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Abstract

The main purpose of this study is to propose, then analyze, and later test a spectral gradient

algorithm for solving a convex minimization problem. The considered problem covers the

matrix ℓ2,1-norm regularized least squares which is widely used in multi-task learning for cap-

turing the joint feature among each task. To solve the problem, we firstly minimize a qua-

dratic approximated model of the objective function to derive a search direction at current

iteration. We show that this direction descends automatically and reduces to the original

spectral gradient direction if the regularized term is removed. Secondly, we incorporate a

nonmonotone line search along this direction to improve the algorithm’s numerical perfor-

mance. Furthermore, we show that the proposed algorithm converges to a critical point

under some mild conditions. The attractive feature of the proposed algorithm is that it is eas-

ily performable and only requires the gradient of the smooth function and the objective func-

tion’s values at each and every step. Finally, we operate some experiments on synthetic

data, which verifies that the proposed algorithm works quite well and performs better than

the compared ones.

1 Introduction

The tasks in medical diagnosis [1], text classification [2–5], biomedical informatics [6, 7] and

other applications [8–12] are always related to each other. Hence, capturing the shared infor-

mation among each task becomes the key issue to learn [13–15]. Given the training set of t
tasks A ¼ ½A1; . . . ; At� 2 R

m�n and b ¼ ½b1; . . . ; bt�
>
2 Rm, where Aj is the data for the j-th task

and bj is the corresponding response. We let xj 2 R
n be the sparse feature for the j-th task, and

let X ¼ ½x1; . . . ; xt� 2 R
n�t be the joint feature to be learned. In order to select features globally,

it encourages several rows of X to be zeros and solves the following ℓ2,1-norm regularized least

squares [16, 17]

min
X2Rn�t

1

2
k AX � b k2

2
þmk X k2;1; ð1Þ
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where μ> 0 is a weighting parameter, and kXk2,1 is defined by the sum of the ℓ2-norm of each

row of a matrix. It is well known that the ℓ2,1-norm is used to encourage the multiple predic-

tions from different tasks to share similar parameter sparsity patterns.

In the past few years, several algorithms have been proposed, analyzed, and tested to solve

the nonsmooth convex minimization Problem (1). The algorithm in [18] transformed Eq (1)

equivalently into a smooth convex optimization problem and minimized consequently by Nes-

terov’s gradient method. The method in [16] reformulated Eq (1) as a constrained optimiza-

tion problem and minimized alternately. The algorithm in [19] and its variant [20]

reformulated the problem as an equivalent constrained minimization by introducing an auxil-

iary variable, and then minimized the corresponding augmented Lagrange function alterna-

tively. Finally, for another accelerated proximal gradient version of the algorithm [19], one can

refer to [21].

Unlike all the research activities which mainly concerned about Problem (1), in this paper,

we focus on the following generalized nonsmooth convex optimization problem

min
X2Rn�t

FðXÞ þ mk X k2;1; ð2Þ

where F : Rn�t ! R is continuously differentiable (may be non-convex) and bounded below.

Clearly, Model (2) includes Eq (1) as a special case when F is a least square. As we all know, the

spectral gradient method was originated by Barzilai and Borwein [22] for solving smooth

unconstrained minimization problems, later was developed in [23–26], and then was extended

to solve ℓ1-regularized nonsmooth minimization [27]. However, its numerical performance in

solving matrix ℓ2,1-norm involved nonsmooth minimization problems is still undiscovered.

Therefore, extending the spectral gradient algorithm to solve Problem (2) may have signifi-

cance both in theory and practice. The first contribution of this study lies in the design of the

search direction at each iteration, which is derived by minimizing a quadratic approximated

model of the objective function and at the same time making full use of the special structure of

the ℓ2,1-norm. We also show that the generated direction descends automatically provided that

the spectral coefficient is positive. The second contribution of the paper is the nonmonotone

line search, which is used to improve the algorithm’s performance. At each iteration, the algo-

rithm requires the gradient of the smooth term and the value of the objective function, which

means it has the ability to solve high dimensional problems. Finally, we do performance com-

parisons with a couple of solvers IAMD_MFL and SLEP, which illustrate that the proposed

method is fast, efficient, and competitive.

