1;
~PÞ � UPða2;

~PÞ. It is assumed that

UPða2;
~PÞ ¼ UPða1;

~PÞ
S

O, and O is a nonempty set. So there will be a relationship of the

worst-case LSP between α1 and α2 as follows:

V�
p
ðsP; a2Þ ¼ min

PP2UPða2;
~PÞ
Prp ¼ min

PP2UPða1 ;
~PÞ[O

Prp

¼ minf min
PP2UPða1 ;

~PÞ
Prp;min

PP2O
Prpg

� min
PP2UPða1;

~PÞ
Prp ¼ V�

p
ðsP; a1Þ

It can be concluded that if α1 < α2, V�
p
ðsP; a1Þ � V�

p
ðsP; a2Þ.

According to Lemma 1, the worst-case LSP V�
p
ðsP0; aÞ of a fixed policy monotonically

decreases at the uncertainty level α. So as α increases, the worst-case LSP of a fixed policy

decreases. If α increases to αm, such that V�
p
ðsP0; amÞ � pc, and V�

p
ðsP0; am þ εÞ < pc (ε is an

infinitely small value), then αm is the robustness of the fixed policy that is sought for.

Second, the monotonic relationship between the uncertainty level and the highest worst-

case LSP is established.

Let H�ðsP; aÞ ¼ maxp2PminPP2UPða;~PÞPr
p denote the highest worst-case LSP at the uncertainty

level α from the initial state sP, i.e., H�ðsP; aÞ ¼ maxp2PV�pðsP; aÞ. The policy with the highest

worst-case LSP at a given uncertainty level is called the optimal robust policy at this uncer-

tainty level, which is also referred to as the min-max robust policy in this paper.

Lemma 2 (Monotonicity 2): For all the policies, the highest worst-case LSP decreases as the

uncertainty level increases, i.e., if α1 < α2, then H�(sP, α1)>H�(sP, α2).

Proof: It is assumed that π1 is the optimal robust policy at the uncertainty level α1, π2 is the

optimal robust policy at the uncertainty level α2, and α1 < α2. Since π1 is the optimal robust

policy at the uncertainty level α1, we have H�ðsP; a1Þ ¼ V�
p1
ðsP; a1Þ > V�

p2
ðsP; a1Þ. Because

α1 < α2, we have V�
p2
ðsP; a1Þ > V�

p2
ðsP; a2Þ ¼ H�ðsP; a2Þ according to Lemma 1. It can be con-

cluded that if α1 < α2, H�(sP, α1)>H�(sP, α2).

According to the monotonicity in Lemma 2, there will exist a maximal value of αm such

that H�(sP0, αm)� pc and H�(sP0, αm + ε)< pc, where ε is an infinitely small value. This maxi-

mal value αm is the robustness of the optimal robust policy for the DLSP, and the optimal

robust policy corresponding to the uncertainty level αm is the robust satisficing policy.

4.2 Robust Satisficing Optimality

In order to obtain a robust satisficing policy, the feasible policy should be improved towards

the direction with higher robustness. Thus Theorems 1 and 2 are given and proved to define

the direction with higher robustness. In Theorem 3, the trade-off relationship between the

DLSP and the robustness will be proved.

Theorem 1 (Robustness optimality): For a given DLSP pc, the policy which maximizes the

worst-case LSP will lead to a robustness higher than or equal to that obtained by any other pol-

icy at the same uncertainty level.
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Proof: It is assumed that the robustness of π1 for the desired level pc is α1, and π1 cannot

maximize the worst-case LSP. Thus policy π1 satisfies V�
p1
ðsP0; a1Þ � pc, and

V�
p1
ðsP0; a1 þ εÞ < pc, where ε is an infinitely small value.

Let π2 be the policy that can maximize the worst-case LSP at the uncertainty level α1. We

have

V�
p2
ðsP0; a1Þ ¼ max

p2P
min

PP2UPða1;
~PÞ
Prp > min

PP2UPða1 ;
~PÞ
Prp1 ¼ V�

p1
ðsP0; a1Þ � pc

First the critical case for π2 is considered. It is assumed that for the infinitely small value ε,

V�
p2
ðsP0; a1 þ εÞ < pc. Then the robustness of π2 is also α1. However, in other cases, if

V�
p2
ðsP0; a1 þ εÞ � pc, there would be α2� α1 + ε, such that V�

p2
ðsP0; a2Þ � pc and

V�
p2
ðsP0; a2 þ εÞ < pc. In this case, the robustness of π2 is α2. Therefore, the robustness of policy

π2 is higher than that of policy π1.

