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Abstract

Rooted phylogenetic networks are primarily used to represent conflicting evolutionary infor-

mation and describe the reticulate evolutionary events in phylogeny. So far a lot of methods

have been presented for constructing rooted phylogenetic networks, of which the methods

based on the decomposition property of networks and by means of the incompatible graph

(such as the CASS, the LNETWORK and the BIMLR) are more efficient than other available

methods. The paper will discuss and compare these methods by both the practical and arti-

ficial datasets, in the aspect of the running time of the methods and the effective of con-

structed phylogenetic networks. The results show that the LNETWORK can construct much

simper networks than the others.

Introduction

The evolutionary history of species is traditionally denoted as a rooted phylogenetic tree. Each
tree represents certain evolutionary information of the species (denoted as cluster, will be dis-
cussed in the following) [1–4]. When rooted phylogenetic trees are constructed by different
methods or from different datasets, all of the evolutionary information represented by these
tree are often conflicting.The conflicting evolutionary information cannot be expressed as a
phylogenetic tree. However, phylogenetic network can represent the conflicting evolutionary
information, which is a generalization of phylogenetic tree. It can also describe the evolution
involving significant amounts of reticulate events such as recombinations, hybridizations, and
horizontal gene transfers [5–9].

Phylogenetic networks can be divided into unrooted [10–15] and rooted networks [16–26].
Unrooted phylogenetic networks are mainly used to visualize conflicting evolutionary informa-
tion. Rooted phylogenetic networks not only can represent conflicting evolutionary informa-
tion implied phylogenetic trees, but also can describe the reticulate evolutionary events that
species occurredduring evolution [27]. There is a large body of research on rooted phyloge-
netic networks. Devising appropriate algorithms for constructing rooted phylogenetic net-
works from rooted phylogenetic trees has become an important field of research in molecular
evolution. Recently a lot of scholars have focused on the research of the field, and developed a
number of methods.
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Dendroscope [28] is a program for constructing rooted phylogenetic networks, which unites
somemethods such as the cluster network [29], the galled network [30] and the CASS [22].
Among all of the methods, the CASS can construct simpler networks than other methods, but it
is extremely slow for large datasets. And the networks constructed by the CASS are highly
dependent on the order of input data, i.e. the constructed phylogenetic networks are generally
different for the same dataset when input orders are different. ThenWang et al improved the
CASS algorithm, and designed two algorithms: the LNETWORK [31] and the BIMLR [32]. The
LNETWORK and the BIMLR are faster than CASS and have less influence of input data order.

In the following, we refer to rooted phylogenetic networks as networks, unless otherwise
stated.

Preliminaries

Given a set of taxa X . A subset of X (except both ; and X ) is called a cluster. For two clusters
C1 and C2 on X , if they are disjoint or one is a subset of the other, i.e. C1 \ C2 = ; or C1� C2 or
C2� C1, we say that C1 and C2 are compatible, otherwise they are incompatible. Given a set of
clusters C on X . If any two clusters in C is compatible, C is called compatible, otherwise it is
incompatible. The incompatibility graph IG(C) = (V, E) of C is defined as an undirected graph
with node set V = C and edge set E, where two clusters are connected by an edge if and only if
they are incompatible.

Let S be a subset of X . The restriction of C to S, denoted by CjS, is defined as the result of
removing all of the taxa in XnS (i.e. the taxa in X but not in S) from each cluster in C. The
incompatibility degree of C, denoted by dðCÞ, is defined as the number of edges in IGðCÞ. Let C
be a set of clusters on X and x a taxon in X . The incompatibility degree of x, denoted by d(x),
is defined as the result of subtracting the incompatibility degree of CjXnfxg from that of C, i.e.
dðxÞ ¼ dðCÞ � dðCjXnfxgÞ. If the incompatibility degree of a taxon x is maximal among all of
the taxa in X , i.e. dðxÞ ¼ maxfdðyÞjy 2 Xg, we call that x is the incompatibility taxon w.r.t. C.
The frequency of a taxon x w.r.t. C, denoted by f(x), is defined as the number of clusters which
contain x, i.e. f ðxÞ ¼ jfC 2 Cjx 2 Cgj.