The paper is organized as follows. In Section 2, we provide some notations and preliminar-

ies, and construct the new algorithm together with its properties. In Section 3, we establish the

global convergence of the algorithm. In Section 4, we report some numerical results and do

some performance comparisons. Finally, we conclude our paper in Section 5.

2 Algorithm

2.1 Notations and preliminaries

In the first place, we summarize the notations used in this paper. Matrices are written as

uppercase letters. Vectors are described as lowercase letters. For the matrix X, its i-th row and

j-th column are denoted by Xi,: and X:,j respectively. The Frobenius norm and the ℓ2,1-norm of

the matrix X 2 Rn�t are defined as, respectively,

k X kF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

Xt

j¼1

X2

i;j

s

; and k X k2;1 ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Xt

j¼1

X2

i;j

v
u
u
t ¼

Xn

i¼1

k Xi;: k2:
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For any two matrices X;Y 2 Rn�t , we define hX, Yi = tr(X> Y) (the standard trace inner prod-

uct in Rt), so that k X kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
hX;Xi

p
. If x 2 Rd, we denote “Diag(x)” the diagonal matrix pos-

sessing the components of vector x on the diagonal. We define “>” as the transpose of a vector

or a matrix. For the sake of simplicity, we let F(X) = F(X) + μkXk2,1. Additional notations will

be introduced when they occur.

We now quickly review the spectral gradient method for the unconstrained smooth mini-

mization problem

min f ðxÞ; x 2 Rn;

where f : Rn ! R is a continuously differentiable function. The spectral gradient method is

defined by

xkþ1 ¼ xk � l
� 1

k rf ðxkÞ;

where one of the choices of λk (named as spectral coefficient) is given by

lk ¼
s>k� 1

yk� 1

k sk� 1 k
2
2

;

where sk−1 = xk − xk−1 and yk−1 =rf(xk) −rf(xk−1). Obviously, if s>k� 1
yk� 1 > 0, i.e. λk > 0, the

search direction dk :¼ � l
� 1

k rf ðxkÞ descends automatically at current point.

2.2 Algorithm

Now, we turn our attention to the original Model (2). Since the ℓ2,1-norm is nodifferentiable,

we approximate the objective function by the following quadratic function Qk:

QkðDÞ : ¼ FðXk þ DÞ þ mk Xk þ D k2;1

� FðXkÞ þ hrFðXkÞ;Di þ
Lk

2
k D k2

F þmk Xk þ D k2;1;
ð3Þ

whererFðXkÞ 2 R
n�t is the gradient of F at Xk; Λk is the so-called spectral coefficient which

defined by

Lk ¼
hSk� 1;Yk� 1i

k Sk� 1 k
2
F

; ð4Þ

where Sk−1 = Xk − Xk−1 and Yk−1 =rF(Xk) −rF(Xk−1). Minimizing Eq (3) yields

arg min
D2Rn�t

QkðDÞ

¼ arg min
D2Rn�t

hrFðXkÞ;Di þ
Lk

2
k D k2

F þmk Xk þ D k2;1

¼ arg min
D2Rn�t

1

Lk
hrFðXkÞ;Di þ

Lk

2
k D k2

F þmk Xk þ D k2;1

� �

¼ arg min
D2Rn�t

1

2
k Xk þ D � Xk �

1

Lk
rFðXkÞ

� �

k2

F þ
m

Lk
k Xk þ D k2;1:

Denote Mk = Xk + D and Nk ¼ Xk �
1

Lk
rf ðXkÞ. One can get

arg min
D2Rn�t

QkðDÞ ¼ arg min
D2Rn�t

Xn

i¼1

1

2
k ðMkÞi;: � ðNkÞi;: k

2

2
þ

m

Lk
k ðMkÞi;: k2

� �

: ð5Þ
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The favorable structure of Eq (5) make the i-th row of matrix Mk write explicitly as

ðMkÞi;: ¼ max k ðNkÞi:; k2 �
m

Lk
; 0

� �
ðNkÞi;:

k ðNkÞi;: k2

;

where the convention 0 � 0/0 = 0 is followed. Hence, the search direction at current point can

be expressed as

ðDkÞi;: ¼ � ½ðXkÞi;: � ðMkÞi;:�

¼ � ðXkÞi;: � max k ðNkÞi:; k2 �
m

Lk
; 0

� �
ðNkÞi;:

k ðNkÞi;: k2

" #

¼ � ðXkÞi;: � max k Xk �
1

Lk
rFðXkÞ

� �

i:;

k2 �
m

Lk
; 0

( ) Xk �
1

Lk
rFðXkÞ

� �

i;:

k Xk �
1

Lk
rFðXkÞ

� �

i;:

k2

2

6
6
6
4

3

7
7
7
5
:

ð6Þ

Obviously, the Eq (6) reduces to Dk ¼ � L
� 1

k rFðxkÞ at the case of μ = 0, which means Eq (6)

covers the traditional spectral gradient direction as a special case.

The following lemma verifies that Dk is a descent direction when the optimal solution is not

achieved.

Theorem 1 Suppose that Λk > 0 and Dk is determined by Eq (6). Then

FðXk þ yDkÞ � FðXkÞ þ y½hrFðXkÞ;Dki þ mk Xk þ Dk k2;1 � mk Xk k2;1� þ oðyÞ; y 2 ð0; 1�; ð7Þ

and

hrFðXkÞ;Dki þ mk Xk þ Dk k2;1 � mk Xk k2;1 � �
Lk

2
k Dk k

2

F : ð8Þ

Proof. By the differentiability of F and the convexity of kXk2,1, we have that for any θ 2 (0,

1],

FðXk þ yDkÞ � FðXkÞ

¼ FðXk þ yDkÞ þ mk Xk þ yDk k2;1 � FðXkÞ � mk Xk k2;1

¼ FðXk þ yDkÞ � FðXkÞ þ mk yðXk þ DkÞ þ ð1 � yÞXk k2;1 � mk Xk k2;1

� FðXk þ yDkÞ � FðXkÞ þ ymk Xk þ Dk k2;1 þ ð1 � yÞmk Xk k2;1 � mk Xk k2;1

¼ yhrFðXkÞ;Dki þ oðyÞ þ y½mk Xk þ Dk k2;1 � mk Xk k2;1�;

which is exactly Eq (7). Noting that Dk is the minimizer of Eq (3) and θ 2 (0, 1], by Eq (3) and

the convexity of kXk2,1, one can get

hrFðXkÞ;Dki þ
Lk

2
k Dk k

2

F þmk Xk þ Dk k2;1 � mk Xk k2;1

� hrFðXkÞ; yDki þ
Lk

2
k yDk k

2

F þmk Xk þ yDk k2;1 � mk Xk k2;1

� hrFðXkÞ; yDki þ
Lky

2

2
k Dk k

2

F þymk Xk þ Dk k2;1 þ mð1 � yÞk Xk k2;1 � mk Xk k2;1:

Spectral Gradient Algorithm for Matrix Minimization
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Hence,

ð1 � yÞhrFðXkÞ;Dki þ mð1 � yÞk Xk þ Dk k2;1 � mð1 � yÞk Xk k2;1 � �
Lk

2
ð1 � y

2
Þ k Dk k

2

F;

i.e.,

hrFðXkÞ;Dki þ mk Xk þ Dk k2;1 � mk Xk k2;1 � �
Lk

2
ð1þ yÞ k Dk k

2

F :

