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Abstract

Grape phylloxera, Daktulosphaira vitifoliae (Fitch) (Hemiptera, Phylloxeridae), is a very

destructive insect pest of grapevines. Intercropping of Achyranthes bidentata Blume (f.

Amaranthaceae) and Vitis spp. grapevines can be useful to control this pest. In the present

study, the toxicity of 22 compounds, known to be present in A. bidentata, to grape phyllox-

era was evaluated. All treatments were toxic towards grape phylloxera but the degree of

toxicity differed between treatments. Among the 22 tested compounds, several of which

proved toxic towards grape phylloxera. However β-ecdysterone had higher toxic effects

against grape phylloxera, with LC50 values of 175.73 mg a.i. liter-1. In addition, we assessed

the sublethal effects of LC10, LC20 and LC40 of β-ecdysterone on grape phylloxera. The

fourth instar and adult developmental periods and total life span were significantly pro-

longed by LC40 of β-ecdysterone. Fecundity decreased when grape phylloxera were

exposed to LC20 and LC40 of β-ecdysterone. In addition, LC40 of β-ecdysterone decreased

the intrinsic rate of increase (rm) and the finite rate of increase (λ) and prolonged the popula-

tion doubling time (DT). The net reproductive rate (R0) was significantly reduced by both

the LC20 and LC40 β-ecdysterone treatments. Our results demonstrated that β-ecdysterone

had higher toxic effects and significant sublethal effects on grape phylloxera, and showed

potential control of grape phylloxera.

Introduction

Grape phylloxera (Daktulosphaira vitifoliae Fitch) is an aphid-like insect pests, native to North
America [1–2], which was accidentally imported into Europe in the mid 19th century [3] and
nowadays is regarded as the most destructive insect pest of commercial grapevinesVitis spp.
L. (Vitacae) worldwide [4]. Grape phylloxera is an obligate parasite of grapevinesVitis spp., it
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reproduce parthenogeneticallyduring spring and summer on leaves and roots of susceptible
vines, towards the end of the season, sexual reproduction take place due to the populations
increase and the nutrient status of vines changes [5]. Phylloxera feed on leaves and roots of
many grape species, forming pocket-like galls (nodosities) on leaves and hooked-like galls on
root tips and root swellings (tuberosities) on mature roots. The galls on roots split and crack
and feeding sites leave entry points, which allows entry of soil-borne pathogens and this can
cause death of the vine [5]. Its worth noting that grapevines do not always die this is dependent
on the host genotype and the insect genotype.
The common and relatively successful strategies for grape phylloxera is grafting tolerant

hybrid Vitis spp rootstocks to the susceptibleV. vinifera L. producing scions [6]. Although
rootstocks have been successfully used for more than 130 years, this method is facing the risk
of a breakdown in resistance via interactions between the host and pest [7]. Most of the root-
stocks used nowadays are based on hybrids of North AmericanVitis species. There are rela-
tively few reported instances of rootstock failure which occurredmainly where the parentage of
a rootstock hybrid includes partialV. vinifera genetic background [7]. The emergence of “bio-
type B” caused a breakdown in the resistance of the widely planted rootstock AXR#1 (V. vinif-
era ‘Aramon’×V. rupestris) and cost the viticulture industry between 1 to 6 billion US$ [8–10].
Research on alternative and supplemental control methods are needed to back up rootstock

use and prevent the losses caused by the resistant rootstocks [11]. The use of Achyranthes
bidentata Blume has potential for grape phylloxera control [12]. A. bidentata belongs to family
Amarathaceae and it has a wide application in the traditional (orthodox) and folk medicine
[13]. Recently, a study showed that aqueous root extracts from A. bidentata inducedmortality
of grape phylloxera and that intercropping of A. bidentata and grapevines can be used to con-
trol grape phylloxera [12]. However, it is still unknownwhether chemical or chemicals present
in A. bidentata play an important role in controlling grape phylloxera.
In the present study, we compared the efficacy of 22 chemicals known to be in A. bidentata

root extracts against grape phylloxera under laboratory conditions. We also assessed the suble-
thal effects of the main bioactive component on the fecundity, developmental periods and life
table parameters of the grape phylloxera. Results of this study can be useful to understand the
mechanism of action of A. bidentata aqueous root extracts against grape phylloxera.

