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Abstract

We augment the existing literature using the Log-Periodic Power Law Singular (LPPLS)

structures in the log-price dynamics to diagnose financial bubbles by providing three main

innovations. First, we introduce the quantile regression to the LPPLS detection problem.

This allows us to disentangle (at least partially) the genuine LPPLS signal and the a priori

unknown complicated residuals. Second, we propose to combine the many quantile regres-

sions with a multi-scale analysis, which aggregates and consolidates the obtained ensem-

bles of scenarios. Third, we define and implement the so-called DS LPPLS Confidence™
and Trust™ indicators that enrich considerably the diagnostic of bubbles. Using a detailed

study of the “S&P 500 1987” bubble and presenting analyses of 16 historical bubbles, we

show that the quantile regression of LPPLS signals contributes useful early warning sig-

nals. The comparison between the constructed signals and the price development in these

16 historical bubbles demonstrates their significant predictive ability around the real critical

time when the burst/rally occurs.

Introduction

The daily actions resulting from the entangled interactions between investors in markets with
ever more numerous financial innovations are the cause of the increasingly inherent complex-
ity of price dynamics. This complexity is revealed through the occurrence of variedmarket
regimes, from transient bubbles, to high volatility markets and prolonged market negative per-
formance. The present theoretical knowledge and empirical methodologies are insufficient to
fully capture the emerging risks. As financial markets provide both a measure of the health of
the underlying economy and an engine for funding firms and catalysing growth, it is urgent to
develop new approaches to describe the large price fluctuations and to develop testable diag-
nostics of financial bubbles. The present article aims at extending the approach pioneered in
[1–6] to develop novel testable diagnostics of financial bubbles. Real timemonitoring and
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timely early warning of finance bubbles are not only an important part of recent academic
research to expand on the efficientmarket hypothesis. They are also motivated by concrete real
life applications to possibly avoid financial crises and at least prepare against them to ensure a
prompt and efficient response [7–9]. Various scientific platforms have been built to monitor
asset prices and to study financial bubbles. Here, we build on the Financial Crisis Observatory
at ETH Zurich (http://www.er.ethz.ch/financial-crisis-observatory.html), which has the goal of
testing rigorously the hypothesis that financial markets exhibit a degree of inefficiencyand a
potential for predictability, especially during regimes when bubbles develop.

In general, normal times are characterised by an approximate constant return (or price
growth rate). This is nothing but the statement that the average price trajectory is a noisy expo-
nential that reflects the power of compounding interests. As the simplest embodiment of this
noisy exponential growth, the Geometrical Brownian Motion model is the starting point of
more sophisticated models in financial mathematics and financial engineering.However,
financial markets often deviate strongly from such simple description in the form of bubbles,
defined as periods in which asset prices strongly deviate from the corresponding fundamental
value. One of the practical problems of bubble identification is that the fundamental value is
not directly observable and is roughly estimated within a factor of 2 [10], typically. Based on
the analyses of many historical bubbles, the studies [1–3, 11] have documented that there are
transient regimes during which the price growth rate (return) grows itself, which translates
into a super-exponential time dynamics. Such a procyclical process involving positive feed-
backs, which can be of many types, such as option hedging, portfolio insurance strategies, mar-
gin requirements, as well as the imitation and herding behavior in psychology. These
mechanisms tend to increase and accelerate the deviation from an equilibrium. The resulting
super-exponential price trajectories are inherently unsustainable and often burst as crashes or
strong corrections. In a nutshell, the existence of a transient faster-than-exponential price
growth can be taken as a signature of bubbles [6, 11, 12]. The advantage of this definition of a
bubble is that it does not rely on the estimation of what is a fundamental value (see e.g., [13]),
which is poorly known as mentioned above.

The Log-Periodic Power Law Singularity (LPPLS) model has been proposed as a simple
generic parameterisation to capture such super-exponential behavior [1–4], which is inspired
from physics (and is sometimes referred to as part of econophysics [14]). This model takes into
account that positive feedbacks generically lead to finite-time singularities [9, 15, 16]. More-
over, it includes log-periodicoscillations decorated by accelerating oscillations, which are the
observable embodiment of the symmetry of discrete scale invariance [17]. This generic log-
periodicity accounts for the existence of a discrete hierarchy of group sizes [18] and may also
result from the interplay between nonlinear value investors and nonlinear trend followers, and
the inertia between information flow and price discovery [15]. In summary, the LPPLS model
provides a convenient representation of financial bubbles.

As mentioned above, the LPPLS model is the simplest analytical formulation of time series
that possess a discrete regular hierarchy of time scales [17]. It is a particularly useful tool
among the large set of concepts and methods dealing with multi-scale analysis of mono- and
multi-variate time series, which include temporal multifractal analysis [19–22], directed
weighted network representations of time series using the delayed coordinate embedding
method combined with a distance that provides an adjacencymatrix [23–26], and a variety of
techniques at the intersection of nonlinear dynamical system theory, statistical time series anal-
ysis, fractals, cellular automata, machine learningmethods, wavelet transformmethods, fuzzy
logic and more [27, 28].

We thus follow up on these previous efforts to diagnose financial bubbles and their termina-
tions by proposing several innovations. First, rather than using the standard least squares or
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maximum likelihood calibration method, we apply the quantile regression method to the
LPPLS calibration problem. In other words, rather than fitting a given log-price time series by
a single LPPLS model, quantile regressions provide a family of calibrated curves indexed by the
probability level q. Scanning q between 0 and 1 allows us to disentangle (at least partially) the
genuine LPPLS signal from the a priori unknown complicated residuals. Moreover, this new
technology alleviates some of the statistical problems that have plagued the literature: error in
variables, sensitivity to outlier and non-normal error distributions [29]. It provides a descrip-
tive approach reportingmore than just the expectedmean of a conditional distribution, but
may also discover more complete structures without imposing global distributional assump-
tions on the residuals. In contrast, the standard least squares or maximum likelihood estima-
tion procedures are vulnerable to the existence of outliers [30]. In sum, the prediction
inference associated with quantile-based estimates has an inherent distribution-free character
since they are influenced only by the local behavior of the underlying distribution near the
specifiedquantile [31]. The different q-dependent LPPLS fits also provide a bundle of possible
scenarios that are compatible with different weights of the residuals supposed to decorate the
theoretical driver.