Recalling θ 2 (0, 1], the above inequality indicates Eq (8) is correct. ]

To improve the algorithm’s performance, we use the classical nonmonotone line search

[28] to find a suitable stepsize along the direction. It is well known that this technique allows

the functional values to increase occasionally in some iterations but decrease in the whole iter-

ative process. Letting δ 2 (0, 1), ρ 2 (0, 1) and ~m be a given positive integer, we choose the

smallest nonnegative integer jk such that the stepsize ak ¼ ~arjk satisfies

FðXk þ akDkÞ � max
0�j�mðkÞ

FðXk� jÞ þ dakDk; ð9Þ

where 0 � mðkÞ � minfmðk � 1Þ þ 1; ~mg (m(0) = 0) and

Dk ¼ hrFðXkÞ;Dki þ mk Xk þ Dk k2;1 � mk Xk k2;1: ð10Þ

From Eq (8), it is clear that Dk � �
Lk
2
k Dk k

2
F< 0 whenever Dk 6¼ 0, which shows that Eq (9) is

well-defined.

In summary, the full steps of the Nonmonotone Spectral Gradient algorithm for L2,1-norm

minimization (abbr. NSGL21) can be described as follows:

Algorithm 1 (NSGL21)

Step 0. ChooseinitialpointX0, constantsμ > 0, ~a > 0, ρ 2 (0, 1), δ 2 (0, 1)
and positiveinteger ~m. Set k: = 0.

Step 1. Stop if kDkkF = 0. Otherwise,continue.
Step 2. ComputeDk via Eq (6).
Step 3. Computeαk via Eq (9).
Step 4. Let Xk+1: = Xk+αk dk.
Step 5. Let k: = k+1. Go to Step 1.

As is stated in the proceeding section that the generated direction descend automatically

whenever Λk > 0. To ensure Λk > 0, we choose a sufficiently small Λ(min) > 0 and a sufficiently

large Λ(max) > 0, such that Λk is forced as

Lk :¼ minfLðmaxÞ;maxfLk;LðminÞgg:

This approach ensures that the hereditary descent property is guaranteed at each and every

step.

Remark 1. The steps of the proposed algorithm is novel and different to other existing

approaches. The well-known approach [18] reformulated Problem (2) as the following con-

strained smooth convex optimization problem

min
X2Rn�t ;x2Rn

FðXÞ þ m
Xn

i¼1

xi j k Xi;: k� xi

( )

;

and then solved via the Nesterov’s method. The method in [19] paid attention least square

Spectral Gradient Algorithm for Matrix Minimization
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Model (1) and used an auxiliary variable to transform the model equivalently as

min
X2Rn�t

1

2
k Y k2

2
þmk X k2;1 j AX � b ¼ Y

� �

:

An alternating direction method of multiplier is used immediately to solve the resulting model

and closed-form solution are derived at each subproblem. Clearly, our proposed algorithm is

different from the above mentioned approaches in sense that we solve the original Model (2)

directly without any transformation. ]

3 Convergence analysis

This section is devoted to establishing the global convergence of algorithm NSGL21. For this

purpose, we make the following assumption.

Assumption 1. The level set O = {X: F(X)� F(X0)} is bounded.

Lemma 2. Suppose that the Assumption 1 holds and the sequence {Xk} is generated by

Algorithm 1. Then Xk is a stationary point of Problem (2) if and only if Dk = 0.