Materials and Methods

Insects

With the authorization of Huaihua Agriculture Bureau, Hunan Province, One- to six-day-old
grape phylloxera eggs were taken from five phylloxera-infested vineyards (Vitis labruscana
Kyoho) near Shuangxi town, Huaihua city, Hunan Province, China (27°140N, 109°510E). The
maintenance method was followed according to de Benedictis and Granett [14], After collec-
tion, fresh healthy excised root pieces (3–7 mm in diameter and 4–5 cm in length) of Vitis lab-
ruscana Kyoho were infested with 10–20 phylloxera eggs. One end of each root piece was
wrapped in wet cotton to prevent desiccation. The infested root pieces were put into petri
dishes (12-cm diameter) in controlled environment incubators (26 ± 1°C, 80 ± 5% RH,
0L:24D). The eggs ranged from one- to six-hour-old when used for inoculation.

Chemicals

Ginsenoside Ro (98%), oleanolic acid (99%), Stigmasterol (95%), palmatine hydrochloride
(98%), betherine (98%), epiberberine (98%), coptisine (98%), astragalin (98%), isoquercitrin
(98%), baicalin (98%), wogonin (98%), chrysophanol (98%), physcion (98%) and Geniposide
(98%) were sourced from the ChengduMust Bio-technologyCo., Ltd (Chengdu, Sichuan
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Province, China). Betaine (98%), nonanedioic acid (99.5%), succinic acid (90%), allantoin
(98.5%), rutin (95%), β-sitosterol (95%) and 5-hydroxymethyl furaldehyde (99%) were sourced
from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). β-ecdysterone was sourced
from J&K Scientific Ltd (Beijing, China).

Grapevine root-dip bioassay

A root dipping method, adopted from a leaf-dip bioassay method [15] was used to determine
the toxicity of each of 22 compounds against grape phylloxera. The stock solutions (50,000 mg
a.i. [active ingredient] liter-1) of each compound were diluted using methanol. The stock solu-
tion of 22 compounds were then further diluted with distilledwater containing 0.1% Tween-80
to the desired concentrations. A total of 50 grape phylloxera eggs (approximately 6 h old) were
selected from the laboratory colony and were placed on each grape root (3–7 mm in diameter
and 5 cm in length) of Vitis labruscana Kyoho in petri dishes (12 cm diam.) which were sealed
as to prevent grape phylloxera escaping or cross contamination. After the eggs hatch, root
pieces with 1 d old grape phylloxera nymphs were immersed in the diluted compound solu-
tions for about 5s and then dried on tissue paper in a fume hood for next 1.5hrs. The mortality
rate of grape phylloxera treated with the 22 compounds was recorded 15 days after exposure,
because of difficulties in determining grape phylloxera death or not due to their feeding charac-
teristics of stationary. The concentration of 22 compounds was used according to the results of
the preliminary tests, and preliminary tests showed that distilledwater containing 0.1%
Tween-80 and 2%methanol had no effects to grape phylloxera nymphs. Each treatment
included 3 replicates, and each replicate was exposed to 50 grape phylloxera nymphs. The con-
trol group, which was also replicated, was treated with distilledwater containing 0.1% Tween-
80 and 2%methanol. For the lethal effects of β-ecdysterone, four replicates were conducted, for
each treatment and control, 15–23 grape phylloxera first instar nymphs (1 d old) were
immersed in the six doses (from 25 to 800 mg a.i. liter-1) of β-ecdysterone for 5s and then dried
on tissue paper in a fume hood. The mortality rate of grape phylloxera treated with the β-ecdys-
terone was recorded 15 days after exposure.