While the implementation of ensemble forecasting from quantile estimates is still in its
infancy, we apply the ensemble forecasting obtained from the quantile regressions at various q
values to construct early warning signals. This is proposed to improve on the common practice
of relying on one single calibration to make forecasts. This provides a representative sample of
the possible future states in order to improve generalization and robustness compared with sin-
gle estimators [32]. On average, the combined estimator is usually better than any of the single
base estimator because its variance is reduced. The median of individual estimates is more
accurate than at least half of the individual forecasts [33].

Then, we propose to combine the many quantile regressions with a multi-scale analysis.
This leads to the development of ensemble forecasting that combines a grid of quantile-based
estimators into a final aggregated predictor. We further introduce the Quantile-Violin plots
and the dt-Violin plots as powerful representations of the enormous amount of information
generated by scanning the quantile levels and the time scales.

Finally, we define and implement the so-calledDS LPPLS Confidence™ and Trust™ indica-
tors, which provide an aggregation and consolidation of the wealth of generated information
and we put them at work to diagnose 16 historical bubble cases. Positive bubbles and negative
bubbles can be respectively identified from the performance of these systemic indicators.

We proceed as follows. Section 2 presents the LPPLS model and gives an overviewon some
theoretical aspects of the standard ordinary least square regression (referred to as the L2 norm
calibration) and of quantile regressions. Section 3 presents the metrics, the methodology and a
battery of tests performed on the S&P 500 bubble that burst in October 1987. In particular, we
introduce the Quantile-Violin plots and the dt-Violon plots as efficient presentations of the
multi dimensional metrics. Section 4 extends section 3 to three other historical financial bub-
bles, providing interesting elements of comparison. Section 5 introduces the DS LPPLS Confi-
dence™ and Trust™ indicators. Section 6 applies all the above tools and metrics to 16 historical
financial bubbles and compare the indicators with the price time series. Section 7 summarises
our main conclusions.

Model and calibrations

Log-Periodic Power Law Singularity (LPPLS) model

The Johansen-Ledoit-Sornette (JLS)model [2, 3] assumes that the asset price p(t) follows a
standard diffusive dynamics with varying drift μ(t) in the presence of discrete discontinuous
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jumps:

dp
p
¼ mðtÞdt þ sðtÞdW � kdj; ð1Þ

where σ(t) is the volatility and dW is the increment of a Wiener process (with zero mean and
variance equal to dt). The term dj represents a discontinuous jump such that j = 0 before the
crash and j = 1 after the crash occurs. The loss amplitude associated with the occurrence of a
crash is determined by the parameter κ. Each successive crash corresponds to a jump of j by
one unit. The dynamics of the jumps is governed by a crash hazard rate h(t). Since h(t)dt is the
probability that the crash occurs between t and t + dt conditional on the fact that it has not yet
happened, we therefore have the expectationEt[dj] = 1 × h(t)dt + 0 × (1 − h(t))dt = h(t)dt. By
the no-arbitrage condition leading to the condition that the price process is a martingale

(Et
dp
p

h i
¼ 0, neglecting the risk free rate), it leads to μ(t) = κh(t).

Under the assumption of the JLS model, the crash hazard rate aggregated by the noise trad-
ers with herding behaviors has the following dynamics:

hðtÞ � B0jtc � tj
m� 1
þ C0jtc � tj

m� 1 cos ðo ln jtc � tj þ �
0
Þ: ð2Þ

Using μ(t) = κh(t), we obtain the dynamics of the expectation of the logarithm of the price
in the form of the Log-Periodic Power Law Singularity (LPPLS) model:

E½ ln pðtÞ� ¼ Aþ Bjtc � tj
m
þ Cjtc � tj

m cos ðo ln jtc � tj þ �Þ; ð3Þ

where tc denotes the most probable time for the burst of the bubble, in the form of a crash for
example. The constant A = ln[p(tc)] gives the terminal log-price at the critical time tc.
B ¼ sgnðt � tcÞ

kB0

m and C ¼ sgnðt � tcÞ
kC0ffiffiffiffiffiffiffiffiffiffi
m2þo2
p respectively control the amplitude of the power

law acceleration and of the log-periodicoscillations. The exponentm quantifies the degree of
super-exponential growth. The log-periodic angular frequencyω is related to a scaling ratio
λ ¼ exp 2p

o

� �
of the temporal hierarchy of accelerating oscillations converging to tc. Finally, ϕ 2

(0, 2π) is a phase embodying a characteristic time scale of the oscillations. Eq (3) is the first-
order log-periodic correction to a pure power law for an observable exhibiting a singularity at
tc [4, 34].

Given the starting and ending dates tstart and tend of the fitting window, we define dt≜ tend �
tstart as the duration of the fitting window. The critical time tc is searched in the interval [tend −
ηdt, tend + ηdt], with η is typically equal to 0.20. Previous calibrations of the LPPLS specification
Eq (3) to the log-price development during a number of historical financial bubbles have sug-
gested to qualify fits based on the parameters of the LPPLS model belonging to the following
intervals [5, 35, 36]:m 2 [0.1, 0.9], ω 2 [6, 13], |C|� 1, B< 0. In our explorations, we have
found that relaxing the search space to the larger intervalsm 2 [0, 2] and ω 2 [1, 50] does not
change the results significantly, particularly for the calibrated critical times within statistical
fluctuations. The results we report below have thus been obtained for the larger search ranges
m 2 [0, 2], ω 2 [1, 50].