A rooted phylogenetic network N = (V, E) on X is a rooted directed acyclic graph (DAG for
short), and its leaves are bijectively labelled as X . The indegree of a node v 2 V is denoted as σ
(v). A node v is a reticulate node if σ(v)� 2; otherwise it is a tree node; particularly, a tree node
is a root node if σ(v) = 0. An edge e = (u, v) is a tree edge if v is a tree node, otherwise it is a
reticulate edge. The reticulation number in a network N = (V, E) is ∑σ(v)>0(σ(v) − 1) =
|E| − |V| + 1.

Given a cluster C and a rooted phylogenetic tree T. If there is an edge e in T such that the set
of taxa reachable from e equals C, we say that T represents C. Given a network N, when con-
necting one incoming edge and disconnecting all other incoming edges for each reticulate
node, if there exists a tree edge e such that the set of taxa reachable from e equals C, we say that
N represents C in the softwired sense. Alternatively, if there is a tree edge e in N such that the
set of taxa reachable from e equals C, we say that N represents C in the hardwired sense.

Let N = (V, E) be a network representing the set of clusters C. A cluster C 2 C is often repre-
sented by more than one tree edge in N and a tree edge e 2 E often represents more than one
cluster in C. If there exists a mapping � from C to the set of tree edges of N, where �(C) is a tree
edge representing C for C 2 C, such that for any two clusters C1;C2 2 C, C1 and C2 lie in the
same connected component of the incompatibility graph IG(C) if and only if �(C1) and �(C2)
are contained in the same biconnected component of N. Then we call that N is decomposable
w.r.t. C.
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When constructing rooted phylogenetic networks from rooted phylogenetic trees, the meth-
ods first compute the clusters represented by the input trees, and then construct a rooted phy-
logenetic network representing all clusters.

The rooted phylogenetic networks can describe evolutionary history in the presence of retic-
ulate events, such as horizontal gene transfers, hybridizations and recombinations. These retic-
ulate events are rare in reality [33]. Accordingly, it is expected that the constructed network has
the minimal number of reticulate nodes. Let N be a network constructed for the input cluster
set C. Assume that C

0

is the set of clusters represented by N. In fact C
0

contains more clusters
than C, i.e. C⊊ C

0

. Here we define the redundant clusters C0 of N as the clusters which are in C
0

but not in C, i.e. C0 ¼ C
0

nC. In phylogenetic analysis, the taxa in a cluster are putative mono-
phyletic. Consequently, the ideal situation would be C0 ¼ ;, i.e. all clusters represented by the
constructed network would be the clusters represented in the input trees, and no others. There-
fore, by means of parsimony principle, the best constructed network is one that minimizes the
number of redundant clusters, which is based on the prerequisite that it has minimal number
of reticulate nodes.

The following sectionwill introduce the main methods for constructing rooted phylogenetic
networks from rooted phylogenetic trees.

Methods

So far, the main methods for constructing rooted phylogenetic networks from rooted phyloge-
netic trees are the cluster network, the galled network, the CASS, the LNETWORK and the BIMLR.
The following will give a brief introduction to each method.

The cluster network is a method for constructing rooted phylogenetic networks, which is
based on the Hasse diagram. Given a set of clusters C. It first defines a partial order which is a
binary relation≼ on C: for u; v 2 C, u ≼ v if and only if u� v. The ðC;�Þ is called a partially
ordered set. Then it draws a Hasse diagram H = (V, E) for ðC;�Þ, which is a DAG with node
set V ¼ C and the edge set E, where there is an edge e = (u, v) if and only if v ⪵ u and there
exists no other node w in V such that v ⪵w⪵ u. Finally it labels the leaves of H by the taxa of X
and assigns the root of H. The result DAG is the rooted phylogenetic network representing C.