Theorem 2 (Robust satisficing optimality): For a given DLSP pc, a min-max robust policy

which can maximize the worst-case LSP at a certain uncertainty level (maximum robustness)

can be found, so it is the robust satisficing policy.

Proof: Let π�(pc) be the robust satisficing policy with the maximum robustness

am ¼ âðp�ðpcÞ; pcÞ. We have V�
p�ðpcÞ
ðsP0; amÞ � pc and V�

p�ðpcÞ
ðsP0; am þ εÞ < pc, where ε is an

infinitely small value.

It is assumed that πmm is the min-max robust policy at the uncertainty level αm and

V�
pmm
ðsP; amÞ is the optimal worst-case LSP, which satisfies

V�
pmm
ðsP0; amÞ � V�

p�ðpcÞ
ðsP0; amÞ � pc

First, it is assumed that the inequality holds. According to the proof of Theorem 1, the

robustness of πmm is higher than that of π�(pc) in all cases but the critical case. Thus there will

exist αn> αm, such that V�
pmm
ðsP0; anÞ � pc and V�

pmm
ðsP0; an þ εÞ < pc. However, this violates

the definition of the robust satisficing policy about maximal robustness. So the inequality con-

dition is false. Under both the critical case and equality conditions, the robustness of πmm is

equal to that of π�(pc). That is, the min-max robust policy at the uncertainty level αm is the

robust satisficing policy for the DLSP pc.
Theorem 3 (Trade-off Theorem): If the DLSP decreases, the robustness of a given policy

or a robust satisficing policy will be non-decreasing, i.e., if pc > p0c, then âðp; pcÞ � âðp; p0cÞ.
Proof: It is assumed that a feasible robustness set for a given policy π is denoted as

Lðp; pcÞ ¼ a : min
PP2UPða;~PÞ

Prp � pc

� �

Thus the robustness is âðp; pcÞ ¼ maxLðp; pcÞ.
It is assumed that pc > p0c, and the feasible robustness sets Λ(π, pc) and Lðp; p0cÞ are non-

empty. Let α1 2 Λ(π, pc), which means that minPP2UPða1;
~PÞPrp � pc � p0c. It can be concluded

that a1 2 Lðp; p0cÞ. Thus we have Lðp; pcÞ � Lðp; p0cÞ. According to the definition, it follows

that âðp; pcÞ ¼ maxLðp; pcÞ � maxLðp; p0cÞ ¼ âðp; p0cÞ. The trade-off relationship has thus

been proved.

Theorem 3 shows that the robustness is monotonically decreasing at the DLSP. In practice,

it may help the decision maker to decide a proper desired performance level by taking the

robustness to uncertainty into consideration in order to realize a trade-off between the desired

performance level and the robustness.
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4.3 Calculation of the Highest Worst-Case LSP

According to Theorems 1 and 2, for a given DLSP pc, the robust satisficing policy can be

regarded as the min-max robust policy at a certain uncertainty level. So in this subsection, we

will present the calculation method of the highest worst-case LSP as well as the min-max

robust policy at a fixed uncertainty level.

Lemma 3 (Robust Dynamic Programming [22]): For the robust control problem, the per-

fect duality holds:

F ¼ max
p2P

min
P2Uð�a ;~PÞ

Prpðs0 � �Þ ¼ min
P2Uð�a ;~PÞ

max
p2P

Prpðs0 � �Þ ð12Þ

The optimal value is given by F = v�(s0), where s0 is the initial state. For the product IMDP,

the value function is the unique limit value of the convergent vector sequence defined by

vkþ1ðsPÞ ¼ max
a2AP

min
PP2UPð�a ;~PÞ

ðPPÞ
Tvk; k ¼ 1; 2; ::: ð13Þ

The optimal min-max robust control policy is obtained as

p�ðsPÞ ¼ arg max
a2AP

min
PP2UPð�a;~PÞ

ðPPÞ
Tv� ð14Þ

For the proof of the detailed processes and convergence of the min-max robust policy, the

readers can refer to Theorem 3 in [22].