The optimization problem using the standard Ordinary Least Squares

(OLS) method

Filimonov and Sornette [36] suggested to expand the cosine term of Eq (3) with C1 = C cos ϕ,
C2 = −C sin ϕ to obtain a representation with 4 linear and 3 nonlinear parameters, providing a
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substantial gain in efficiency and stability of the calibration. This leads to rewrite Eq (3) as

lnE½pðtÞ� ¼ Aþ Bjtc � tj
m
þ C1jtc � tj

m cos ðo ln jtc � tjÞ þ C2jtc � tj
m sin ðo ln jtc � tjÞ: ð4Þ

The optimization problem with the standard Ordinary Least Squares (OLS) method aims to
minimize the sum F(tc,m, ω, A, B, C1, C2) of squared residuals between the log-price ln p(ti),
i = 1, 2, . . .,N and Eq (4), where

Fðtc;m;o;A;B;C1;C2Þ

¼
XN

i¼1

ð ln pðtiÞ � A � Bjtc � tij
m
� C1jtc � tij

m cos ðo ln jtc � tijÞ

� C2jtc � tij
m sin ðo ln jtc � tijÞÞ

2
:

ð5Þ

The optimization problem using the Quantile Regression calibration

method

Intuitively, the OLS calibration method is finding the best fit “in mean”. In other words, the
parameters are adjusted so that the function to calibrate is the closest to the mean of the noisy
realisation of the log-price, where the mean should be considered conceptually to occur over
many realisations of the noise decorating the supposed theoretical function Eq (4). If the noise
is not normally distributed and exhibits heavier tails, the OLS calibration may be contaminated
by large deviations of the noise from the mean. Then, fitting the data to the function that is the
closest to the median of the noisy realisation of the log-pricemay be more adequate and lead to
more stable estimations. It is well known that this amounts to replacing the L2 norm (sum of
the square of the differences) in Eq (5) by the L1 norm (sum of the absolute value of the differ-
ences). Quantile regressions amount to generalizing the minimisation of the L1 norm and pro-
vide not just a single best fit to the median but a bundle of best fits to the different quantile
realisations of the noise around the theoretical LPPLS function Eq (4).

First, let us recall that the qth quantile of a random variable Y with distribution function
FY(y) = P(Y� y) is defined as

QYðqÞ ¼ inf fyjFYðyÞ � q; q 2 ð0; 1Þg : ð6Þ

Let us define the q-dependent loss functionwith respect to residual et:

rqðetÞ ¼

(
� ð1 � qÞet if et < 0;

qet if et � 0:
ð7Þ

For q = 1/2, r1=2ðetÞ ¼ 1

2
jetj, so minimizing ρ1/2(et) is nothing but minimising the L1 norm.

Quantile regression corresponds to finding the quantile-dependent parameters fbtcðqÞ,
m̂ðqÞ, ôðqÞ, ÂðqÞ, B̂ðqÞ, bC1ðqÞ, bC2ðqÞg that minimise the function

qðtc;m;o;A;B;C1;2Þ ¼
XN

i¼1

rqf lnpðtiÞ � A � Bjtc � tij
m
�

C1jtc � tij
m cos ðo ln jtc � tijÞ � C2jtc � tij

m sin ðo ln jtc � tijÞg:

ð8Þ
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In other words, for each quantile level q, we obtain a set of q-dependent calibrated parameters

fbtcðqÞ; m̂ðqÞ; ôðqÞ; ÂðqÞ; B̂ðqÞ; bC1ðqÞ; bC2ðqÞg ¼ argmin
tc;m;o;A;B;C1 ;C2

Sqðtc;m;o;A;B;C1;C2Þ : ð9Þ

To significantly decrease the complexity of the search and provide an intuitive representa-
tion of the results of the calibration, a two-stage fitting procedure is developed according to the
special structure of the LPPLS model [36]. That is, according to Eq (4), the complexity of the
optimization problem is reduced by slaving 4 linear parameters to the 3 nonlinear parameters.
In essence, for minimizing the objective function of the OLS or Quantile Regressions, the linear
parameters {A, B, C1, C2} or {A(q), B(q), C1(q), C2(q)} are determined using the LU decomposi-
tion algorithm through a linear regression model, while the nonlinear parameters {tc,m, ω} or
{tc(q),m(q), ω(q)} are searched globally through the Taboo search followed by the Quasi-New-
ton method with line search.

From the definition in Eqs (7) and (8), one can see that the quantile regression is an asym-
metrically weighted L1-based regression, where the asymmetry is governed by the value q. The
special case q = 1/2 is symmetric and recovers the aforementioned L1 norm calibration. For q
6¼ 1/2, by construction of Eq (7), the best fit corresponds statistically to q � 100% of the data

points {ln p(ti), i = 1, 2, . . .,N} to be below the theoretical curve dln pqðtÞ and (1 − q) � 100% of
the data points to be above it. Thus, for q> 1/2 (resp. q< 1/2), most of the data points are

below (resp. above) the calibrated curve dln pqðtÞ, putting it above (resp. below) the median fit.

Methodology, metrics and tests on “S&P 500 1987” bubble

To illustrate the performance of the OLS and quantile regression methods, we test them on the
time series of the S&P 500 Composite Index over the time period corresponding to the bubble
that burst with the crash in October 1987, hereafter referred to as the “S&P 500 1987” bubble.

