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Abstract

The rainbow tradeoff is an algorithm for inverting one-way functions that is widely used in

practice to recover passwords from unsalted password hashes. An auxiliary technique

referred to as checkpoints can be applied to the rainbow tradeoff to reduce the time taken

for these inversions. Working out a rigorous theory that can explain and predict the effects of

this technique involves delicate manipulations of the random function and is thus a challeng-

ing task. In this work, we compare three existing theoretical analyses of the checkpoint tech-

nique. We first demonstrate that the claims made by the three works are incompatible with

each other. We then carry out experiments designed to highlight these incompatibilities,

obtaining experimental evidences that show just one of the three analyses to be correct.

Finally, we discuss the obscure theoretical errors made by the two inadequate analyses.

Introduction

Time memory tradeoff [1] is a technique for inverting one-way functions and the rainbow

tradeoff [2] is the most widely used such algorithm. There are commercially available softwares

that can recover lost passwords, which were set to prevent unauthorized accesses to digital

documents, and many of these rely on the cryptanalytic tradeoff technique to expedite the

recovery. Law enforcement agencies are also known to be using tools based on cryptanalytic

tradeoff algorithms.

Any time memory tradeoff algorithm consists of two separate phases. In the pre-computa-

tion phase, massive computations of the specific one-way function under consideration are

carried out and a digest of the findings is stored as large tables. The online phase starts when

the target image to be inverted is assigned. Further computations that reference the pre-com-

puted tables are done to recover the input corresponding to the inversion target. For any spe-

cific one-way function, the pre-computation phase need only be carried out once, and the

resulting tables may be used to invert any number of targets associated with the one-way

function.

Although the tradeoff technique allows for the amount of online computations to be much

smaller than that required by an exhaustive search of the input, the time taken by the online

phase is still uncomfortably large for situations of practical interest, and a significant portion

of this time is spent on dealing with what are referred to as false alarms. The deployment of

PLOS ONE | DOI:10.1371/journal.pone.0166404 November 17, 2016 1 / 18

a11111

OPENACCESS

Citation: Hong J (2016) Perfect Rainbow Tradeoff

with Checkpoints Revisited. PLoS ONE 11(11):

e0166404. doi:10.1371/journal.pone.0166404

Editor: Houbing Song, West Virginia University,

UNITED STATES

Received: July 14, 2016

Accepted: October 30, 2016

Published: November 17, 2016

Copyright: © 2016 Jin Hong. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by Basic

Science Research Program through the National

Research Foundation of Korea (NRF) funded by the

Ministry of Science, ICT & Future Planning (NRF-

2012R1A1B4003379). The funder had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing Interests: The author has declared that

no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0166404&domain=pdf
http://creativecommons.org/licenses/by/4.0/


checkpoints [3, 4] allows a portion of these false alarms to be dismissed without any extra com-

putations, thus reducing the time taken to invert each target.

To implement the tradeoff technique in a manner that meets the intended user’s needs, one

must be able to predict the behavior of the online phase algorithm running under a given set of

system parameters. It is important to have an accurate theoretical analysis of the online phase

algorithm, because the high cost of the pre-computation phase makes it impractical to choose

the system parameters through a trial-and-error approach. An accurate analysis is difficult to

obtain, as it must account for the effects of false alarms, and the task becomes even more com-

plicated when one considers the use of checkpoints.

There are a few existing publications that analyze the effects of using checkpoints on the

online time complexity of the (perfect table) rainbow tradeoff. The first of these were the article

[3] and its extended version [4] that introduced the checkpoint technique. The arguments

given in these two papers covered just the case when the rainbow tables were of a special type

that are referred to asmaximal perfect tables. The second analysis article [5] (which was writ-

ten by the author of the current paper) treated the general perfect rainbow tables, but with the

restriction that only a single checkpoint was used. An extension of this to the case of multiple

checkpoints appeared in [6]. A more recent work [7] also contains a treatment of the general

perfect rainbow tables with multiple checkpoints.

The first [3, 4] and the second [5] works overlap in that they both cover the case of maximal

perfect tables with a single checkpoint, and one would expect the restriction of results from [5]

to the special case of maximal perfect tables to match the results of [3, 4]. In this work, we will

explicitly carry out this restriction and point out that the two results do not agree. We will also

provide experimental data that conform to the claims of [5], but that are incompatible with the

claims of [3, 4].

One would similarly expect the restriction of claims made by the third work [6] to the single

checkpoint situation to match the claims made by the second work [5]. Once again, we will

show that this is not the case and provide experimental evidence that supports the claims of [5]

while challenging those of [6].

We will also provide careful discussions of where the mistakes were made by [3, 4] and [6].

Our findings and discussions should help researchers and practitioners from falling into the

traps of similar very plausible, but erroneous, arguments.

Short History of the Cryptanalytic Tradeoff Technique

The study of cryptanalytic time memory tradeoff methods began with the classical algorithm

by Hellman [1]. This first algorithm was announced as an attack on blockciphers, but was

clearly applicable to the inversion of any one-way function. Some early performance analyses

and optimizations of this original method appeared in [8, 9].