In our problem, the highest worst-case LSP H�(sP, α) for a fixed uncertainty level α can be

defined as the unique limit value of the following convergent vector sequence based on

Lemma 3 (robust dynamic programming)

Hkþ1ðsP; aÞ ¼ max
a2AP

min
PaP2½p;�p�

ðPaPÞ
THkð�; aÞ ð15Þ

where Hk(•, α) is the vector of Hk(sP, α) for all sP 2 SP at stage k, and p and �p denote the uncer-

tainty interval for the ith row of PaP. The initial value for Hk(sP, α) is given as the LSP related

with AMECs in Subsection 3.3.1. Then, the worst-case LSP can be obtained via value iteration,

which is described explicitly in Algorithm 1. Note that during each iteration, an inner minimi-

zation for finding the optimal transition probability will be computed based on the dual linear

programming, which provides the worst-case condition. Refer to S1 Appendix for detailed

procedures.

With the highest worst-case LSP H�(sP, αm), the corresponding min-max robust policy

π�(sP) can be obtained by setting

p�ðsPÞ ¼ arg max
a2AP

min
PaP2½p;�p�

ðPaPÞ
TH�ð�; amÞ ð16Þ

4.4 Robust Satisficing Policy Generation Algorithm

In this subsection, a robust satisficing policy generation algorithm based on robust dynamic

programming is proposed, as shown in Algorithm 1. The uncertainty level α is divided

between 0 and 1 by N uniform divisions. For a specified value of α, the range of transition

probability can be determined, and the highest worst-case LSP H�(sP, α) can be calculated via

value iteration, as well as the corresponding min-max robust policy π� (Lines 8–19). Then, the

highest worst-case LSP is compared with the given DLSP, and if the satisfaction condition

holds, we will increase the uncertainty level by 1/N and repeat the above steps until the highest
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worst-case LSP reaches the given DLSP (Lines 20–24). An approximation value α� of robust-

ness with the accuracy of 1/N can be determined by H�(sP0, α�)� pc and H�(sP0, α� + 1/N)<

pc.
Algorithm1 Robust Satisficing Policy Generation

Required:productIMDP P ¼< SP;AP;UPða;
~PÞ;RP; sP0; LP;AccP >

Required:the DLSP pc
Ensure:Robust satisficing policyπ�

Ensure:MaximalRobustnessα�

▷ Step 0: Initialization
▷ Step 0.1: GenerateAMECs

1: Generate ð�SP; �APÞ, B0, BP
▷ Step 0.2: InitializeLSP

2: for sP 2 �SP do
3: H(sP, α) = 1
4: end for
5: for sP 2 B0 do
6: H(sP, α) = 0
7: end for
▷ Step 1: Generatethe robustsatisficingpolicyand the maximalrobustness
▷ Step 1.1: Generatethe min-maxbasedrobustpolicy

8: α 0
9: Δ 1
10: whileΔ� ε
11: for sP 2 SP n �SP

S
B0 do

12: MaxP H(•, α)
13: HðsP; aÞ ¼ maxa2APminPaP2½p;�p�ðP

a
PÞ

THð�; aÞ

14: p ¼ argmaxa2APminPaP2½p;�p�ðP
a
PÞ

THð�; aÞ
15: Δ = min(kH(•,α) − MaxPk, Δ)
16: if Δ� ε then
17: H�(sP, α) = H(sP, α)
18: end if
19: end for
▷ Step 1.2: Updatethe robustness

20: if kH�(sP, α) − pck � 0 do
21: π�  π
22: α�  α + 1/N
23: α α + 1/N
24: goto line 9
25: end if
26: end while
27: returnα�, π�

In the following, the convergence of the above algorithm will be provided.

Theorem 4 (Convergence): For Problem 1, a robust satisficing policy, which is generated

by Algorithm 1, can converge to the maximal robustness with a given proper DLSP pc satisfied.