LPPLS quantile regression curves for different quantile probability level

q

Fig 1 represents a bundle of nine coloured quantile-based calibrated curves obeying expression
Eq (4) obtained using the quantile regression method Eq (8) with Eq (7)) for nine quantile
probability level q = 0.10, 0.20, . . ., 0.90. The three panels correspond to three time windows
[1984.07.30, 1987.06.12] (top panel), [1984.09.21, 1987.08.06] (middle panel) and [1984.12.03,
1987.10.16] (bottom panel). The black dashed vertical line in each panel represents the corre-
sponding end date tend of the in-sample window. The red dashed vertical line is the true critical
date Tc = 1987.10.19. The in-sample standard L2-based fitted curve is also shown as the red
thick curve, which is extended by the red dashed thick out-of-sample curve.

From the three panels, one can see that the quantile curves cover approximately 80% of the
variability of the empirical price time series, as they should according to the choice of q span-
ning from 0.10 to 0.90. The smaller (resp. larger) values of q tend to fit the lowest (resp. highest)
part of the time series, providing together fuzzy envelops of the time series that seem quite rea-
sonable visually. Note that these estimated critical times btc correspond to the times at which the
calibrated curves peak. For the Fig 1A and 1B corresponding to tend not to close from the crash,
one can observe that, apart from the lowest quantiles that exhibit more variability, the higher
values of the quantiles provide consistent fits with estimated values of the critical time btc close
to the true value Tc. In contrast, the standard L2-based fit tends to overshoot, similarly to the
lowest quantiles. The situation reverses for the Fig 1C with tend being very close to the crash,
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for which most of the quantiles (and the L2-based fit) overshoot significantly by about five
months, while the lowest curve for q = 0.10 undershoots by approximately two months.

The divergence between the fitted functions obtained for low q’s and large q’s illustrates the
first advantage of quantile regressions for LPPLS signals, that is, to provide a range of possible
scenarios that can bracket the true value of Tc, given that scanning q provides a family of cali-
brated functions that are sensitive to different parts of the statistical fluctuations supposed to
decorate the theoretical generating process in Eq (4). More generally, one never knows pre-
cisely how the noise entangles with the LPPLS signals. Practical scenarios are more challenging
in that the data often have unequal variation (a “location-scalemodel” in statistical terminol-
ogy) due to the complex interactions between the various factors. This implicitly recognizes
that there might be not a single super-exponential rate of change that characterizes changes in
the probability distribution of log-price. In such cases, as well as in the presence of model errors
(the true generating process is not known and the LPPLS model is only an approximation),
quantile regressions provide a useful reading of the influence of the different noise quantile lev-
els on the calibration results. The quantile regression also allows one to explore the heterogene-
ity of residuals as a function of time and deals with the asymmetric shape of the conditional
distribution, which might be missed by OLS regression.

Multi-scale analysis of btc as a function of q and dt

btcðq; dtÞ versus tend. In a real time situation, tend of the time window corresponds to the
last time at which data is available to perform the analysis. Considering a potential bubble
bursting at the true critical time Tc, tend is the “present” time up to which the LPPLS signal is
available, from which an estimation of the bubble end time btc can be formed. There is an inher-
ent tradeoff among these three times tend, Tc and btc. When tend is far from Tc, it is unlikely that
the existing information is rich enough to provide an accurate prediction btc. Conversely, when
tend is close to Tc, the singular nature of the LPPLS trajectorymakes the determination btc sensi-
tive to the idiosyncratic realisation of the noise.

It is thus necessary to study their relationships systematically. We introduce the tend � btc
plane as shown in Fig 2, in which Tc is indicated by the red dashed horizontal and vertical lines.
The black diagonal line btc ¼ tend separates the region where the estimated burst is in the future
(btc > tend, domain above the diagonal) from the region where the estimated burst is in the past
(btc < tend, domain below the diagonal). The grey band represents the searched interval [tend −
ηdt, tend + ηdt] of btc in the calibration, as explained in section 2. Then, one can identify six pos-
sible regions (represented by the roman numbers I to VI) associated with the different relation-
ships among tend, Tc and btc.

• Regions I and VI (True Positives) are the most desired situations in which the bubble is on-
going and the predicted btc is in the future.

Fig 1. Nine coloured calibrated curves obtained by the method of LPPLS quantile regression for nine

different q of the “S&P 500 1987” bubble. (A) Curves in the time window [1984.07.30, 1987.06.12]. (B)

Curves in [1984.09.21, 1987.08.06]. (C) Curves in [1984.12.03, 1987.10.16]. The in-sample continuous

curves in each panel are extended by dashed out-of-sample lines with the same colours. The noisy black line

is the in-sample empirical price time series, followed by the black dashed out-of-sample data. The red thick

line is the standard L2-based fitting curve for comparison, which is extended by the red dashed out-of-sample

curve. The black dashed vertical line shows the value of tend used in the calibration. The red dashed vertical

line gives the true Tc = 1987.10.19.

doi:10.1371/journal.pone.0165819.g001
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• Region II (False Negatives) corresponds to a failure of the prediction that purports that the
bubble has ended (btc < tend), while this is not true (Tc> tend).

• Regions III and IV (True Negatives) represent the case where the bubble has already ended
and the calibration correctly diagnoses it.

• Region V (False Positives) is another failure of the prediction, which is opposite to region II.
The prediction is that the bubble continues and its critical time btc is in the future (btc > tend),
while it has truly ended (Tc< tend).

Fig 3 shows the dependence of btcðq; dtÞ as a function of tend for two different values of the
window size dt = 500 and 750 trading days (dt = tend − tstart), obtained by quantile regressions
with 99 values {q = 0.01, 0.02, . . ., 0.99} of the S&P 500 time series already used in Fig 1 in win-
dows sliding in steps of 5 trading days within [1986.05.12, 1988.08.29]. Their medians (black
squares) and averages (red stars) are determined and compared with the L2 estimates shown as
the blue triangles. At the scale dt = 500 days in Fig 3A, one can observe that the predictedmedi-
ans and averages starting from tend =May 1987 become stable and close to the true critical date
Tc = 1987.10.19 (represented by the red dashed horizontal and vertical lines). In contrast, the
L2 estimate is more unstable. At the scale dt = 750 days in Fig 3B, a remnant of the stability
observed at the scale dt = 500 days is visible but the prediction is much more noisy.