Sublethal effects of β-ecdysterone on grape phylloxera

To assess the sublethal effects of β-ecdysterone on grape phylloxera, three different concentra-
tions LC10, LC20 and LC40 were used. To obtain the concentrations to be used in further experi-
ments, the concentration-mortality regression line was first determined, the tested
concentrations were then calculated from the regression lines (see “Results” section).
Root pieces with 1 d old grape phylloxera first instar nymphs were immersed in the suble-

thal concentration of β-ecdysterone for 5s and then dried on tissue paper in a fume hood. After
drying, the roots were placed in pairs on filter paper discs in sealed glass petri dishes (12 cm
diam.). One end of each root piece was wrapped in wet cotton to prevent desiccation. All of the
petri dishes were maintained in controlled incubators (26 ± 1°C, 80 ± 5% RH, 0L: 24D). For
each treatment and control, 200 grape phylloxera first instar nymphs were exposed to β-ecdys-
terone, i.e. 50 eggs were considered per replicate and four replicates per treatment and control.
Bioassay plates were checked every 24 h, and the survivors after 15 d exposure were used to
evaluate the following parameters: developmental duration, mortality, survival of nymphs and
adult and number of eggs laid. The nymphal instar was judged by observing its ecdysis, the
grape phylloxera nymphal increase instar after each ecdysis [16]. The experiments continued
until the death of each individual. Life table parameters including intrinsic rate of increase
(rm), finite rate of increase (λ), net reproductive rate (R0), mean generation time (T) and popu-
lation doubling time (DT) were calculated.
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Data analysis

The median lethal concentrations, 95% confidence limits (CLs), and slope ± SE were calculated
using probit analysis. The life table parameters with various treatments (control, β-ecdysterone
LC10, LC20 and LC40) were calculated:

• The net reproductive rate [17–18]:

R0 ¼
X

lxmx;

• The intrinsic rate of increase (rm) was calculated according to Carey (1993) [19] and Bech-
mann (1994) [20], the Birch model [17] was used:

X
lxmxe

� rmx ¼ 1;

• The finite rate of increase [17]:

l ¼ erm;

• The mean generation time [17, 21–22]:

T ¼ lnR0=rm;

• The doubling time [23]:

DT ¼ lnð2Þ=rm;

In the equations, lx is the age-specific survival rate, which is the probability to survive to a
particular age x, and mx is the age-specific fecundity, which is calculated as the number of alive
females per female for age x [17].
The data on developmental rate of each stage of the grape phylloxera in the various treat-

ments and life table parameters were analyzed using a one-way ANOVA followed by Tukey's
HSD (honestly significant difference) for multiple comparisons. All data were analyzed by
SPSS 13.0 (SPSS Inc., Chicago). The mean mortality of grape phylloxera nymphs after treat
with 22 chemicals were logit transformed before being analyzed.

Results

Efficacy of chemicals to grape phylloxera in laboratory

Mortality of grape phylloxera nymphs was significantly different after treatment for fifteen
days (F = 23.60, d.f. = 22, 46, P< 0.001). The order of effective (high-low) for the 22 chemicals
was as follows: β-ecdysterone> chrysophanol> succinic acid> oleanolic acid> stigmasterol
> geniposide> β-sitosterol> coptisine> wogonin> baicalin> 5-hydroxymethyl furalde-
hyde > isoquercitrin> astragalin> nonanedioic acid> epiberberine> betherine> physcion
> ginsenoside Ro> palmatine hydrochloride> allantoin> rutin> betaine. Among the 22
chemicals, the effective of β-ecdysterone was the highest with the mortality of 96.15±3.85%
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after 15 days of exposure (Table 1 and Table A in S1 Tables). Meanwhile, the betaine had the
lowest effectivewith a mortality of only 13.10±2.69%.