According to [10], Rivest made the observation that the online time taken by Hellman’s

algorithm could be reduced by using the notion of distinguished points (DP). Pre-computa-

tion phase of the original algorithm generated fixed-length chains through iterated applica-

tions of the one-way function, and the suggestion of Rivest was to iterate the one-way function

for each chain until one arrived at an element satisfying a preset condition. Intuitively, one

could expect the online phases of the modified and original algorithms to behave similarly, if

the distinguishing property was set so that the average length of the chains ending at DPs was

equal to the fixed length of the original algorithm chains, except that the DP method had the

practical advantage of calling for much smaller number of table lookups. The modification

also naturally brought about the concept of perfect tables. Unlike the original algorithm, with

the DP method, one was assured of no duplicates within the pre-computation matrix, if just
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the endpoints of the chains were free of duplicates, and the removal of duplicates lead to higher

efficiency and success rate of the online phase.

A study of the DP method performance that tried to take the non-uniform lengths of chains

into account appeared in [11, 12], where [13] was cited as also having studied the DP method.

Further advancements concerning the analysis of DP method performance were made by [14],

and some its findings were repeated by [15].

After a long absence of improvements to the core algorithm, the rainbow table method [2]

was announced, with the claim of it being advantageous over the DP method by a factor of at

least two. This was soon followed by the auxiliary technique of checkpoints [3, 4], which

allowed for some of the negative effects of false alarms on the online time to be reduced.

Checkpoints are applicable to both the classical Hellman and rainbow methods. Although

applying them to the DP method should also be possible, there are complications and this is

not widely considered.

It is known [16, 17] that, in a certain sense, the three algorithms mentioned above, i.e., the

classical Hellman, DP, and rainbow tradeoffs, all provide the best asymptotic performance one

can hope for. However, full performance analyses of these three algorithms that are accurate

enough for the purpose of comparing them against each other have become available only

more recently. The accurate success probably of the classical Hellman tradeoff under general

parameters was given by [18, 19]. Some details concerning the performance of rainbow trade-

off for the special case of maximal perfect tables were given by [3, 4], and much more details

concerning the classical Hellman, perfect rainbow, and non-perfect rainbow tradeoffs

appeared in [5]. These works [3–5] also discussed the algorithm performances under the

deployment of checkpoints. The performance of the non-perfect DP tradeoff was analyzed

accurately in [20] and the perfect DP tradeoff was treated by [21]. The works [20, 21] also gath-

ered together the existing analyses and provided a comprehensive performance comparison of

the three major algorithms in their perfect and non-perfect versions.

It is also worth mentioning that there is a subject closely related to the time memory trade-

off technique which is referred to as the time memory data tradeoff. The initial works [22, 23]

in this direction combined a generic attack on streamciphers [24, 25] with the classical Hell-

man or DP tradeoff methods, and the resulting algorithm were applicable to any situation

where the inversion of just one of multiple targets is meaningful. The attacks [22, 23] on

streamciphers had practical implications, as they were eventually implemented [26, 27] in full.

The straightforward multi-target adaptation of the rainbow method is known to perform

worse [28] than the adaptations of the classical Hellman and DP tradeoffs, and the fuzzy rain-

bow tradeoff [16, 17] appeared later as the multi-target rainbow tradeoff variant of comparable

performance.

Notation and Conventions

We assume that the reader is familiar with the rainbow tradeoff technique and the checkpoint

method. In particular, we assume knowledge of the following concepts: matrix stopping con-

stant, reduction function, rainbow chain, pre-computation chain, starting point, ending point,

online chain, pre-computation matrix, pre-computation table, removal of ending point colli-

sions, perfect table, maximal perfect table, inversion target, merge of chains, false alarm, regen-

eration of the pre-computation chain to resolve an alarm, checkpoint, checkpoint column,

checkpoint information. Note that the terms pre-computation table and pre-computation

matrix refer to different concepts. The reader may find the beginning sections of [20] and [21]

helpful in recalling these concepts.
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Only the perfect table version of the rainbow tradeoff is relevant to this paper. The size of

the search space is denoted by N. The pre-computation rainbow matrix is assumed to con-

sist of m chains or rows. Each pre-computation chain is created to be of length t, so that a

pre-computation matrix contains (t + 1) columns. The column of starting points is labeled

the 0-th column and the ending point column is labeled the t-th column. Most of our dis-

cussions will focus on a single pre-computation table. The 1-st iteration of the online phase

searches for the (reduced) inversion target among the ending points, so that the possibility

of locating the correct answer to the inversion problem in the (t − 1)-th column of the pre-

computation matrix is tested. We take the convention that an online chain starts from the

unknown answer to the inversion target, so that the 1-st iteration of the online phase deals

with an online chain of length 1, even though no computation of the one-way function is

performed. Most of our discussions will assume the case where a single checkpoint of 1-bit

information is used, and the position of this checkpoint will be named the c-th column.

During our calculations of equations, we will routinely hide approximations of multi-

plicative factor that is of 1þ O 1

t

� �
order and write them as equalities. For realistic applica-

tions of the rainbow tradeoff, the parameter t will be large enough to make these

approximations practically indistinguishable from equalities. One consequence of this

approach is that the single alarm that leads to the correct answer need not be distin-

guished from the strictly false alarms. That is, when stating the probability for a certain

class of false alarms, which we know to be of Θ(1) order, we can simply consider all

alarms, since the single alarm that leads to the correct answer will add at most O 1

t

� �
to the

probability. The simplifications of many formulas obtained through these approximations

make it easier to focus on the fundamental differences between the claims made by the

three works under consideration.

Throughout this paper, the arguments and claims made by [3, 4] concerning the online

time complexity of the perfect rainbow tradeoff with checkpoints and sometimes even the arti-

cles [3, 4] themselves will be referred to as AJO08. Similarly, references to the contents of [5]

and [6] will be made with H10 and WL13, respectively.