The first important message of Fig 3 is that, when tend is too far from Tc, the estimated btc is
not stable and systematically underestimates the time of the bubble burst. Moreover, btc is found
to move upward proportionally to tend as the later increases. This observation holds for all

Fig 2. tend � btc plane. The six possible regimes associated with the different relationships between tend, Tc

and btc are depicted. The true time Tc at which the bubble bursts is indicated by the red dashed horizontal and

vertical lines.

doi:10.1371/journal.pone.0165819.g002
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three estimators (i.e., average, median and OLS fit). The secondmessage is that the difference
between the averages and medians shows that the distribution of these estimates is non-normal
and skewed.

Quantile-Violin representation q(tc) − pdf(tc(q)) of the ensemble of quantile regression
functions. The results of Fig 3 are far from constituting the whole story since the quantile
regressions can give much more than just an average or median tendency. In order to capture
the wealth of information of those 99 functions obtained for each tend, we introduce a generali-
sation of the violin plot [37] and call it “Quantile-Violin plot” (represented by q(tc) − pdf
(tc(q))), in which the standard box plot is complemented by a rotated kernel density plot on its
right side, and the corresponding q values are given on the left side.

Specifically, Fig 4 plots the results for the S&P 500 1987 bubble, where the three panels cor-
respond to dt = 500, 750 and 1000 trading days, respectively. Each panel contains seven Quan-
tile-Violin plots associated with the seven tend = 1987.03.19, 1987.04.30, 1987.06.25,
1987.08.06, 1987.10.15, 1988.02.11 and 1988.04.21. For a given tend, the right side of the Quan-
tile-Violin plot gives the rotated kernel density function of btc over the set of 99 quantiles, as
well as the descriptive statistics, such as the median (red line), the upper quartile (blue line),
the mean (black line) and the lower quartile (brilliant blue line). These values can be read on
the scale along the main vertical tc axis. The left side of the Quantile-Violin plot gives values of
q for each btc contributing to the distribution on the right side, with q = 0 on the central axis and
q = 1 corresponding to the maximum extension to the left. The red dashed horizontal and ver-
tical lines represent the real critical date Tc = 1987.10.19.

For dt = 500 trading days in Fig 4A, one can observe the stabilisation for tend = 1987.06.25,
1987.08.06 and 1987.10.15 of a set of scenarios bracketing the true critical time Tc =
1987.10.19. Earlier tend’s predictions are too far from Tc to have it in their prediction horizon.
But, there are scenarios in which btc tends to be stable and much closer to the true value than the
mean, median or OLS estimates. A qualitatively similar picture emerges for dt = 750 days in
Fig 4B, albeit more murky, with a larger spread of the estimated btc’s. A similar behavior is
obtained for the larger time scale dt = 1000 days in Fig 4C, with an even broader set of scenarios
around the trueTc. When tend is close to Tc, one can also see how sensitive the quantile regres-
sions are as five main scenarios appear corresponding to five modes of the distribution of btc.

From a statistical point of view, the main message of Fig 4 is that the probability density
function of btc is multimodal. The Quantile-Violin plots provide a more in-depth view of the
unfolding scenarios obtained by the LPPLS quantile regressions performedwith the search
rangesm 2 [0, 2], ω 2 [1, 50] and tc 2 [tend − 0.20dt, tend + 0.20dt]. These Quantile-Violin plots
also indicate the primary virtue of the median of quantile estimates [33]: (i) if the trueTc falls
within the range encompassed by all forecasts, no more than half of the individual forecasts
will be superior to the median forecast; (ii) at worst, if the trueTc lies outside the forecast
range, the median forecast will be better than 50% of the forecasts.

Fig 5 is the same as Fig 4 but for LPPLS quantile regressions performedwith the more
restrictive search conditionsm 2 [0.1, 0.9], ω 2 [6, 13] and tc 2 [tend − 0.20dt, tend + 0.20dt],
which are derived from previous investigations [5, 35, 36]. Reducing the search space of the

Fig 3. Average and median predictions of btcðq; dtÞ as functions of tend for two different window size. (A) dt = 500

trading days. (B) dt = 750 trading days. btcðq;dtÞ in each panel is obtained from quantile regressions with 99 values {q = 0.01,

0.02, . . ., 0.99} for the S&P 500 1987 bubble. The red horizontal and vertical dashed lines represent the true critical time Tc =

1987.10.19. The black tilted dashed line represents the diagonal line tc = tend.

doi:10.1371/journal.pone.0165819.g003
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two key nonlinear LPPLS parametersm and ω has two major effects: (i) the distributions of btc
tend to be more stable as a function of tend and bracket the trueTc for all cases, except for the
earliest tend = 1987.03.19 at the shortest time scale dt = 500 days; (ii) the spreads of btc values
over the different scenarios are narrower, indicating that the LPPLS quantile regressions pro-
vide more precise predictions of the trueTc.

dt-Violin representation dt(tc) − pdf(tc(dt)) of the ensemble of quantile regression func-
tions. Previous works have shown the importance of a multi-scale analysis (see e.g., [38]). In
our case, for a fixed tend, this amounts to scan tstart and redo the analysis for each window. Spe-
cifically, we shift tstart = tend − dt in steps of 5 trading days, obtaining 126 windows of sizes
dt = 750, 745, . . ., 125 trading days. For each window [tstart, tend], we perform the OLS estima-
tion and the quantile regression of the model Eq (4) on the same time series already used in
Figs 1 and 3–5, obtaining a set fbtcðq; dtÞjq ¼ 0:01; 0:02:::0:99g. This procedure is summarised
in Fig 6.