Proof. In the case of Dk 6¼ 0, Lemma 1 shows that Dk is a descent direction, which implies

that Xk is not a stationary point of F. On the other hand, since Dk = 0 is the solution of Eq (5),

for any xD 2 Rn�t with ξ> 0 we have

hrFðXkÞ; xDi þ
Lkx

2

2
k D k2

F þmk Xk þ xD k2;1 � mk Xk k2;1: ð11Þ

Combining the fact F(Xk + ξD) − F(Xk) = hrF(Xk), ξDi + o(ξ) with Eq (11), it yields

F0ðXk; DÞ ¼ lim
x#0

FðXk þ xDÞ � FðXkÞ þ mk Xk þ xD k2;1 � mk Xk k2;1

x

¼ lim
x#0

xhrFðXkÞ;Di þ oðxÞ þ mk Xk þ xD k2;1 � mk Xk k2;1

x

� lim
x#0

�
Lkx

2

2
k D k2

F þoðxÞ

x

¼ 0;

which indicates that Xk is a stationary point of F. ]

Lemma 3. Let l(k) be an integer such that

k � mðkÞ � lðkÞ � k and FðXlðkÞÞ ¼ max
0�j�mðkÞ

FðXk� jÞ:

Then the sequence {F(Xl(k))} is nonincreasing and the search direction Dl(k) satisfies

lim
k!1

alðkÞ k DlðkÞ k
2

F¼ 0: ð12Þ

Proof. It is not difficult to see that F(Xl(k+1))� F(Xl(k)), which indicates that the maximum

value of the objective function is nonincreasing at each iteration. Moreover, by Eq (9), we have

that for all k > ~m,

FðXlðkÞÞ ¼ FðXlðkÞ� 1 þ alðkÞ� 1DlðkÞ� 1Þ

� max
0�j�mðlðkÞ� 1Þ

FðXlðkÞ� 1� jÞ þ dalðkÞ� 1DlðkÞ� 1

¼ FðXlðlðkÞ� 1ÞÞ þ dalðkÞ� 1DlðkÞ� 1:

Spectral Gradient Algorithm for Matrix Minimization
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By Assumption 1, the sequence {F(Xl(k))} admits a limit as k!1. Hence, it follows that

lim
k!1

alðkÞDlðkÞ ¼ 0: ð13Þ

On the other hand, by the definition of Δk in Eq (10) and the inequality Eq (8), it is easy to

deduce that

DlðkÞ � �
LðminÞ

2
k DlðkÞ k

2

F< 0:

Combining with Eq (13), one get

lim
k!1

alðkÞ k DlðkÞ k
2

F¼ 0;

which indicates the desirable result Eq (12). ]

Theorem 1. Let the sequence {Xk} and {Dk} be generated by Algorithm 1. Then, there exists

a subsequence k 2 K such that

lim
k!1;k2K

k Dk kF ¼ 0: ð14Þ

Proof. Let �X be a limit point of {Xk}, and fXkgK1
be a subsequence of {Xk} converging to �X .

Then by Eq (12) either ðk �D kF :¼Þlimk!1;k2K1
k Dk kF ¼ 0, or there exists a subsequence

fXkgK (K � K1) such that

lim
k!1;k2K

Dk 6¼ 0 and lim
k!1;k2K

ak ¼ 0: ð15Þ

In this condition, we assume that there exists a constant � > 0 such that

k Dk kF � �; 8 k 2 K: ð16Þ

Since αk is the first value to satisfy Eq (9), it follows from Step 3 in Algorithm 1 that there exists

an index �k such that, for all k � �k and k 2 K,

F Xk þ
ak

r
dk

� �

> max
0�j�mðkÞ

FðXk� jÞ þ d
ak

r
Dk � FðXkÞ þ d

ak

r
Dk: ð17Þ

Since F is continuously differentiable, by the mean-value theorem on F, we can find that there

exists a constant θk 2 (0, 1), such that

F Xk þ
ak

r
Dk

� �

� FðXkÞ ¼
ak

r
hrF Xk þ yk

ak

r
Dk

� �

;Dki:

Combining with Eq (17), we have

hrF Xk þ yk
ak

r
Dk

� �

;Dki þ

mk Xk þ
ak

r
Dk k2;1 � mk Xk k2;1

ak=r
> dDk:

ð18Þ

Since αk! 0 in Eq (15), we have αk < ρ as k!1. It is not difficult to show that

mk Xk þ
ak

r
Dk k2;1 � mk Xk k2;1

ak=r
� mk Xk þ Dk k2;1 � mk Xk k2;1

� �
� 0:

ð19Þ

Spectral Gradient Algorithm for Matrix Minimization
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Subtracting left side of Eq (18) by Δk and noting the definition of Δk, it is distinct that

hrf Xk þ yk
ak

r
Dk

� �

;Dki þ

mk Xk þ
ak

r
Dk k2;1 � mk Xk k2;1

ak=r
� Dk

¼ hrf Xk þ yk
ak

r
Dk

� �

;Dki � hrf ðXkÞ;Dki

þ

mk Xk þ
ak

r
Dk k2;1 � mk Xk k2;1

ak=r
� mk Xk þ Dk k2;1 � mk Xk k2;1

� �

2

6
4

3

7
5:

Noting Eq (19), thus Eq (18) shows that

hrF Xk þ yk
ak

r
Dk

� �

;Dki � hrFðXkÞ;Dki

> � ð1 � dÞDk

� ð1 � dÞ
LðminÞ

2
k Dk k

2

F :

ð20Þ

Taking the limit as k 2 K, k!1 in the both sides of Eq (20) and using the smoothness of F,

we obtain

0 ¼ hrFð�XÞ; �Di � hrFð�XÞ; �Di � ð1 � dÞ
LðminÞ

2
k �D k2

F;

which implies kDkkF! 0 as k 2 K, k!1. This yields a contradiction because Eq (16) indi-

cates that kDkkF is bounded. ]

4 Numerical experiments

In this section, we present numerical results to illustrate the feasibility and efficiency of the

algorithm NSGL21. In particular, we also test against the recent solvers IADM_MFL and SLEP

for performance comparison. In running SLEP (Sparse Learning with Efficient Projections),

we use the code at http://www.public.asu.edu/~jye02/Software/SLEP/index.htm in its Matlab

package, and choose mFlag = 1 and lFlag = 1 for using an adaptive line search. All experi-

ments are carried out under Windows 7 and Matlab v7.8 (2009a) running on a Lenovo laptop

with an Intel Pentium CPU at 2.5 GHz and 4 GB of memory.

As [16], in the first test, �X :;j is generated from a 5-dimensional Gaussian distribution with

zero-mean and con-variance diag{1, 0.64, 0.49, 0.36, 0.25}. Regarding each �X :;j, we keep adding

up to 20 irrelevant dimensions which are exactly zeros. The training and test data Aj is Gauss-

ian matrices and their response data bj is generated by

bj ¼ Aj
�X :;j þ o;

where ω is zero-mean Gaussian noise with standard deviation 1.e − 2. We start NSGL21 from

zero point and terminate the iterative process when

k Dk kF < tol; ð21Þ

where tol > 0 is a tolerance. The quality of the solution X� is measured by the relative error to

Spectral Gradient Algorithm for Matrix Minimization
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�X , i.e.,

RelErr ¼
k X� � �X kF

k �X kF
:

In this test, we take ~a ¼ 1, μ = 1e − 2, t = 200, n = 15, tol = 1e − 3, Λ(min) = 10−20, Λ(max) = 1020,

and mj = 100 for all j = 1, 2, . . ., t. Moreover, to compare the performance of these algorithms

in a fair way, we run each code from zero point, use all the default parameter values, and

observe their convergence behavior in obtaining similar accurate solutions. To specifically

illustrate the performance of each algorithm, we draw a couple of figures to show their conver-

gence behaviors with respect to the relative error and computing time proceed in Figs 1 and 2.

Observing Figs 1 and 2, we clearly know that IADM_MFL and NSGL21 produced faithful

results expect for SLEP. We have tried to run SLEP with more iterations in our experiments’

preparation, but it cannot achieve progress any more. Meanwhile, NSGL21 requires less num-

ber of iterations than IADM_MFL to achieve the similar quality of solutions. In both plots, we

see that the green line lies at the bottom of each plot in most cases, which indicates that

NSGL21 is superior to the other two solvers.