Comparison of AJO08 and H10

In this section, we explain how AJO08 and H10 differ in their theoretical claims and provide

experiment results that closely match H10 but not AJO08.

Theoretical Claims

The following claim of AJO08 is an almost verbatim copy of Theorem 8 from [4], with the

only differences being in the characters used for the indices.

Claim 1 (AJO08). Given N, m, t, and a checkpoint at c, the work to rule out a false alarm
when searching in column x is

QðxÞ ¼
Xi¼t

i¼x

ði � 1Þðqi � qc � gcðt � iÞÞ;

where

qk ¼ 1 �
m
N
�
ðk � 1Þk
tðt þ 1Þ

;
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and

gcðsÞ ¼

0 if there is no checkpoint in column c;

0 if ðcþ sÞ � t; i:e:; the chain generated from Y1 does not reach column c;

PrfGðXj;cÞ 6¼ GðYcþs� tÞ j Xj;c 6¼ Xcþs� tg otherwise:

8
>>><

>>>:

It will not be necessary to understand what the symbols Y1, G(), Xj,c, Xj,c+s−t, and Yc+s−t
appearing in this claim means. The precise wording of this claim is slightly misleading, but we

can infer from other parts of AJO08 that the authors had meant for the formula Q(x) to repre-

sent the cost of resolving (false) alarms incurred while searching up to the x-th column, rather

than when searching just the x-th column.

No clearly marked proposition of H10 summarizes its analyses of the checkpoint technique,

and the closest analogue of Claim 1 given by H10 is a statement surrounding Eq (23) of [5].

The claim reproduced below is a slightly edited version of the statement, but the content has

not been altered in any way.

Claim 2 (H10). . . ., we can state

X

d<k�t

ðt � kþ 1Þ 1 �
m
N

� �k� 1

dm
2N
�
m2kðkþ 1Þ

8N2

�
dm
2N
þ ln 1 �

dm
2N

� �� �
ðk � dÞðk � d þ 2Þ

d2

0

B
B
B
B
@

1

C
C
C
C
A

as the number of one-way function iterations that can be removed through a single 1-bit check-
point at the (t − d)-th column.

Both Claim 1 and Claim 2 concern a single pre-computation table equipped with a single

checkpoint, and we will likewise restrict our discussion here to the same situation. Since Claim

2 only considers the case when the checkpoint information is set to a single bit, let us further

restrict our discussion to the same case. As was stated previously, we will assume that the

checkpoint is located at the c-th column.

The two computational complexities stated by Claim 1 and Claim 2 do not correspond to

each other through any direct simple relation, and this prevents us from comparing these two

results in a straightforward manner. However, one can find that the proofs of these two claims

are commonly centered on the following concept.

PrNFAðiÞ ¼
the probability for an online chain that starts from the i� th
column to cause an alarm that escapes the filtering out process

provided by the 1 � bit checkpoint at the c� th column

0

B
@

1

C
A: ð1Þ

The superscript NFA may be understood as meaning Not Filtered Alarms. For now, our inter-

est lies only in the i< c case, since the i� c case reduces to the probability of alarms when no

checkpoints are in use.

The proof of Claim 1 given by AJO08 stated the alarm probability PrNFA as

PrNFAAJO ðiÞ ¼ �qi �
1

2
�qc; ð2Þ

where

�qk ¼ 1 �
k2

t2
: ð3Þ
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Note that the new symbol �qk approximates the symbol qk appearing in Claim 1, up to 1þ O 1

t

� �

factor. In fact, formula PrNFAAJO ðiÞmay be interpreted as the simplification of the term (qi − qc �
gc(t − i)) appearing in Q(x) of Claim 1 for the i< c case. We clarify that even though AJO08

used t to denote the number of columns in the pre-computation matrix and we are using it to

denote the length of the pre-computation chains, this small detail can be ignored through the

1þ O 1

t

� �
factor approximation.

The first displayed equation from Section 5.2 of [5] presented the claim of H10 for the

alarm probability PrNFA, and when the various necessary components found within the paper

are substituted, the equation becomes

mð1þ kÞ
2N

1 �
mk
4N

� �

�
m
N
þ
mðk � d þ 1Þ

2N

þ
ðk � dÞðk � d þ 2Þ

d2

md
N
þ 2 ln 1 �

md
2N

� �� �

:

ð4Þ

In terms of the notation used in the current paper, the above can be expressed as

PrNFAH ðiÞ ¼
mðt � iÞ

2N
1 �

mðt � iÞ
4N

� �

þ
mðc � iÞ

2N

þ
ðc � iÞ2

ðt � cÞ2
mðt � cÞ

2N
þ ln 1 �

mðt � cÞ
2N

� �� �

;

ð5Þ

disregarding an approximation of 1þ O 1

t

� �
factor.

Since the arguments of AJO08 and H10 that connected the formulas PrNFAAJO and PrNFAH to

Claim 1 and Claim 2, respectively, were quite straightforward, it is reasonable to attempt a

comparison of AJO08 and H10 through the probability claims PrNFAAJO and PrNFAH . However,

there is still one more issue that needs to be cleared before we can exercise such a comparison.

The work H10 made it explicit (in the first paragraph of [5, Section 4.2]) that they were

dealing with the general perfect rainbow tables and not just the maximal perfect rainbow

tables. That is, Claim 2 and Formula (5) were asserted to be valid for all perfect rainbow tables.