Analogously to Figs 4, 5 and 7 presents a synopsis of the results concerning the estimation
of btc, but now over the population of the 126 windows for the fixed tend and the various q’s. We
further generalise the violin plot [37] in the form of “dt-Violin plots”. The standard box plot is
now complemented by a rotated kernel density plot of btc over the set of 126 windows on its
right side for a fixed q, and the corresponding dt values are added on the left side. Specifically,
Fig 7 shows seven dt-Violin plots of btc for the S&P 500 1987 bubble, where the three panels cor-
respond to tend = 1987.06.25, 1987.08.06 and 1987.10.15, respectively. Each panel contains
seven dt-Violin plots associated with the seven values of q = 0.05, 0.10, 0.20, 0.30, 0.50, 0.80,
0.90. The kernel density distribution of fbtcðdtÞjdt ¼ 750; 745; :::; 125 trading days} is shown
rotated on the right side, as well as some descriptive statistics, such as the median (red line), the
upper quartile (blue line), the mean (black line) and the lower quartile (brilliant blue line). The
left side of the dt-Violin plot gives the values of dt for each btc contributing to the distribution
on the right side. The smallest window size of 125 days is on the central vertical axis of the dt-
Violin plots while the largest window size of 750 days corresponds to the maximum distance to
the left. The black dashed horizontal lines in each panel indicates tend. The red dashed horizon-
tal line shows the Tc = 1987.10.19. This provides an ensemble view of the predicted transition
times btc over a large set of window scales.

Fig 7A for tend = 1987.06.25 demonstrates that essentially all q’s predictions are approxima-
tively the same, in the sense that the modes of the pdf ðbtcÞ are close to the true critical date Tc =
1987.10.19.When tend = 1987.08.06 approaches Tc as shown in Fig 7B, the prediction quality
deteriorates with the pdf ðbtcÞ both broadening and becoming bimodal. The quantile predictions
differ however on the shape of the density distribution of btc. The quantile fits for q = 0.30 to

Fig 4. Quantile-Violin plots of btc for the seven values of tend. (A) dt = 500 trading days. (B) dt = 750

trading days. (C) dt = 1000 trading days. Each panel shows the results of the analysis for the following set of

tend = 1987.03.19, 1987.04.30, 1987.06.25, 1987.08.06, 1987.10.15, 1988.02.11 and 1988.04.21. btc is

determined by quantile regression of the log-price of the S&P 500 1987 bubble with Formula (4) with the

search space: m 2 [0, 2], ω 2 [1, 50] and tc 2 [tend − 0.20dt, tend + 0.20dt]. For each tend, the right side of the

Quantile-Violin plot gives the rotated kernel density function of btc over the set of 99 quantiles, as well as the

descriptive statistics, such as the median (red line), the upper quartile (blue line), the mean (black line) and

the lower quartile (brilliant blue line). These values can be read on the scale along the main vertical axis tc

axis. The left side of the Quantile-Violin gives values of q for each btc contributing to the distribution on the

right side, with q = 0 on the axis and q = 1 corresponding to the maximum extension to the left. The red

dashed horizontal and vertical lines represent the real critical date Tc = 1987.10.19.

doi:10.1371/journal.pone.0165819.g004
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Fig 5. Same as Fig 4 but for the search space m 2 [0.1, 0.9],ω 2 [6, 13] and tc 2 [tend − 0.20dt, tend

+ 0.20dt].

doi:10.1371/journal.pone.0165819.g005
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0.80 have significantly heavier tails towards large values of btc, even producing a second local
mode about three weeks after Tc. Only the largest q = 0.90 gives a predicted pdf ðbtcÞ with its
mode very close to Tc. The other quantiles have their main mode earlier, roughly in the middle
of tend and Tc. From the perspective of a decisionmaker, this corresponds to a second possible
scenario, which together with the main mode brackets Tc. Fig 7C for tend = 1987.10.15 very
close to Tc exhibits a strong bimodal (and a trimodal for the lowest quantiles) structure of the
pdf ðbtcÞ, bracketing Tc associated with two modes. The main mode occurs about one month
and a half earlier than Tc for all q, while it is two months later than Tc for the largest q = 0.90.
As a whole, the left side of each dt-Violin plot in the Fig 7 features dots that are organised in
rays, showing that the predicted btc form several families, and in each family btc is an affine func-
tion of the size dt of the window of analysis.

Applications to the prediction of the end of four historical bubbles

The previous section has studied the S&P 500 1987 bubble in great details. But this is just one
case.We now extend our analysis to three additional historical bubbles listed in Table 1 to
explore the ensemble behavior of the prediction of their critical end times over the set
fbtcðq; dtÞjdt ¼ 750; 745; :::; 125 trading days} and over 99 quantiles. We refer to these three
additional historical bubbles by the names of the involved markets and the years when they
burst. The first one is S&P 500 2007, which was studied in [6, 8]. The second and third one are
SSEC 2007 and SSEC 2009, discussed in details in [35]. For each bubble, we picked one value of
tend, spanning from one to three months before the crash that terminated the bubble at Tc, as
given in Table 1. And Table 2 gives a list of symbols and their individual descriptions.