The galled network is a method based on the seed-growing algorithm. It first finds a set of
taxa S � X by seed-growing algorithm such that the set C

0

¼ CjXnS is compatible. Next it con-

structs a rooted tree T for C
0

. Finally it attaches the reticulate nodes to T under a certain amount
of constraints, where the labels of nodes which are children of reticulate nodes are the taxa of S.
The constructed network represents C.

The CASS, the LNETWORK and the BIMLR are the methods based on the decomposition prop-
erty of networks. They first find all non-trivial biconnected components C1; C2; � � � ; Ck of
IGðCÞ; and then construct the subnetwork for Cið1 � i � kÞ; next integrate those subnetworks
into a final network. The difference among them is the construction of the subnetworks.

We have known that a network N represents an incompatible set of clusters. After removing
all reticulate nodes from N, N becomes a tree representing a compatible set of clusters. How-
ever, the construction of networks is the inverse process mentioned above. Given a set of clus-
ters C on X . We can construct a tree for C if it is compatible, otherwise,we first remove some
taxa fromX , such that the result set C

0

is compatible, then construct a tree for C
0

, finally append
the removed taxa to the tree under certain conditions.

The CASS, the LNETWORK and the BIMLR construct subnetworks by the above description.
Assume that the taxa set of Ci is X i (1� i� k). When constructing the subnetworks for Ci,
they first remove a few taxa of X i from each cluster in Ci, such that the result set C0 is
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compatible, then construct a rooted tree T for C0, next attach some new reticulate nodes to T,
finally add a new leaf below each reticulate node and label it as the removed taxon. From the
process, we can see that the removed taxa in X i are very pivotal.

The difference among the CASS, the LNETWORK and the BIMLR is the removed taxa. The CASS

tries to remove a few taxa, i.e. by means of trial and error, it randomly removes some taxa, if it
can construct a network representing the set of clusters, then it stops; otherwise it continues to
remove other taxa. The LNETWORK removes the taxa computed by seed-growing algorithm. The
BIMLR removes the incompatibility taxa with the maximal frequency. The CASS method aims
at minimizing the number of reticulate nodes, while the LNETWORK and the BIMLR not only
minimize the number of redundant of clusters but also let the reticulate nodes as few as
possible.

When constructing networks, the LNETWORK and the BIMLR find all networks representing
the cluster set, mainly to reduce the number of redundant clusters in the resulting network and
lessen the influence of the input data order on the resulting network.

Results

In order to survey the performance of those methods, we do the experiments using both the
practical and artificial data. The paper [31] has compared the LNETWORK, the CASS, the cluster
network and the galled network; and the results show that the LNETWORK and the CASS can con-
struct much simpler networks than the others. Here we just compare the LNETWORK, the CASS

and the BIMLR using both the practical and artificial data (https://sites.google.com/site/
cassalgorithm/data-sets).

All experiments were performed on a computer with an Intel Xeon E5504 2.0GHz CPU, 8
GB RAM and 147GB HDD. The operating system was Debian 4.1 32bit with Java 1.6 installed.

The experiments are used to compare two main aspects of these methods, on the one hand,
the influence of input data order (Table 1 shows the results), on the other hand, the complexi-
ties of the constructed network, i.e. the reticulation number and the number of redundant clus-
ters (Tables 2 and 3 show the results).

The papers [31, 32] have shown that the LNETWORK and the BIMLR are superior to the CASS

in terms of the influence of input data order; and the two methods are faster than the CASS.
Here we just compare the LNETWORK and the BIMLR on the influence of input data order, and
the results are shown in Table 1. In the experiment, because each program needs to construct
the network for every input order of dataset, the running time is factorial. Accordingly, here we
just use the dataset with small scale.When comparing networks constructed by a method for
the same dataset with different input orders, the difference of those networks is more small, the
method is more stable, otherwise it is unstable. Here the difference among the constructed net-
works is measured by means of the tripartition distances [34].