The simple test is not enough to verify that NSGL21 is the winner. To further illustrate the

benefit of NSGL21, we give some insights to the behavior of NSGL21 with different dimen-

sions and different number of tasks. The results are listed in Table 1, which contains the

Fig 1. Comparison results of NSGL21, IADM MFL, and SLEP. The x-axes represents the number of

iterations and the y-axes represents the relative error.

doi:10.1371/journal.pone.0166169.g001

Spectral Gradient Algorithm for Matrix Minimization

PLOS ONE | DOI:10.1371/journal.pone.0166169 November 18, 2016 9 / 13



number of iterations (Iter), the CPU time in seconds (Time), the relative errors (RelErr), and

the final functional values (Fun).

From Table 1, we clearly observe that each algorithm requires more computing time with

the increase of the problems’ dimensions and the number of tasks. Meanwhile, the number of

iterations required by NSGL21 and IADM_MFL increases slightly at the higher dimensions

case. We also observe that, for all the tested problems, both NSGL21 and IADM_MFL are ter-

minated abnormally in producing similar quality solutions in sense of comparable relative

errors and final function values. However, SLEP cannot generate acceptable solutions although

more iterations are permitted in experiments’ preparation. Hence, we conclude that NSGL21

and IADM_MFL perform better than SLEP. Now, we turn our attention to the performance

comparison of solvers IADM_MFL and NSGL21. For getting similar quality of solutions, we

take notice that NSGL21 is faster than IADM_MFL and saves at least 50% number of itera-

tions. It is reasonable to make an conclusion that NSGL21 is the winner among the compared

solvers.

5 Conclusions

In this paper, we have proposed, then analyzed, and later tested a nonmonotone spectral gradi-

ent algorithm for solving ℓ2,1-norm regularized minimization problem. The type of this prob-

lem mainly appears in computer version, text classification and biomedical informatics. Due

Fig 2. Comparison results of NSGL21, IADM MFL, and SLEP. The x-axes represents the CPU time in

seconds and the y-axes represents the relative error.

doi:10.1371/journal.pone.0166169.g002
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to the nonsmoothness of the regularization term, the task of minimizing the problem is full of

challenges. To the best of our knowledge, SLEP and IADM_MFL are the only available solvers

of solving this problem. However, both solvers transferred equivalently to an equality-con-

strained minimization problem and then minimized alternatively. As we all know that the

spectral gradient algorithm is very effective to solve smooth minimization problem. Hence, its

performance in solving ℓ2,1-norm regularized problems is worthy of investigating. Certainly, it

is the main motivation of our paper. At each iteration, the method proposed in this paper min-

imizes an approximal quadratic model of the objective function to produce a search direction.

We showed that the generated direction descends automatically and the algorithm converges

globally under some mild conditions. Additionally, the numerical experiments illustrate that

the proposed algorithm is competitive with or even performs better than SLEP and

IADM_MFL. Of course, this is the numerical contribution of our paper. We have said that the

ℓ2,1-norm regularized minimization problem is partly arising in multi-task learning for

Table 1. Comparison results of NSGL21 with IADM_MFL and SLEP.