Fig 8 shows the medians (red stars) and averages (black squares) of btcðq; dtÞ as a function of
q for the fixed tend given in Table 1, over the population of window sizes spanning {dt = 750,
745, . . ., 125 trading days}. For the S&P 500 1987 bubble in Fig 8A and the S&P 500 2007 bub-
ble in Fig 8B, the results confirm the previous analysis by showing that the LPPLS quantile
regressions provide significantly better predictions than the standard L2 calibration based pre-
dictions. Only for the SSEC 2007 bubble in Fig 8C, we observe significant variations of the
medians and averages as functions of q. For the medians, we see an approximate plateau for q

Fig 6. Schematic of the procedure. For each tend, tstart is scanned to give 126 windows of sizes ranging

from dt = 750 to 125 trading days, in each of which the quantile regression is performed.

doi:10.1371/journal.pone.0165819.g006
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Fig 7. Seven dt-Violin plots of btc for the S&P 500 1987 bubble. (A) tend = 1987.06.25. (B) tend =

1987.08.06. (C) tend = 1987.10.15. Each panel is associated with the seven values of q = 0.05, 0.10, 0.20,

0.30, 0.50, 0.80, 0.90. Each dt-Violin plot is constructed over the statistics obtained over the set {dt = 750,

745, . . ., 125 trading days}. The black dashed horizontal lines in each panel indicates tend. The red dashed

horizontal line shows the Tc = 1987.10.19.

doi:10.1371/journal.pone.0165819.g007

Table 1. List of four historical bubbles and fixed tend for analysis.

Asset & Year of crash Selected tend Tc

S&P 500 1987 1987.08.06 1987.10.19

S&P 500 2007 2007.07.25 2007.10.09

SSEC 2007 2007.09.10 2007.10.18

SZSC 2009 2009.04.23 2009.07.10

doi:10.1371/journal.pone.0165819.t001

Table 2. List of symbols.

Symbols Descriptions

q quantile level

dt time scale, or the duration of the fitting window

p(t) asset price as a function of time t

μ(t) drift (or conditional expected return) as a function of time t

σ(t) volatility as a function of time t

dW increment of a Wiener process (with zero mean and variance equal to dt)

dj discontinuous jump such that j = 0 before a crash and j = 1 after

κ return loss associated with the occurrence of a crash

h(t) crash hazard rate as a function of time t

Et[�] expectation operator performed at time t, conditional on the history up to time t

tc critical time of the end of the bubble

A terminal value of the logarithm of price at tc

B amplitude of the power law acceleration

C amplitude of the log-periodic oscillations

m exponent quantifying the hyperbolic power law describing the super-exponential growth

ω log-periodic angular frequency

λ scaling ratio of the temporal hierarchy of accelerating oscillations

ϕ phase of the oscillations

tstart starting date of the fitting window

tend ending date of the fitting window: tend = tstart + dt

η ratio of the search interval for tc

F(�) sum of the OLS residuals

et residual as a function of time t

Sq(�) sum of the quantile-dependent residuals

dlnpqðtÞ calibrated log-price at the quantile probability level q

Tc real bubble bursting time

btc estimated tc

pdfðbtcÞ probability density function of btc

doi:10.1371/journal.pone.0165819.t002
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between 0.50 and 0.80, which slightly overestimates the trueTc but is earlier than the L2 calibra-
tion based prediction (blue line). Lower (resp. larger) q’s predictions underestimate (resp. over-
estimate) the trueTc. In the case of the SZSC 2009 bubble in Fig 8D, all quantiles give again
consistent predictions for btc, which are however too early by about one month. Its L2 calibration
based prediction is closer to the trueTc, while slightly overestimating it.

Summarising the results of these four cases, the quantile regressions are better than the L2

calibration in two cases, approximately the same in one case and worse in the last case. For
these four bubbles, notwithstanding the multi-ray structure of btc as a function of dt in Figs 7
and 9 thus shows again the unstable behaviour of L2 calibrations compared with the LPPLS
quantile regressions as a function of the window sizes. For more details, the medians and aver-
ages of the 99 q’s estimates are shown as functions of {dt = 750, 745, . . ., 125 trading days} for
the fixed tend given in Table 1, over the population of q values spanning {q = 0.01, 0.02, . . .,
0.99}. Overall, one can observe a quite erratic behavior of btc for the L

2 calibration in the Fig 9,
compared to a much more stable behavior for the quantile regressions. The latter exhibit
approximate plateaus of stability of the predicted btc as a function of dt, which gives confidence
in the reliability of the detected LPPLS signal as a function of time scale. This is particularly evi-
dent for the S&P 500 2007 bubble in Fig 8B, for which the stable plateau extends almost over
the whole range of dt. In contrast, the standard OLS estimation of btc is sensitive to the chosen
size dt of the window, leading to inconclusive diagnostics. Thus, the quantile regressions intro-
duce stability in the forecasts when they are exploited as an ensemble of scenarios.

Consolidated DS LPPLS™ indicators

The previous sections have presented a wealth of measures, summarised through the use of the
Quantile-Violin in Fig 4 and dt-Violin plots in Fig 7, which represent the ensemble of predic-
tions for a given present time tend over the set of quantile levels q used in the LPPLS quantile
regression, and over the set of time scales (i.e., window sizes) dt used in the calibrations.While
informative, the effective use of so many fluctuating and often conflicting signals to inform on
the danger for a bubble burst and to trigger an actionable decision remains a challenge. To
address this, we propose two indicators that aggregate these signals, inspired from previous
works on historic bubbles [6, 35, 38] via the implementation of pattern recognition of LPPLS
structures and filtering, as suggested in Fig 5. These two indicators have been briefly discussed
to present the ex-ante forecast of the Chinese bubble and its burst that started in June
2015 [39].