Table 1 shows the number of constructed networks, the mean, the minimum (min) and the
maximum (max) of tripartition distance of those networks constructed for each dataset. And
the last row shows the average values. From the Table 1 we come to the following conclusions.
First, for the same data with different input orders, the number of different networks con-
structed by the BIMLR is less than the number of different networks constructed by the LNET-

WORK except for the dataset with jCj ¼ 21 and jX j ¼ 11. Second, for almost datasets, the mean,
min, max of the BIMLR are less than corresponding values of the LNETWORK except for the data-
sets with jCj ¼ 22; jX j ¼ 13, jCj ¼ 21; jX j ¼ 11 and jCj ¼ 22; jX j ¼ 10. The result shows
that, when the input order of the data is changed, even the network constructed by the BIMLR
is more than one, those networks are more similar to each other than the networks constructed
by LNETWORK. Thus, the BIMLR are more stable than the LNETWORK.
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Table 2. Results of BIMLR, LNETWORK and CASS for the artificial datasets.

Data BIMLR LNETWORK CASS

jCj jX j t r c t r c t r c

14 4 1 s 3 0 1 s 3 0 1 s 3 0

30 5 3 s 4 0 2 s 4 0 2 s 4 0

62 6 11 s 5 0 18 s 5 0 11 s 5 0

42 10 2 s 4 8 1 s 4 14 10 s 4 34

39 11 2 s 5 8 38 s 6 18 21 s 5 7

61 11 3 s 5 11 15 s 6 43 1 m 26 s 5 48

75 30 1 s 2 19 1 s 2 19 4 s 2 19

180 51 4 s 2 0 4 s 2 0 40 s 2 0

70 56 1 s 4 0 1 s 4 0 1 s 4 0

270 76 12 s 2 0 12 s 2 0 6 m 22 s 2 0

404 122 44 m 2 0 44 s 2 0 1 h 14 m 2 0

113.4 34.7 7 s 3.5 4.2 13 s 3.6 8.5 7 m 34 s 3.5 10

Note: t, r and c represent, respectively, the running time, the reticulation number and the redundant cluster number.

doi:10.1371/journal.pone.0165834.t002

Table 1. Results of LNETWORK compared with BIMLR in terms of influence of input data order.

Data LNETWORK BIMLR

jCj jX j n mean min max n mean min max

35 22 1 0 0 0 1 0 0 0

25 15 1 0 0 0 1 0 0 0

22 13 2 1 1 1 2 1.5 1.5 1.5

27 15 2 1 1 1 2 1 1 1

25 13 3 1.2 0.5 1.5 1 0 0 0

22 11 1 0 0 0 1 0 0 0

17 10 3 1.3 1 1.5 3 1.3 1 1.5

13 8 2 1 1 1 1 0 0 0

23 11 2 1 1 1 2 1 1 1

18 10 3 2.5 1.5 3.5 3 1.5 0.5 2.5

21 11 1 0 0 0 2 0.5 0.5 0.5

12 10 1 0 0 0 1 0 0 0

21 10 2 1.5 1.5 1.5 2 0.5 0.5 0.5

13 7 2 1 1 1 1 0 0 0

22 10 1 0 0 0 2 0.5 0.5 0.5

21.3 11.7 1.8 1.2 1.1 1.4 1.6 0.6 0.4 0.7

Note: n represents the number of constructed networks and mean, min, max represent, respectively, the mean, the minimum, the maximum of tripartition

distances of those networks.

doi:10.1371/journal.pone.0165834.t001
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We compare the BIMLR, the LNETWORK and the CASS on several artificial datasets. Table 2
shows the results, which have the reticulation number r, the redundant cluster number c, the
running time t in hours (h), minutes (m) and seconds (s), and their average values in last row.
Table 2 shows that the BIMLR takes least time except for the datasets with jCj ¼ 30; jX j ¼ 5

and jCj ¼ 404; jX j ¼ 122. For every dataset, the reticulation number of the network con-
structed by the BIMLR is the same as that of the network constructed by CASS, which is less
than that of the network constructed by the LNETWORK. The networks constructed by LNETWORK

have fewer redundant clusters than the networks constructed by CASS for almost all datasets,
while the networks constructed by BIMLR have fewest redundant clusters. Thus, the networks
constructed by BIMLR are simplest in terms of the redundant clusters and the reticulation
number contained in the constructed networks for the artificial datasets.