On the other hand, even though the precise statement of Claim 1 made no restrictions con-

cerning perfect rainbow tables, the formula it gave as qk was developed in AJO08 for only the

maximal perfect rainbow tables, and no explanation was given as to how this related to the

non-maximal situation. Furthermore, since the term m
N appearing in qk is negligible of O 1

t

� �

order, the formula Q(x) is essentially independent of m, and cannot possibly be valid for vary-

ing m values, when under a fixed t. In short, Claim 1 can only be valid for the maximal perfect

rainbow tables, while Claim 2 has been stated for all perfect rainbow tables. Hence, we will

restrict our comparison of AJO08 and H10 further to just the maximal perfect rainbow table

case.

The works AJO08 and H10 agree in that the identity

m ¼
2N
t þ 2

ð6Þ

characterizes the maximal perfect rainbow tables. Graphs of the theoretically obtained formu-

las (2) and (5), plotted under two specific sets of parameters that satisfy the condition Eq (6),

are given in Fig 1. The dashed lines represent PrNFAAJO , as given by Formula (2), and the solid

lines represent PrNFAH , as given by Formula (5). We have somewhat arbitrarily set the check-

point positions to c = 0.8t for the two graphs. It is clear from the graphs that PrNFAAJO and PrNFAH
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are fundamentally different formulas that cannot somehow be interpreted as being approxima-

tions of each other. It is clear that at least one of the two formulas must be incorrect.

Experimental Verification of Alarm Probability

To identify which of the two claimed formulas PrNFAAJO and PrNFAH , if any, represents the true

probability of alarms PrNFA correctly, we conducted an experiment that measures PrNFA

directly.

Our choices of N and t to use in the experiment were mostly dictated by the amount of

computational resources we had available. The search space was fixed to all bit strings of 36-bit

length, so that we have N = 236. Since theoretical treatments of the rainbow tradeoff typically

focus on t � N1
3, we chose to use t = 212. The straightforward creation of a maximal perfect

rainbow table corresponding to the stated parameters requires N � t = 248 iterations of the one-

way function and this took us over eight days on a somewhat outdated system of 128 CPU

cores.

The optimal position for a single checkpoint is indicated by Table IV of [4] to be approxi-

mately 0.89t and the same is claimed by Table 7 of [5] to be 0.78t. The difference is likely to be

mostly due to the fact that Table IV of [4] considers four rainbow tables, whereas Table 7 of [5]

considers a single table. Based on these information, we fixed the position of our single check-

point to c = 3400 = 0.83t, which should be a reasonably realistic value, regardless of which of

the two analyses turns out to be correct.

A slightly modified version of the MD5 hash function was used as the one-way function in

our experiment. Recall that MD5 operates iteratively on 512-bit segments of its input. Since

the length of our inputs was fixed to 36 bits, rather than conforming precisely to the length-

related padding scheme specified for MD5, we placed the 36-bit input at the least significant

end of a 512-bit block and filled the rest with zeros, before applying the usual 4-round/64-step

operations of MD5. We fetched the least significant 36 bits from the 128-bit MD5 output and

took it as the output of our one-way function. The reduction function was set to XOR the col-

umn number, so that the i-th colored one-way function XORs the integer i to the 36-bit output

of the modified MD5.

After fully generating the N pre-computation chains of length t, we sorted them on the end-

ing points and retained just one chain from every group of merging chains. This resulted in a

Fig 1. Theoretically claimed probabilities for an online chain that starts from the i-th column to cause an alarm that is not filtered

out by a single 1-bit checkpoint. Dashed line: Claim of AJO08 given by Eq (2); Solid line: Claim of H10 given by Eq (5).

doi:10.1371/journal.pone.0166404.g001
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pre-computation table containing m = 33514551 entries. This is quite close to the value 2N
tþ2
¼

3:3538� 107 predicted by Eq (6) and serves as a sanity check for our experiment. Each entry

of the pre-computation table consisted of one 5-byte slot that held a 36-bit ending point value

and one 1-byte slot containing the 1-bit checkpoint information. We did not keep a record of

the starting points as they were not needed in identifying chain merges. The size of the result-

ing maximal perfect rainbow table was approximately 200 MBs and we did not apply any stor-

age reduction techniques, such as ending point truncation or index files.

With the pre-computation table ready, the probability of alarm PrNFA(i) could be measured

experimentally. A starting column i was fixed and 106 online chains of length (t − i) were gen-

erated from 36-bit inputs chosen at random. The number of alarms that remained not filtered

even after application of the 1-bit checkpoint information were counted. We did not regener-

ate the pre-computation chains to verify whether any of these alarms lead to the discovery of

the original input. The process of generating 106 online chains was repeated for a small num-

ber of different starting columns.

The results of our experiment are summarized in the bottom row of Table 1. It is very clear

that calculations made with PrNFAH of Formula (5) match the experimentally obtained figures

accurately and that the predictions made with PrNFAAJO of Formula (2) do not. One can only con-

clude that PrNFAAJO is not an accurate formula for the alarm probability PrNFA, defined by Eq (1),

even for the very special case of maximal perfect tables.

Source of Error

Let us explain where the mistake was made by AJO08 in its formulation of the alarm probabil-

ity claim PrNFAAJO .