Lethal effects of β-ecdysterone

The linear regression of dose-mortality relationship was fitted to the actual data for β-ecdyster-
one tested. The LC50 value of β-ecdysterone was considered valid since there was no significant
deviation between the observed and the expected data (Fig 1 and Table B in S1 Tables). The
LC50 value of β-ecdysterone against grape phylloxera at 15d was 175.73 mg a.i. liter-1

(Slope = 1.35, SE = 0.14, χ2 = 16.75, df = 22, P = 0.777). Estimated LC40, LC20, LC10 β-ecdyster-
one values were 113.99, 41.72 and 19.67 mg a.i. liter-1, respectively.

Sublethal effects of β-ecdysterone on developmental period of grape

phylloxera

The mortality tests after 15d of exposure were 2.7%, 8.6%, 23.5% and 43.6% for control, LC10,
LC20 and LC40 groups, recorded respectively. These three doses could not be considered as sub-
lethal doses but could induce multiple sublethal effects in exposed individuals (according to
Desneux et al. [21]).
The results presented in Table 2 show the effect of various β-ecdysterone treatments on

measured life history parameters of grape phylloxera (Table C in S1 Tables).
LC10, LC20 and LC40 of β-ecdysterone had no significant effects on first (F = 0.25, d.f. = 3,

12, P = 0.86), second (F = 0.021, d.f. = 3, 12, P = 1.00) and third (F = 0.22, d.f. = 3, 12, P = 0.88)
instars developmental periods. Both the fourth instar (F = 39.15, d.f. = 3, 12, P< 0.001) and
adult (F = 27.56, d.f. = 3, 12, P< 0.001) developmental period and total life span (F = 257.64, d.
f. = 3, 12, P< 0.001) were significantly prolonged by LC40 of β-ecdysterone, whereas LC10 and
LC20 treatments did not significantly affect fourth instar and adult developmental period and
total life span of grape phylloxera. Grape phylloxera fecundity was significantly reduced by
both the LC20 and LC40 β-ecdysterone treatments compared to the control (F = 257.64, d.f. = 3,
12, P< 0.001) and LC10 treatment. The fecundity of grape phylloxera decreasedwith increas-
ing doses of β-ecdysterone significantly.

Table 1. Mean mortality (mean±SE) of grape phylloxera nymphs at fifteen days after treat with 22 chemicals, known to occur in Achyranthes

bidenta, at dose rate of 1000 mg a.i. liter-1.

Treatment 15 days after treatment Treatment 15 days after treatment

β-ecdysterone 96.15±3.85 a astragalin 27.08±2.50 def

chrysophanol 44.42±1.20 b nonanedioic acid 25.19±4.12 bcdef

succinic acid 41.34±0.83 bc epiberberine 23.03±1.84 bcdef

oleanolic acid 36.19±3.89 bcd betherine 22.74±2.92 bcdef

stigmasterol 35.40±3.23 bcd physcion 21.41±1.27 bcdef

geniposide 33.93±3.42 bcde ginsenoside Ro 20.19±3.03 bcdef

β-sitosterol 31.90±3.46 bcde palmatine hydrochloride 18.31±2.51 cdef

coptisine 31.34±1.47 bcde allantoin 16.11±2.00 def

wogonin 30.26±1.94 bcde rutin 15.44±1.81 def

baicalin 29.95±2.67 bcde betaine 13.10±2.69 ef

5-hydroxymethyl furaldehyde 28.42±0.62 bcde Control 8.65±0.83 f

isoquercitrin 27.26±4.68 bcde

Notes: Means followed by the same letters are not significantly different at P>0.05 (Tukey’s HSD test).