Proof: First, according to Lemma 3, for a specified uncertainty level α, a min-max robust

policy can converge to a unique optimal value function, i.e., the highest worst-case LSP. In

Algorithm 1, we use the discretized method to divide the uncertainty level into N equally

spaced values αt, t = 1, . . ., N between 0 and 1. For each αt, the robust policy, generated by the

robust dynamic programming, can converge to the highest worst-case LSP H�(sP, αt).
Then, due to the monotonicity in Lemma 2, the highest worst-case LSP H�(sP, α) decreases

as the uncertainty level α increases, as shown in Fig 4. Thus we can find a αt, such that H�(sP,

αt)� pc and H�(sP, αt+1)< pc, where H�(sP, αt) can be achieved by the min-max policy pt
mm at
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the uncertainty level αt. In this case, αt is the maximum robustness with the accuracy 1/N, as

shown in Fig 4.

Finally, according to Theorem 2, the min-max robust policy pt
mm with the highest worst-

case LSP H�(sP, αt) at αt is the robust satisficing policy for the DLSP pc with the maximum

robustness αt.

Fig 4. The monotonicity relationship between the highest worst-case LSP and the uncertainty level, and the maximum robustness.

doi:10.1371/journal.pone.0166448.g004
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Remark 3: The complexity of Algorithm 1 is affected by the size of the product IMDP. The

size of the DRA |Q| is in the worst case, doubly exponential with respect to the LTL formula

[39]. The size of the product IMDP is at least n = |S| × |Q|, without considering the uncertain

transition matrices. For the uncertain IMDP, the complexity of solving the worst-case problem

is O(nlog(n)). And the maximal end components can be generated in O(n2) at most. Algorithm

1 spends at most O(n2aN(log(1/ε))2) to obtain the robust satisficing policy, where N is the

number of robustness divisions and a = |A| is the number of actions.

4.5 Robustness Evaluation Algorithm

Algorithm 1 is used to generate a robust satisficing policy. However, if there are several feasible

policies, a robustness evaluation algorithm is required to choose the policy with the highest

robustness. The robustness evaluation problem, for evaluating the robustness of a fixed policy

π for a given DLSP pc, can be formulated as

âðp; pcÞ ¼ max a : min
PP2UPða;~PÞ

Prpðs0 � �Þ � pc

� �

¼ max a : V�
p
ðsP0; aÞ � pc

� 	
ð17Þ

The solution scheme of robustness evaluation is similar to that for generating the robust

satisficing policy. The Bellman recursion will be used to calculate the worst-case LSP, which

satisfies the following conditions

V�
p
ðsP; aÞ ¼ min

PaP2½p;�p�
PaPðsP; s

0

PÞ
TV�

p
ðs0P; aÞ; sp 2 SP ð18Þ

where a = π(sP). V�
p
ðsP; aÞ for policy π is the unique fixed point of the contraction mapping

Fðp; sPÞ : RjSP j ! RjSP j defined by

Fðp; sPÞ ¼ min
PaP2½p;�p�

ðPaPÞ
TVpð�; aÞ ð19Þ

where Vπ(•, α) is the vector of V�
p
ðsP; aÞ for all sP 2 SP. For the proof of the contraction map-

ping, refer to Lemma 2 in [27]. The worst-case LSP, as the fixed point of the contraction map-

ping, can be obtained via value iteration. Then a robustness evaluation algorithm is proposed

so as to find the robustness of a given policy for a given DLSP, as shown in Algorithm 2.

Algorithm2 Robustness Evaluation for a Specified Policy

Required:productIMDP P ¼< SP;AP;UPða;
~PÞ;RP; sP0; LP;AccP >

Required:a specifiedpolicyπ
Required:the DLSP pc
Ensure:Robustnessα�

▷ Step 0: Initialization
1: GenerateAMECs ð�SP; �APÞ, B0, BP
2: for sP 2 �SP

S
B0, initializeVπ(•, α)

3: Δ 1
4: α 0
▷ Step 1: Evaluatethe robustness

5: whileVπ(sP0, α) − pc� 0
▷ Step 1.1: Computethe worst-caseLSP

6: whileΔ� ε
7: for sP 2 SP n �SP

S
B0 do

8: MinP Vπ(•, α)
9: VpðsP; aÞ ¼ min

PpðsP Þ
P 2½p;�p�

ðPpðsPÞ
P Þ

TVpð�; aÞ

10: Δ = min(kVπ(•, α) − MinPk, Δ)
11: if Δ� ε then
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12: V�
p
ðsP; aÞ ¼ VpðsP; aÞ

13: end if
14: end for
15: end while
▷ Step 1.2: Updatethe robustness

16: α α + 1/N
17: Δ 1
18: end while
19: returnα�  α − 1/N

Having formulated the problem and designed the solution algorithms, we will illustrate our

methods in the next section.