It was stated by AJO08 within the proofs of Theorem 3 and Theorem 8 of [4] that �qi, as

given by Eq (3), provides the probability for an online chain that starts from the i-th column to

bring about an alarm in the absence of checkpoints. The same probability of merge was stated

by H10 within the proof of Theorem 2 in [5] to be

PrMrgðiÞ ¼
mðt � iÞ

N
1 �

mðt � iÞ
4N

� �

; ð7Þ

where we are, once again, ignoring a multiplicative factor of 1þ O 1

t

� �
order. For the case of

maximal perfect rainbow tables, we can use Eq (6) to replace m
N with 2

t , and rewrite this as

2ðt � iÞ
t

1 �
t � i
2t

� �

¼ 1 �
i2

t2
; ð8Þ

which is precisely �qi. In other words, AJO08 and H10 agree on the probability of alarms in the

Table 1. Probabilities for an online chain to incur an alarm that is not filtered out by a single 1-bit checkpoint.

start column i 0 200 400 800 1600 3200

Pr
NFA

AJO
ðiÞ 0.84451 0.84213 0.83498 0.80637 0.69193 0.23416

Pr
NFA

H
ðiÞ 0.94077 0.93510 0.92435 0.88767 0.75352 0.24205

test 0.94082 0.93510 0.92477 0.88798 0.75407 0.24289

The rainbow table used was maximal perfect of parameters N = 236 and t = 212, which resulted in m = 33514551. The checkpoint was placed at column

c = 3400.

doi:10.1371/journal.pone.0166404.t001
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absence of checkpoints, at least for the special case when a maximal perfect rainbow table is in

use. Hence, we are lead to believe that the error hiding in Formula (2) must be in its 1

2
�qc term.

The intention of AJO08 must have been to subtract the probability for a merge to be filtered

out by the checkpoint from the probability of all merges, and the use of the 1

2
factor for this pur-

pose is appropriate when dealing with a 1-bit checkpoint. The problem is with the �qc part,

which AJO08 must have interpreted as the probability for the online chain to merge into the

perfect pre-computation matrix after it has passed over the checkpoint column. Such a use of

�qc would have been correct if the online chain under consideration started from the c-th col-

umn, but the use is incorrect in the current situation, because the online chain started from

the i-th column, where i< c.
To explain the details, we need to return to the basics and treat the iteration function as a

random function, as is done by any theoretical treatment of the rainbow tradeoff. An online

chain that starts from the i-th column will loose its freedom to take its next step randomly, as

soon as it merges into any one of the pre-computation chains that were generated during the

pre-computation phase, including those that were discarded through the removal of ending

point collisions. Hence, by the time the online chain that started from the i-th column arrives

at the c-th column, one may or may not be dealing with iterations of a random function, even

if the online chain had not yet merged into the perfectize pre-computation matrix. One simply

cannot make any logical connection between the probability for a chain that starts from the i-
th column to merge into the pre-computation matrix after passing over the c-th column and

the probability of merge for a chain that starts afresh from the c-th column.

Comparison of WL13 and H10

Test results described in the previous section showed H10 to be correct, at least when the max-

imal perfect rainbow tables are in use. Since H10 treated all perfect rainbow tables in a uniform

manner, with the intention of having their theory applied mainly to tables that are far from

maximal, validity of the theory at the extreme situation indicates that the theory is likely to be

correct in the general case. The comparison of WL13 and H10 given in this section presents a

natural opportunity to check the non-maximal table case more directly.

The checkpoint analyses of the perfect rainbow tables done by H10 only covered the single

1-bit checkpoint case and its extension to the multiple 1-bit checkpoints case, which H10 dis-

missed as being straightforward, was made explicit by WL13. However, to our surprise, the

restriction of WL13 to the single 1-bit checkpoint case did not result in H10.

Theoretical Claims

The point of divergence between WL13 and H10 in their theories was not too difficult to

locate. In Section 4 of [6], WL13 wrote

PrfFk� dðxÞ 2 RTt� dg ¼
mð1þ k � dÞ

N
1 �

mðk � dÞ
4N

� �

; ð9Þ

for an x that is chosen at random from the search space. The corresponding statement that was

made by H10, i.e., Eq (21) of [5], is

jF� ðk� dÞðRMt� dÞj

¼ mðk � d þ 1Þ þ
ðk � dÞðk � d þ 2Þ

d2
md þ 2N ln 1 �

md
2N

� �� �

:
ð10Þ

Instead of explaining the notation appearing in the above two equations, let us rewrite the
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above two claims in the notation of the present paper, assuming a single 1-bit checkpoint at

the c-th column.

Both of the above claims concern the following probability of chain merge.

PrEMrðiÞ ¼

the probability for an online chain that starts from the i� th
column to have merged into the pre � computation matrix
corresponding to the perfect table by the time it reaches the
c� th column

0

B
B
@

1

C
C
A: ð11Þ

The superscript EMr may be understood as meaning Early Merge. We clarify that the merge of

the online chain (only) into pre-computation chains that were discarded during the ending

point collision removal process is not to be counted toward this probability. Statement Eq (9)

from WL13 is the claim that, for i� c, the probability PrEMr is

PrEMr
WL ðiÞ ¼

mðc � iÞ
N

1 �
mðc � iÞ

4N

� �

; ð12Þ

while statement Eq (10) from H10 asserts that the same probability is

PrEMr
H ðiÞ ¼

mðc � iÞ
N

þ
ðc � iÞ2

ðt � cÞ2
mðt � cÞ

N
þ 2 ln 1 �

mðt � cÞ
2N

� �� �

: ð13Þ

The reader may have noticed that the formula PrEMr
WL ðiÞ is identical to the probability of all

merges PrMrg(i), given by Eq (7), except that every (t − i) has been replaced by (c − i), and may

have accepted this as a logical claim. The implicit reasoning is that, for any fixed perfect pre-

computation matrix, the probability of merge should depend only on the number of one-way

function iterations taken by the online chain.