We compare the BIMLR, the LNETWORK and the CASS on practical datasets. Table 3 shows
the results, which have the reticulation number r, the redundant cluster number c, the running
time t in hours (h), minutes (m) and seconds (s) and their average values in last row. Table 3
shows the BIMLR takes least time except for the dataset with jCj ¼ 79; jX j ¼ 27. For most
datasets, the reticulation number of the networks constructed by the CASS is least, secondly
LNETWORK, at least BIMLR. The networks constructed by LNETWORK have fewest redundant
clusters, secondly the BIMLR, at least CASS. Table 3 shows that the average reticulation number
of LNETWORK and BIMLR is slightly more than that of CASS. Hence, the networks constructed
by LNETWORK are simplest for the practical dataset.

From the Tables 2 and 3, it follows that the LNETWORK and the BIMLR take less time than
the CASS; the networks constructed by LNETWORK and BIMLR have fewer redundant clusters
than those constructed by CASS; and the average reticulation number of LNETWORK and
BIMLR are slightly more than that of CASS.

Table 3. Results of BIMLR, LNETWORK and CASS for the practical datasets.

Data BIMLR LNETWORK CASS

jCj jX j t r c t r c t r c

86 37 3 s 8 23 13 s 8 11 3 s 8 27

38 20 2 s 6 25 6 s 6 15 4 s 6 25

43 22 1 s 5 11 1 s 5 3 1 s 4 12

72 27 3 s 7 29 1 s 7 19 15 s 7 43

52 22 9 s 8 15 1 m 12 s 8 15 17 s 7 33

79 27 2 m 40 s 10 52 39 s 8 44 7 m 21 s 8 89

38 16 5 s 8 25 14 m 12 s 9 36 15 s 7 50

41 16 1 s 5 7 3 s 5 4 2 s 5 29

12 8 1 s 2 0 1 s 2 0 0 s 2 2

45 20 4 s 7 47 31 s 7 28 4 h 14 m 7 66

22 11 1 s 3 4 1 s 3 1 0 s 3 5

17 10 1 s 3 7 1 s 3 4 1 s 3 8

46 16 9 s 8 22 21 s 8 15 23 s 7 34

22 11 3 s 5 21 10 s 4 13 2 s 4 23

22 10 2 s 5 19 10 s 4 12 2 s 4 21

42.3 18.2 14 s 6 20.5 1 m 11 s 5.8 14.7 18 m 5.5 31

Note: t, r and c are defined as in Table 2.

doi:10.1371/journal.pone.0165834.t003
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Conclusion

We compared BIMLR, LNETWORK and CASS using one artificial and one practical dataset. The
results show that the BIMLR is superior to the others for the artificial datasets, while the LNET-

WORK is superior to the others for the practical datsets. Accordingly in practice, the LNETWORK is
the best option for the construction of networks.
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34. Cardona G, Llabrés M, Rosselló F, Valiente G. Metrics for phylogenetic networks I: Generalizations of

the Robinson-Foulds metric. IEEE/ACM Transactions on Computational Biology and Bioinformatics

(TCBB). 2009; 6(1): 46–61. doi: 10.1109/TCBB.2008.70 PMID: 19179698

Constructing Rooted Phylogenetic Networks

PLOS ONE | DOI:10.1371/journal.pone.0165834 November 2, 2016 9 / 9

http://dx.doi.org/10.1093/bioinformatics/btt378
http://dx.doi.org/10.1093/bioinformatics/btt378
http://www.ncbi.nlm.nih.gov/pubmed/23811095
http://dx.doi.org/10.1016/j.gene.2013.06.036
http://dx.doi.org/10.1016/j.gene.2013.06.036
http://www.ncbi.nlm.nih.gov/pubmed/23816409
http://dx.doi.org/10.1109/TCBB.2008.70
http://www.ncbi.nlm.nih.gov/pubmed/19179698