5 Empirical Evaluation

5.1 Construction

We demonstrate our algorithms on an example of UAV search missions, in which the task for

the UAV is to sequentially visit several regions of interest to collect information while always

remaining safe. Once the UAV has visited the regions, it should return to the starting point.

Simulation experiments are performed in a warehouse, as shown in Fig 5. The LTL formula

for this task is ϕ = G¬unsafe^F((R1_R2)^XF(R3^XF(R4^XFhome))).

Without any loss of generality, the occupancy grid map is utilized to discretize the work-

space, which consists of 10 × 11 cells. Each cell is a square region [0, 1] × [0, 1]. Considering a

UAV moving in the discrete grid map consisting of 10 × 11 cells, we create a finite MDP

abstraction of the UAV system. The UAV is located at one of the cells of the grid map each

time, so each cell represents a state of the MDP. The actions enabled at each state are {up,

down, left, right}, each of which can direct the UAV to move to one of its three forward adja-

cent regions. The atomic propositions are {home, R1, R2, R3, R4, unsafe}, each of which labels

the states of the MDP with an atomic proposition, as shown in Fig 5. The first four proposi-

tions are labeled on the corresponding cells of the grid map, and the unsafe regions are repre-

sented by the black blocks in the cells. Due to the symmetry of the region and the UAV, we

only need to calculate the estimated transition probability for one region and can apply it to

other regions. Through Monte Carlo simulation [27], the transition probabilities for taking

action ‘up’ are obtained (left-forward, forward, right-forward) = (0.162, 0.687, 0.151), as shown

in Fig 6. The transition probabilities for taking other actions are defined in a similar manner.

Note that the estimated transition probabilities are not exact as a result of statistical errors.

And some undesired state transitions may be caused by control errors or environmental

disturbance.

Computations are performed on a 2.6GHz Intel Core i7 processor with 8 GB memory. All

the experiments are implemented in the MATLAB. The LTL formula ϕ is transformed into a

DRA with 7 states through the ‘ltl2dstar’ software [39], so we can obtain the product IMDP

with 770 states by constructing the Cartesian product of the DRA and the IMDP. It takes 0.31s

to generate AMECs for the product IMDP.

5.2 Implementation and Results

In the following, we will demonstrate our robust satisficing decision-making method in two

parts. In the first part, our method is used to generate a robust satisficing policy for the given

DLSP, and the effectiveness of this policy is verified by determining whether the DLSP is met.

Besides, the trade-off property between robustness and the DLSP is analyzed. In the second

and third parts, our method is compared with the min-max robust decision-making method
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and the robust decision making [37] to illustrate the advantages of the robust satisficing policy

in practice.

5.2.1 Generation and Properties of the Robust Satisficing Policy. In this subsection, we

will verify the effectiveness of the proposed algorithm. To begin with, the simulation parame-

ters are set as follows. For the DLSP, in some applications it might derive from established

standards or rules within an organization. In other cases, the DLSP might derive from a com-

bination of the decision maker’s values and understanding of what is possible. In this paper,

we take the second approach, and the DLSP pc is initially set to be 0.9. And the uncertainty

Fig 5. The mission space with atomic propositions.

doi:10.1371/journal.pone.0166448.g005
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division N is set to be 100 such that the accuracy of the robustness is 0.01, which is small

enough for the transition probability.