doi:10.1371/journal.pone.0165860.t001

The Sublethal Effects of β-Ecdysterone to Grape Phylloxera

PLOS ONE | DOI:10.1371/journal.pone.0165860 November 8, 2016 5 / 11



Sublethal effects of β-ecdysterone on life table parameters of grape

phylloxera

Table 3 data shows the life table parameters of grape phylloxera treated with β-ecdysterone
(Table D in S1 Tables).
Compared to the LC10 of β-ecdysterone, the exposure to LC40 of β-ecdysterone significantly

reduced the intrinsic rate of increase ‘rm’ (F = 4.46, d.f. = 3, 12, P = 0.025) and the finite rate of
increase ‘λ’ (F = 4.40, d.f. = 3, 12, P = 0.026), which decreasedwith the exposure of β-ecdysterone
increase dose, and there was no difference between the control and each of the three β-ecdyster-
one concentrations. Net reproductive rate ‘R0’ was significantly reduced by LC20 and LC40 β-
ecdysterone treatments compared to the control (F = 257.64, d.f. = 3, 12, P< 0.001), and the ‘R0’
decreasedwith increasing doses of β-ecdysterone from LC10 to LC40. No significant difference
was found in mean generation time ‘T’ between β-ecdysterone different treatments and control
(F = 0.94, d.f. = 3, 12, P< 0.45). The population doubling time ‘DT’ was significantly prolonged
by LC40 of β-ecdysterone compared to the control, and showed a downward trend.

Discussion

Achyranthes bidentata is widely distributed in China, Korea, and Vietnam [13]. Meng (2004)
identified 34 compounds from A. bidentata by physico-chemical characteristics and

Fig 1. Linear regression between morality (probit unit) of grape phylloxera and β-ecdysterone concentration (log-

transformed).

doi:10.1371/journal.pone.0165860.g001
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spectroscopic analysis [24]. Others including five phenolic compounds, seven triterpenoid
saponins, betaine, Stigmasterol, Chrysophanol and allantoin were identified by Nicolov et al.
(1996), Li et al.(2007), Zhao et al. (2011), Hu et al. (2004), Wei et al. (1997) and Chao et al.
(1999), respectively [13, 25–29]. In the present study, 22 of these compounds, which were easily
synthesized and readily available, were selected for use in the laboratory bioassay and overall β-
ecdysterone showed the highest toxic effect towards grape phylloxera. However the other com-
pounds tested which are also known to be present in and A. bidentata root extracts possess
insecticidal activity against grape phylloxera need further research to be conducted.
Ecdysteroids belong to a very large group of cholesterol-derivedmolecules which also com-

prise plant hormones [30], plant secondarymetabolites and many polyhydroxysterols [31].
The discovery of ecdysteroids in plants [32–34] resulted in the commercial availability of
ecdysteroids to all insect physiologists, because they can regulate insect growth, development
and reproduction [35]. Our results showed that β-ecdysterone have significant lethal and suble-
thal effects on grape phylloxera, this may be related to the toxic characteristics of β-ecdyster-
one, such as antifeedant, growth and development inhibitive activities [36–37].
The sublethal effects of β-ecdysterone on grape phylloxera demonstrated that an LC40 of β-

ecdysterone increased fourth instar development time, this may be related to the delay in the
time of ecdysis. Because ecdysteroid can cause a delay in the time of ecdysis [38] and β-ecdys-
terone has the same structure as the ecdysteroid secreted by insect or other arthropods [35].
But this phenomenon did not find in other instar, therefore, it still needs a further research.
Moreover, the sublethal effects of β-ecdysterone on grape phylloxera demonstrated that an
LC40 of β-ecdysterone decreased adult development time and fecundity. The reason may be
that a certain dose of β-ecdysterone can cause insect antifeedant or stop feeding [39–40]. The
behaviors of antifeeding and stop feeding can cause inadequate intake of nutrients, coupled
with the metabolism and degradation reactions on the consumption of nutrients, resulting in
reduced of nutrients content, thereby causing decrease in adult longevity and fecundity.

Table 2. Life history parameters of grape phylloxera treated by β-ecdysterone at three lethal concentrations.