NSGL21 IADM_MFL SLEP

t n Iter Time Error Fun Iter Time Error Fun Iter Time Error Fun

50 5 12 0.03 1.32e-3 0.49 23 0.05 3.49e-3 0.53 32 0.06 1.66e-2 2.27

50 10 12 0.03 1.95e-3 0.48 32 0.06 2.28e-3 0.49 29 0.06 1.67e-2 2.26

50 15 14 0.03 2.33e-3 0.47 34 0.08 2.53e-3 0.48 29 0.03 1.67e-2 2.26

50 20 15 0.03 3.00e-3 0.45 39 0.06 2.79e-3 0.46 30 0.06 1.66e-2 2.26

50 25 14 0.05 3.49e-3 0.44 42 0.06 2.87e-3 0.45 33 0.09 1.65e-2 2.25

100 5 11 0.06 1.39e-3 0.83 24 0.05 1.62e-3 0.84 32 0.09 1.51e-2 3.61

100 10 12 0.05 2.13e-3 0.81 29 0.06 2.25e-3 0.83 41 0.09 1.52e-2 3.66

100 15 17 0.06 2.49e-3 0.79 33 0.09 2.55e-3 0.82 32 0.12 1.49e-2 3.57

100 20 15 0.09 2.99e-3 0.75 38 0.11 2.37e-3 0.79 32 0.11 1.50e-2 3.59

100 25 19 0.12 3.43e-3 0.74 43 0.14 2.72e-3 0.80 28 0.16 1.55e-2 3.73

150 5 12 0.06 1.43e-3 1.14 24 0.08 1.81e-3 1.16 35 0.14 1.51e-2 5.19

150 10 14 0.09 1.98e-3 1.11 29 0.09 2.44e-3 1.15 33 0.16 1.49e-2 5.18

150 15 17 0.12 2.57e-3 1.08 34 0.17 2.91e-3 1.15 32 0.22 1.51e-2 5.20

150 20 15 0.16 3.04e-3 1.03 40 0.20 2.79e-3 1.11 35 0.17 1.50e-2 5.16

150 25 19 0.22 3.45e-3 0.99 45 0.23 3.00e-3 1.08 35 0.28 1.49e-2 5.14

200 5 12 0.12 1.41e-3 1.45 24 0.12 1.68e-3 1.46 45 0.12 1.53e-2 7.10

200 10 12 0.12 1.94e-3 1.41 29 0.19 2.09e-3 1.45 41 0.14 1.53e-2 7.10

200 15 17 0.19 2.57e-3 1.35 33 0.25 2.54e-3 1.41 33 0.25 1.51e-2 6.98

200 20 15 0.19 3.10e-3 1.32 38 0.25 3.09e-3 1.41 34 0.25 1.51e-2 6.95

200 25 19 0.28 3.52e-3 1.26 43 0.31 3.22e-3 1.35 27 0.28 1.57e-2 7.30

250 5 11 0.12 1.43e-3 1.74 24 0.17 1.58e-3 1.75 38 0.28 1.55e-2 8.80

250 10 14 0.25 2.01e-3 1.68 31 0.25 2.30e-3 1.74 37 0.31 1.55e-2 8.77

250 15 17 0.28 2.58e-3 1.61 36 0.28 3.00e-3 1.71 33 0.31 1.54e-2 8.70

250 20 15 0.31 3.02e-3 1.56 39 0.36 3.13e-3 1.66 34 0.37 1.53e-2 8.70

250 25 19 0.37 3.46e-3 1.50 46 0.45 3.63e-3 1.62 30 0.25 1.61e-2 9.26

300 5 12 0.22 1.40e-3 2.04 26 0.25 1.77e-3 2.07 35 0.28 1.54e-2 10.55

300 10 12 0.23 2.04e-3 1.96 30 0.27 2.31e-3 2.03 45 0.42 1.57e-2 10.77

300 15 17 0.37 2.52e-3 1.90 35 0.37 3.10e-3 2.03 35 0.39 1.53e-2 10.50

300 20 14 0.37 3.03e-3 1.83 41 0.51 3.52e-3 1.96 34 0.31 1.54e-2 10.52

300 25 20 0.58 3.52e-3 1.72 45 0.62 4.36e-3 1.91 29 0.44 1.62e-2 11.26

doi:10.1371/journal.pone.0166169.t001
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capturing joint feather between each task. However, we did not test its real performance by

using real data, this should be our further task to investigate. Finally, we expect that the pro-

posed method and its extensions could produce even applications for problems in relevant

areas of the machine learning.
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