Next, a robust satisficing policy is generated by implementing Algorithm 1 in the UAV

search mission environment. Aiming at an intuitively expressive form of the resulting policy,

we carry out the forward simulation to produce a trajectory of the policy. The UAV starts from

the initial state, and determines the action to be taken at the current state according to the gen-

erated policy. Then, the transition to the next state is conducted by the worst-case transition

probability which can be calculated by the linear programming function (linprog) in the

MATLAB. The above procedures are repeated until it reaches a terminal state (AMEC). After

the Algorithm 1 is run, the robust satisficing policy π� is generated in 452.8s with a robustness

of 0.40. Through the forward simulation, a trajectory of the UAV as shown in Fig 7 can be gen-

erated. The star sign represents the start point, the trajectory is drawn with the blue line, and

the arrows represent the direction of motion. There are several overlaps of the path segments

as shown in Fig 7, which may cause a little fuzziness, so another figure is drawn to remove the

overlaps, as shown in Fig 8. The red path segments represent the influence of uncertainty

which makes the motions of UAV deviate from the desired direction of action, while our

robust satisficing policy can drive the UAV back.

In order to describe the trade-off relationship between the DLSP and the robustness, we

first consider the effect of different DLSPs on the robustness of the generated robust satisficing

policy π�. The robustness of the generated policy π� for all the DLSPs from 0.0 to 1.0 is calcu-

lated by implementing Algorithm 2. And a robustness curve of π�, representing its varying

robustness corresponding to different DLSPs, is shown in Fig 9. It can be seen that the robust-

ness of π� will decrease as the DLSP increases. Further, we demonstrate the effect of DLSP on

the maximum robustness. Considering different DLSPs, we run Algorithm 1 to generate the

robust satisficing policy and the corresponding maximum robustness. Fig 10 shows the maxi-

mum robustness curve, which represents the relationship between the DLSP and the maxi-

mum robustness. And the robustness of π� and the maximum robustness for different DLSPs

are shown in Table 1.

From Fig 10, it can be seen that the slope of the DLSP vs. maximum robustness is always

negative. This negative slope represents the trade-off in Theorem 3: as the DLSP increases, the

robustness to uncertainty naturally decreases. Note that if the DLSP decreases from 1 to 0.8,

the robustness will increase sharply from 0 to around 0.6. Yet, if the DLSP continuously

Fig 6. The transition probability for action ‘up’.

doi:10.1371/journal.pone.0166448.g006
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decreases, the increase of the robustness will not be remarkable. Thus we recommend a more

appropriate DLSP (around 0.85) to the UAV operator instead of 0.9, which can be explained

by the principle that a little compromise on performance can lead to a relatively obvious

increase in robustness.

Second, we demonstrate that the robust satisficing policy at the maximum uncertainty level

(i.e., robustness), will always guarantee the DLSP satisfied. Through Monte Carlo simulation,

the true LSP of a resulting policy is computed as the mission success rate over 1000 indepen-

dent forward simulation runs. Four robust satisficing policies (π1, . . ., π4) with robustness

(α1, . . . α4) for four different DLSPs (0.9, 0.8, 0.7, 0.6) are generated, respectively. For each of

these policies, the true LSP is calculated through Monte Carlo simulation and will be compared

with its corresponding DLSP. The results are shown in Table 2. The first row shows the DLSP

pc; in the second row are the robust satisficing policies, with the robustness in the third row;

and in the last row are the true LSPs obtained through Monte Carlo simulations. It can be

observed that for each of these policies, the true LSP is higher than its corresponding DLSP. So

the robust satisficing policies generated by Algorithm 2 can guarantee the DLSP satisfied.

5.2.2 Comparison with the Min-Max Robust Decision-Making Method. In this subsec-

tion, we will compare our robust satisficing decision-making method with the min-max robust

decision-making method [27] in real UAV applications. It is assumed that the desired mission

Fig 7. The original trajectory of the robust satisficing policy through forward simulation.

doi:10.1371/journal.pone.0166448.g007
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success rate (i.e., DLSP) is pc = 0.85 for the UAV, which is the trade-off performance obtained

from the robustness curve. The environment and mission specifications are set identically in

Subsection 5.1. The estimated uncertainty level of transition probability is initially assumed to

be 0.2. By using the min-max robust decision-making method, a robust policy πm can be gen-

erated at the estimated uncertainty level, and the trajectory generated by forward simulations

is shown in Fig 11. Then our robust satisficing decision-making method is used to generate a

robust satisficing policy πs for the DLSP pc = 0.85. The resulting policy πs has a robustness of

0.54, and the trajectory is shown in Fig 12. The true LSPs for these two policies are calculated

Fig 8. The trajectory of the robust satisficing policy removing overlaps.

doi:10.1371/journal.pone.0166448.g008
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through Monte Carlo simulations, and the values are 0.97 and 0.96 for πm and πs, respectively.