Graphs of the theoretically obtained Formulas (12) and (13) for the early merge probability

PrEMr, plotted under two specific sets of parameters, are given in Fig 2. The dashed lines repre-

sent PrEMr
WL and the solid lines represent PrEMr

H . The two curves appearing in the left-hand side

box are very close to each other, but the two curves contained in the right-hand side box are

clearly different. In view of the right-hand side box, we can state that the formulas PrEMr
WL and

PrEMr
H are essentially different and that they cannot be seen as being approximations of each

other. It is clear that at least one of the two formulas is incorrect.

We acknowledge that the parameters and the position of the checkpoint for the right-hand

side box were intentionally chosen so that the two curves are easily distinguishable. However,

these parameters still satisfy mt
N ¼ 1:72, so that they are reasonably practical choices. For exam-

ple, to achieve a 99.9% success rate, one is most likely to use ℓ = 4 perfect rainbow tables with

parameters satisfying mt
N ¼ �

ln ð1� 0:999Þ

‘
¼ 1:72, and the checkpoint position c = 0.6t could be

under consideration when one is utilizing multiple checkpoints.

Experimental Verification of Early Merge Probability

We conducted an experiment that measures the probability of early merge PrEMr directly, so as

to determine which of the two Formulas (12) and (13) represents the true PrEMr accurately.

The slightly modified version of MD5 that was explained in the previous section was again

used as our one-way function. The search space size was fixed to N = 242 and we chose to use

t = 20000 = 214.288 and the checkpoint position c = 12000 = 0.6t. We generated m0 = 3 × 230

pre-computation chains of length t. The starting points were not recorded, but the checkpoints

and the ending points were both recorded in full. After removal of ending point collisions, we

were left withm = 386932399 = 228.528 chains. This is very close to the value N
N=m0þt=2

¼
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3:8697� 108 predicted by Eq (4) of [5]. To complete our preparation for measuring the early

merge probability PrEMr, we discarded all ending points and re-sorted the table according to

the fully recorded checkpoints.

A starting column was fixed and online chains were generated up to the checkpoint column

from 106 randomly chosen 42-bit inputs. These online checkpoints were searched for in our

pre-computation table of checkpoints, and the number of matches was recorded. This process

of generating 106 online chains up to the checkpoint column was repeated for a small number

of different starting columns.

Results of our experiment are summarized in the bottom row of Table 2. The figures calcu-

lated from PrEMr
H of Eq (13) match the experimentally obtained figures accurately, but those cal-

culated from PrEMr
WL of Eq (12) do not. One cannot claim PrEMr

WL to be an accurate formula for the

early merge probability PrEMr.

Source of Error

The findings of the previous sub-section may have come as a surprise to the reader, if the short

argument written below Eq (13) that related PrEMr
WL to PrMrg had seemed reasonable. Since

PrMrg, as given by Eq (7), is the correct probability for an online chain to merge into the pre-

computation matrix by the time it reaches the ending t-th column, replacing every t with c
should obviously be the probability for a merge to occur by the c-th column. In fact, this is a

straightforward application of Formula (7) to the perfect rainbow matrix of size m × (c + 1),

consisting of the first (c + 1) columns of the full m × (t + 1) pre-computation matrix.

Fig 2. Theoretically claimed probabilities for an online chain that starts from the i-th column to have merged into the perfect pre-

computation matrix by the time it reaches the c-th column. Dashed line: Claim of WL13 given by Eq (12); Solid line: Claim of H10

given by Eq (13).

doi:10.1371/journal.pone.0166404.g002

Table 2. Probabilities for an online chain to have merged into the perfect pre-computation matrix by the time it reaches the checkpoint column.

start column i 0 250 500 1000 3000 6000

Pr
EMr

WL
ðiÞ 0.77709 0.76659 0.75584 0.73362 0.63507 0.45821

Pr
EMr

H
ðiÞ 0.68756 0.68075 0.67361 0.65839 0.58470 0.43582

test 0.68686 0.68051 0.67327 0.65862 0.58505 0.43626

Parameters: N = 242, t = 20000, m = 3.8693 × 108, c = 12000.

doi:10.1371/journal.pone.0166404.t002
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The fallacy in this argument lies in that it neglects certain, admittedly obscure, differences

in the ending point collision removal process. The full pre-computation matrix was obtained

by discarding just enough chains to remove duplicate ending points and Formula (7) is valid

for this situation. However, them × (c + 1) sub-matrix that was mentioned has lost many more

pre-computation chains than was necessary to make it free of duplicates at its c-th column.

Hence, the sub-matrix is not a naturally occurring perfect rainbow matrix, and one cannot

claim that any logic is behind the tweaking of PrMrg into PrEMr
WL .

We can provide a slightly more intriguing discussion. The ending point collision removal

process can be viewed as the choosing of one starting point from each group of starting points

that are connected to a common ending point. Using the left-hand side diagram of Fig 3 as a

guide, let us mentally visualize the non-perfect pre-computation matrix before the removal of

ending point collisions and consider two points on the c-th column that are connected to a

common ending point. One might argue that, of the two points, the one that has a larger num-

ber of starting point ancestors than the other has a higher chance of remaining in the final per-

fect matrix. In view of random function arguments, this seems to imply that the true PrEMr

would be larger than PrEMr
WL , but Table 2 shows that this is false. The invisible push in the oppo-

site direction must lie elsewhere.