Treatments Development (days) Fecundity (eggs)

Egg incubation Nymphs adults Total life span

1st instar 2nd instar 3rd instar 4th instar

LC10 5.677 ± 0.055 a 11.142 ± 0.748 a 2.013 ± 0.095 a 1.798 ± 0.065 a 1.369 ± 0.006 ab 26.493 ± 0.506 a 48.518 ± 1.283 a 211.868 ± 3.512 a

LC20 5.677 ± 0.091 a 11.427 ± 0.496 a 2.016 ± 0.036 a 1.762 ± 0.064 a 1.450 ± 0.029 ab 24.865 ± 1.521 a 45.948 ± 0.591 a 185.319 ± 3.013 b

LC40 5.688 ± 0.078 a 11.607 ± 0.415 a 1.994 ± 0.082 a 1.710 ± 0.127 a 1.513 ± 0.029 b 15.233 ± 0.335 b 37.745 ± 0.635 b 111.178 ± 2.838 c

Control 5.617 ± 0.077 a 11.947 ± 0.928 a 1.998 ± 0.063 a 1.724 ± 0.076 a 1.341 ± 0.066 a 27.498 ± 0.747 a 50.110 ± 1.410 a 219.978 ± 2.938 a

The data in the table are mean ± SE, and those in the same column followed by same letters are not significantly different at P<0.05 (Tukey’s HSD test).

doi:10.1371/journal.pone.0165860.t002

Table 3. Life table parameters of grape phylloxera treated by β-ecdysterone three lethal concentrations.

Treatments Intrinsic rate of increase

(rm)

Finite rate of increase

(λ)

Net reproductive rate

(R0)

Mean generation time

(T)

Population doubling time

(DT)

LC10 0.171 ± 0.005 a 1.186 ± 0.006 a 203.822 ±3.101 a 31.178 ± 0.854 a 4.066 ± 0.122 a

LC20 0.164 ± 0.003 ab 1.179 ± 0.003 ab 177.860 ± 4.786 b 31.550 ± 0.368 a 4.223 ± 0.068 ab

LC40 0.150 ± 0.002 b 1.163 ± 0.003 b 102.461 ± 3.362 c 30.416 ± 0.777 a 4.595 ± 0.072 b

Control 0.167 ± 0.005 ab 1.182 ± 0.006 ab 216.139 ± 3.659 a 32.276 ± 1.042 a 4.161 ± 0.129 a

The data in the table are mean ± SE, and those in the same column followed by same letters are not significantly different at P<0.05 (Tukey’s HSD test).

doi:10.1371/journal.pone.0165860.t003
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The intrinsic rate of increase (rm) is a measure of the ability of a population to increase
exponentially in an unlimited environment. It provides an effective summary of an insect’s life
history traits[41] and has also been recommended together with toxicity assessment to provide
a more accurate estimate of population-level effect of toxic compounds [42–44]. In our study,
the exposure to an LC40 of β-ecdysterone significantly reduced the intrinsic rate of ‘rm’, which
decreasedwith the exposure to increasing doses of β-ecdysterone. This means that population
increase of grape phylloxera was delayed when using an LC40 β-ecdysterone treatment.
Many studies have shown that sublethal doses exert devastating effects on insects by increas-

ing the development time [28, 45–47], reducing fecundity [48–50] and decreasing egg hatching
rate [51]. However, sublethal effects sometimes also show positive impacts on the insects [52,
53]. Previous studies showed that low concentrations of imidacloprid increased the biological
fitness of green peach aphidMyzus persicae (Sulzer) [54], prolonged the nymph development
of whitefly Bemisia tabaci (Gennadius) [55] and enhanced the fecundity of spider mite Tetra-
nychus urticae Koch [56]. In this study, we found that at the three low concentrations of β-
ecdysterone had no positive impacts on grape phylloxera and still can reduce their population.
Our study showed that β-ecdysterone may be the main bioactive component of A. bidentata

against grape phylloxera, and it has potential for the control of grape phylloxera. However,
considering the limited number of compounds, a suite of compounds require further testing.
Meanwhile, the control effects to grape phylloxera by intercropping A. bidentata and grape-
vines caused by β-ecdysterone released from A. bidentata need a further research.
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