It can be seen that if the true uncertainty level is 0.2, both πm and πs satisfy the DLSP. However,

in real applications, the estimated uncertainty level may be inaccurate as a result of environ-

ment disturbance. In order to determine the failure boundaries for πm and πs, their true LSPs

are evaluated at different uncertainty levels from 0.1 to 1, and the results are shown as the his-

tograms and curves in Figs 13 and 14, as well as the data in Table 3.

Fig 9. The robustness curve for the robust satisficing policyπ*.

doi:10.1371/journal.pone.0166448.g009
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Fig 10. The maximum robustness curve.

doi:10.1371/journal.pone.0166448.g010

Table 1. Robustness for different desired probability levels of satisfying LTL specifications.

DLSP pc 0.00 0.10 0.20 0.30 0.40 0.50

robustness of π* 1.00 0.83 0.83 0.82 0.81 0.78

maximum robustness 1.00 1.00 1.00 1.00 1.00 0.94

DLSP pc 0.60 0.70 0.80 0.90 0.95 1.00

robustness of π* 0.74 0.69 0.60 0.40 0.14 0.00

maximum robustness 0.82 0.72 0.62 0.40 0.18 0.00

doi:10.1371/journal.pone.0166448.t001
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Table 2. Desired probability level vs. true probability of satisfying the LTL specifications.

DLSP pc 0.90 0.80 0.70 0.60

robust satisficing policy π1 π2 π3 π4

robustness 0.40 0.62 0.72 0.82

true LSP 0.955 0.947 0.788 0.613

doi:10.1371/journal.pone.0166448.t002

Fig 11. The trajectory of the min-max robust policyπm through forward simulations.

doi:10.1371/journal.pone.0166448.g011
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From Figs 13 and 14 and Table 3, it can be seen that if the uncertainty level exceeds 0.37,

the min-max robust policy πm will lead to a value smaller than 0.85 such that it cannot guaran-

tee the DLSP. However, for the robust satisficing policy πs, the DLSP will be met until the

uncertainty level extends to 0.54. And from the curves, it can be observed that the true LSP of

the robust satisficing policy is higher than that of the min-max robust policy at all the uncer-

tainty levels except from 0.15 to 0.21. Therefore, it can be concluded that our robust satisficing

policy can tolerate higher uncertainty than the min-max robust policy, and is much more

effective in real applications to guarantee a desired performance level.

Fig 12. The trajectory of the robust satisficing policyπs through forward simulations.

doi:10.1371/journal.pone.0166448.g012
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5.2.3 Comparison with Robust Decision Making. Considering the robustness optimiza-

tion problem under severe uncertainty, we compare the proposed method with the robust

decision making (RDM) [37, 40], which also provides a structured approach to making robust

decisions under severe uncertainty. The RDM employs two decision criteria, i.e., definitions of

robustness, adopted in the risk analysis literature [40, 41]. The first defines a robust policy as

one that trades some optimal performance for less sensitivity to uncertainty, namely the lim-

ited degree of confidence (LDC) criterion. And the second defines a robust policy as one that

performs relatively well compared with the alternatives over a wide range of futures, namely

the wide range of futures (WRF).

With respect to the above two robustness criteria, two RDM robust policies πr1 and πr2 are

generated by the robust decision making [41], and the trajectories are shown in Figs 15 and 16.

In order to compare the robust satisficing policy πs (generated by our method for the DLSP

pc = 0.85 in the previous subsection) with the RDM robust policies πr1 and πr2, their true LSPs

are evaluated at different uncertainty levels from 0.1 to 1, and the results are shown as the

curves in Fig 17 and the data in Table 4.

From Fig 17 and Table 4, it can be seen that the RDM robust policy πr1 performs almost the

same as the robust satisficing policy πs, since it defines robustness as trading some optimal per-

formance for less sensitivity to uncertainty, which is similar to the info-gap decision theory.