Note that the selection of the starting points done to remove collisions was made randomly

within each group of points that are connected to the same ending point. Using the right-hand

side diagram of Fig 3 as a guide, it seems plausible that the starting point ancestor sizes of the

c-th column points would be correlated to the ancestor sizes of their corresponding ending

points. Since only a single point is chosen from each group of starting points that share a com-

mon ending point, the c-th column points of larger ancestor sizes are chosen less often. This

gives one explanation as to why the true PrEMr Would be smaller than PrEMr
WL .

We are not claiming that the above confusing discussion reveals the true nature of what is

happening behind the scene concerning the early merge probability. However, we hope the

reader is at least convinced that the previously claimed connection between PrEMr and PrEMr
WL ,

which seemed so obviously true at first, was too naive.

Further Discussion

The previous two sections have shown that the theoretical claims concerning the checkpoint

technique given by AJO08 and WL13 contained incorrect arguments and that the analysis of

H10 was correct. However, since both AJO08 and WL13 provided experimental data to sup-

port their respective theoretical claims, the reader may be under the impression that either the

experiments of AJO08 and WL13 were invalid or that the experiments given in the current

paper has to be invalid. Let us explain that none of the experimental evidences contradict each

other.

Fig 3. Selection of checkpoints through the selection of starting points.

doi:10.1371/journal.pone.0166404.g003
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The work AJO08 provided experimental data through Fig 8 of [4], which displayed two

curves corresponding to their theory and experiment. However, it can only be noticed that

these two curves are visibly different at their middle parts. In particular, at the checkpoint posi-

tion 7000, the time gain of a single 1-bit checkpoint predicted by their theory is at least 20%

larger than that measured through their experiment. Hence, the experiment data provided by

AJO08 is not a strong indication of the correctness of their theoretical analyses. In fact, if their

experiment data are taken to be accurate, one can only conclude that their theory is quite inad-

equate in predicting what occurs in reality.

The work WL13 provided experimental evidence in support of their theoretical analyses

through Table 3 of [6], and the similarity between their theory and experiment is quite impres-

sive. To reconcile the apparent contradiction, we note that the parameters used in their experi-

ment satisfy mt
N ¼ 1:17. As we saw through the left-hand side box of Fig 2, the discrepancies

between the theories of WL13 and H10 can be small when parameters are such that the matrix

stopping constant mtN is small. More precisely, if the ln(� � �)-term of PrEMr
H , as given by Eq (13), is

replaced by just the first two terms appearing in its series expansion

ln 1 �
mðt � cÞ

2N

� �

¼ �
mðt � cÞ

2N

� �

�
1

2

mðt � cÞ
2N

� �2

�
1

3

mðt � cÞ
2N

� �3

� � � ; ð14Þ

we obtain PrEMr
WL of Eq (12). This shows that formula PrEMr

WL can serve as a reasonable approxima-

tion of PrEMr
H , as long as

mðt� cÞ
2N is small. In fact, for the specific parameters that were used in the

experiments of WL13, one can confirm through graphs analogous to Fig 2 that PrEMr
WL and PrEMr

H

are quite close to each other.

The previous two paragraph should be enough to convince the reader that the experiments

of AJO08, WL13, and this work can all be valid without any contradictions, but we wish to dis-

cuss another issue that provides further understanding of the situation. In the previous sec-

tions, we focused on the probabilities PrNFA and PrEMr, and we came to the conclusion that the

correct formulas for these were provided by H10. We now wish to discuss how much affect the

errors made by AJO08 and WL13 had on their final claims concerning the computational

complexity of the complete online phase.

It is easy to check that the formulas given by Eqs (5), (7), and (13) satisfy

PrNFAH ðiÞ ¼ PrMrgðiÞ �
1

2
fPrMrgðiÞ � PrEMr

H ðiÞg: ð15Þ

Since we can expect half of the merges that occur past the checkpoint to be filtered out by the

1-bit checkpoint information, this is a logical connection of the three probability notions

appearing in this equation. Similarly, restricting WL13 to the single checkpoint case, we find

that the analogous claim of

PrNFAWL ðiÞ ¼ PrMrgðiÞ �
1

2
fPrMrgðiÞ � PrEMr

WL ðiÞg; ð16Þ

for the probability of alarms PrNFA, is compatible with their presentation. As for AJO08, the

reader may recall that we had already interpreted the corresponding claim PrNFAAJO of Eq (2) as

having this structure.

The alarm probability claims we have summarized so far concerns the i< c situation.

When i� c, the alarm probability reduces to the case where checkpoints are not used, and the

probabilities claimed by the three works can be re-obtained by simply removing the negative
1

2
f� � �g terms from the i< c case formulas. In other words, both WL13 and H10 would claim

PrNFAðiÞ ¼ PrMrgðiÞ, and AJO08 would claim PrNFAðiÞ ¼ �qi, for i� c.
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Given PrNFA, the probability for an online chain to bring about an alarm that requires the

regeneration of a pre-computation chain, the number of one-way function iterations required

during the online phase to treat alarms can be stated as

TNFA ¼ ‘
Xt� 1

i¼0

i 1 �
m
N

� �‘ðt� i� 1Þ

PrNFAðiÞ; ð17Þ

where we are assuming the use of ℓ tables and a single 1-bit checkpoint on each table. We state

that this formula is compatible with the arguments of all three works AJO08, H10, and WL13.

More precisely, AJO08 stated this complexity with the summations grouped in a different

manner and with slightly finer granularity, while H10 and WL13 stated the reduction in time

complexity brought by the checkpoints, rather than the above complexity of the work that

remains. However, to the best of our understanding of the three works, they would all agreed

that Formula (17) gives the time complexity associated with the alarms, as long as their respec-

tive formulas for PrNFA(i) are used. Of course, as was done throughout this work, we are disre-

garding small differences that can be absorbed by an approximation of 1þ O 1

t

� �
factor.