The RDM robust policy πr2 has the lowest LSP when the range of uncertainty level is from 0 to

Fig 13. The histograms representing the true LSPs for the min-max robust policyπm and the robust

satisficing policyπs at different uncertainty levels.

doi:10.1371/journal.pone.0166448.g013
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0.6, and when the uncertainty level increases above 0.7, it will have the highest LSP. The RDM

robust policy πr2 performs relatively well over all uncertainty levels, for it defines robustness as

performing relatively well over a wide range of plausible futures. Our method begins with the

estimated value for each uncertain system input and then sequentially chooses values increas-

ingly farther away from the expected inputs, while the RDM samples all the possible uncertain

parameters to identify the conditions of system failure. In this problem, it is not difficult to

obtain an estimated value of the uncertain transition probability via Monte Carlo simulations.

Thus, with the estimated value and a predefined performance level, our method will be more

applicable. Given the diversity of definitions of robustness, and the differing judgments called

for in implementing alternative robust decision methods, it is perhaps surprising they often

reach similar results. Therefore, our method provides an alternative way to make robust deci-

sions to handle the severe uncertainty, like the RDM method.

Fig 14. The curves representing the true LSPs for the min-max robust policyπm and the robust

satisficing policyπs at different uncertainty levels.

doi:10.1371/journal.pone.0166448.g014

Table 3. The true LSPs for the min-max robust policyπm and the robust satisficing policy πs at different uncertainty levels.

uncertainty level 0.00 0.10 0.20 0.30 0.40 0.50

LSP for πm 1 0.97 0.97 0.86 0.80 0.59

LSP for πs 1 1 0.96 0.95 0.94 0.92

uncertainty level 0.60 0.70 0.80 0.90 0.95 1.00

LSP for πm 0.48 0.43 0.14 0.02 0.00 0

LSP for πs 0.80 0.59 0.45 0.16 0.04 0

doi:10.1371/journal.pone.0166448.t003
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6 Conclusion and Future Work

In this paper, the robust satisficing decision-making problem for complex missions was for-

mulated as the robust synthesizing control problem for an uncertain MDP with the LTL speci-

fications. Based on the info-gap decision theory, we proposed a robust satisficing decision-

making method to maximize the robustness to uncertain transition probabilities of the MDP,

while guaranteeing the desired probability level of satisfying the LTL specifications. In order to

compute the probability of satisfying the LTL specifications, we constructed a product IMDP,

Fig 15. The trajectory of the RDM robust policyπr1 through forward simulations.

doi:10.1371/journal.pone.0166448.g015
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which combined the IMDP model representing the uncertain MDP with the DRA converted

from the LTL specifications. And a robust satisficing policy generation algorithm based on

robust dynamic programming was proposed to solve the robust satisficing decision-making

problem, as well as a robustness evaluation algorithm. The algorithm was demonstrated by the

simulation results.

The proposed method mainly focuses on the decision-making problem with the following

characteristics: the uncertain system model, such as the uncertainty of actuation consequence,

which can be modeled as a MDP; deep uncertainty, in which the decision makers does not

Fig 16. The trajectory of the RDM robust policyπr2 through forward simulations.

doi:10.1371/journal.pone.0166448.g016
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know or agree on the probability distribution of the key parameters of the model, which can

be addressed by the info-gap decision theory; complex missions with rigorous temporal con-

straints, which can be described by LTL. Potential applications for our method include persis-

tent surveillance task [42], cargo transportation in rough terrain [12], navigation in dangerous

environments, and autonomous operation of robots in chaotic work and home environments.

In the future, our method can be extended to many fields of applications. In the field of

autonomous robots, we will extend our method to address the multi-robot task cooperation

Fig 17. The curves representing the true LSPs for the robust satisficing policyπs and the RDM robust policiesπr1 and πr2 at different

uncertainty levels.

doi:10.1371/journal.pone.0166448.g017
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problem with multiple tasks, by introducing the timed automaton and the coordination mech-

anism for multiple tasks. Besides, the robust satisficing decision making method can be crea-

tively applied to model the severe uncertainty in the economic and climate fields, which can

help to generate some robust satisficing economic or climate policies to avoid significant

failures.
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