Examples of specific time complexities associated with the resolving of alarms computed

with Eq (17) for the three works under consideration are given in Table 3. The complexities

were computed using parameters that are typically considered during theoretical treatments of

the rainbow tradeoff, under a small number of success rate requirements that would be of

interest. Specifically, for each success rate requirement p, we used

m ¼ ðaNÞ
2

3; t ¼ ðaNÞ
1

3; and ‘ ¼ �
1

2
ln ð1 � pÞ

� �

; ð18Þ

with the matrix stopping constant a ¼ mt
N set to �

ln ð1� pÞ
‘

. The position of the single 1-bit

checkpoint was always fixed to c = 0.8t. All calculations were done with N = 250, but this choice

has very little effect on the values in the table, as long as N is not too small. The parameter sets

for the slightly peculiar success rate requirements 86.46% and 98.16% correspond to pre-com-

putation tables that are very close to being maximal perfect tables. Values given by these two

rows may be the only ones that are meaningful for the AJO08 case.

For easy reference, we have also included the time complexities associated with the resolv-

ing of alarms for the case when no checkpoints are used in Table 3. This was calculated with

Table 3. Various theoretically claimed online time complexities computed for specific sets of parameters.

success rate TNFA/t2 TNCA/t2 TOCG/t2

AJO08 H10 WL13

99.9% 0.08829 0.07915 0.07926 0.09270 0.08316

99% 0.11219 0.09236 0.09256 0.11152 0.13353

98.16% 0.08827 0.09172 0.09215 0.11086 0.11377

90% 0.15056 0.09979 0.10000 0.12275 0.25264

86.46% 0.08391 0.08865 0.08937 0.10808 0.14854

75% 0.10593 0.08406 0.08440 0.10305 0.20992

The time complexities are those associated with the following: NFA = alarms that escape checkpoint filtering, NCA = alarms when no checkpoints are used,

OCG = generation of the online chains. The parameters for each success rate requirement p were set to N = 250, ‘ ¼ d� 1

2
lnð1 � pÞe, a ¼ �

lnð1� pÞ

‘
,m ¼ ðaNÞ

2
3,

t ¼ ðaNÞ
1
3, and c = 0.8t.

doi:10.1371/journal.pone.0166404.t003
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the formula

TNCA ¼ ‘
Xt� 1

i¼0

i 1 �
m
N

� �‘ðt� i� 1Þ

PrMrgðiÞ; ð19Þ

which was stated by H10 and is compatible with the arguments of WL13. In the maximal per-

fect table case, the above reduces to

‘
Xt� 1

i¼0

i 1 �
m
N

� �‘ðt� i� 1Þ

1 �
i2

t2

� �

; ð20Þ

which is compatible with the formula used by AJO08. The final column of Table 3 presents the

time complexities associated with the generation of the online chains. These were calculated

with the formula

TOCG ¼ ‘
Xt� 1

i¼0

ðt � i � 1Þ 1 �
m
N

� �‘ðt� i� 1Þ

; ð21Þ

which the three works can all agree on, assuming small differences that can be absorbed by

approximations of 1þ O 1

t

� �
factor are ignored.

Comparing the numeric values claimed by H10 for the cost of treating alarms, which is cor-

rect, with those claimed by WL13, which we now know are based on incorrect arguments, we

see that the differences are quite small. Furthermore, taking note of the values provided in the

TOCG column, one finds that the differences will be even less visible when one is interested

only in the total online time complexity TNFA + TOCG. The discrepancies between the values

projected by H10 and AJO08 are somewhat larger than the H10 versus WL13 case, but those

rows corresponding to the use of near-maximal perfect table(s) show differences that might be

acceptable for certain purposes.

The unexpected level of accuracy seen in the final time complexities that were computed

using incorrect arguments can be explained. We observed through Figs 1 and 2 that the proba-

bilities PrNFA(i) projected by AJO08 and WL13 were most inaccurate at the starting point col-

umn. Incidentally, this happens to be where the i 1 � m
N

� �‘ðt� i� 1Þ
factor appearing in Eq (17) is

the smallest. Thus, the inaccuracies in the merge probabilities are dampened out when one

computes the associated time complexities TNFA.

Finally, we acknowledge that the extension of H10 to multiple checkpoints elaborated on

by WL13 becomes correct, if every use of PrEMr
WL in their paper is replaced by PrEMr

H . This exten-

sion has since appeared in [7].

Conclusion

In this work, we examined the theoretical analyses presented by AJO08 [3, 4], H10 [5], and

WL13 [6] concerning the application of the checkpoint technique to the perfect table rainbow

tradeoff. There were overlaps in the situations treated by the three works, and we demon-

strated that their claims did not agree on the overlaps. We carried out experiments to measure

the effects of the checkpoint technique on these overlapping situations. This confirmed that

the arguments and claims of H10 were correct and that those of AJO08 and WL13 were erro-

neous. Supported by the experimental evidence, we clearly exposed where the errors were

introduced in AJO08 and WL13, explaining why the associated seemingly plausible arguments

were invalid.
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The insight into the inner workings of the checkpoint technique gained through this work

should help researchers working with iterations of the random function to avoid making simi-

lar mistakes. This work should also be of help to practitioners referencing articles on the com-

plexity analyses of the tradeoff algorithms.
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