1. TheDS LPPLS Confidence™ indicator is the fraction of fitting windows whose calibrations
meet the filtering condition 1 in Table 3 (within the JLS framework, the condition that the
crash hazard rate h(t) is non-negative by definition [40] translates into the value of Damp-
ing larger than or equal to 1). It thus measures the sensitivity of the observedbubble pattern
to the 126 time windows of duration from 125 to 750 trading days. A large value indicates

Fig 8. Predicted critical end time btc as the function of q for the four historical bubbles. (A) S&P 500

1987 bubble. (B) S&P 500 2007 bubble. (C) SSEC 2007 bubble. (D) SZSC 2009 bubble. Each panel shows

the medians (red stars) and averages (black squares) of btc as functions of q = 0.01, 0.02, . . ., 0.99 for the

fixed tend given in Table 1, over the population of window sizes spanning {dt = 750, 745, . . ., 125}. The blue

line is the average of the L2 calibration based predictions over the same set of window sizes. For each panel,

the black dashed line shows the respective position of tend, and the red dashed line shows the corresponding

true critical date Tc.

doi:10.1371/journal.pone.0165819.g008
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that the LPPLS pattern is found at most scales and is thus more reliable. If the value is close
to one, the pattern is practically insensitive to the choice of dt. A small value of the indicator
signals a possible fragility since it is presented in a few fitting windows.

2. TheDS LPPLS Trust™ indicator quantifies the sensitivity of the calibrations to the specific
realised instance of the noise in the financial time series. Because the calibration is an
attempt to disentangle the LPPLS signal from an unknown realisation of the residuals, we
generate bootstrap samples of the original data 100 times and add the residuals to the cali-
brated LPPLS price that proxy for 100 supposed independent realisations of equivalent
price patterns. The DS LPPLS Trust™ indicator is defined as the median level over the 126
time windows of the fraction among the 100 synthetic time series that satisfy the filtering
condition 2 in Table 3. It thus measures how closely the theoretical LPPLS model matches
the empirical price time series, 0 being a bad and 1 being a perfectmatch.

3. Arithmetic average and geometric average of the DS LPPLS Confidence™ indicator and DS
LPPLS Trust™ indicator: combining these two indicators is instructive to join the two types
of information on the time scale over which the LPPLS signal appears and on the quality of
the fits.

Empirical analysis of 16 historical bubbles with the consolidated

DS LPPLS™ indicators

In order to provide a more extensive test of the LPPLS quantile regression approach, we con-
struct the DS LPPLS Confidence and Trust indicators described in the previous section, for 16
historical bubbles listed in Table 4. These indicators can then be compared with the price time
series to allow a judgement of how well they can be associated with bubbles and their termina-
tions. And these bubbles are obtained from the previous studies [1, 5, 39, 41, 42] as well as
cases reported at the website of the Financial Crisis Observatory at ETH Zurich (www.er.ethz.
ch/financial-crisis-observatory.html). The data was obtained from the Thomson Reuters
Datastream.

Fig 9. Predicted critical end time btc as the function of dt for the four historical bubbles. (A) S&P 500

1987 bubble. (B) S&P 500 2007 bubble. (C) SSEC 2007 bubble. (D) SZSC 2009 bubble. Each panel shows

the medians (red stars) and averages (black squares) of btc as functions of dt for the fixed tend given in

Table 1, over the population of q values spanning {q = 0.01, 0.02, . . ., 0.99}. The blue triangles are L2

calibration based predictions for comparation. For each panel, the black dashed line shows the respective

position of tend, and the red dashed line shows the corresponding true critical date Tc.

doi:10.1371/journal.pone.0165819.g009

Table 3. Search space and filtering conditions for the qualification of valid LPPLS fits.

Item Search space Filtering condition 1 Filtering condition 2

m [0, 2] [0.1, 0.9] [0.1, 0.9]

ω [1, 50] [6, 13] [6, 13]

tc [tend − 0.2dt, tend + 0.2dt] [tend − 0.15dt, tend + 0.13dt] [tend − 0.2dt, tend + 0.12dt]

Number of oscillation: o

2
lnj

tc � tstart
tend � tstart

j — [2.5, +1) [2.5, +1)

Damping:
mjBj
ojCj

— [1.2, +1) [1, +1)

Relative error:
pt � bpt
bpt

— [0, 0.035] [0, 0.14]

doi:10.1371/journal.pone.0165819.t003
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Figs 10–25 present the price time series of the 16 historical bubbles together with the DS
LPPLS Confidence and Trust indicators constructed using (i) the L2 fitting method (green
curves) and (ii) the quantile regressions (red curves). Since the Confidence and Trust indicators
can be constructed for each quantile level q, we choose to present them for their arithmetic
over the 9 deciles {q = 0.10, 0.20, . . ., 0.90}. (In detail, for q = 0.10 as well as for their arithmetic
and geometric averages are shown in S1–S16 Figs).

For the S&P 500 1987 bubble in Fig 10 and the S&P 500 2007 bubble in Fig 11, one can
observe that the quantile regressions add to the L2 fitting method by providing in general ear-
lier warning signals, in particular using the lower quantiles q = 0.10 in S1 Fig.

For the DJIA 1929 bubble in Fig 12, the quantile regressions provide a neat warning right
on target, i.e. just before the crash. Such warning is absent in the L2 fitting method.

For the Nasdaq Composite Index 2000 bubble shown in Fig 13, the performances of the
quantile regression and the L2 fitting method are similar (a detailed account of the dot-com
bubble that crashed in 2000 can be found in Ref. [41]).

For the Chile 1991 and 1994 bubbles shown in Fig 14, one can observe negative values of the
indicators that diagnose “negative” bubbles [6, 13], whose end corresponds to a “negative
crash” (i.e., a rally or rebound). One can observe that the quantile regressions provide two addi-
tional important warning (end of bullish regime in 1994 and rebound in 1998) that are missing
in the standard OLS method.

Fig 15 presents the identification of a strong negative bubble and its rebound for the Vene-
zuela 1997 bubble, both by the L2 fitting method and the quantile regression method that per-
form similarly. However, the latter provides early warnings of the end of the large preceeding
peak, which are absent in the L2 fitting method.

For the Indonesia 1994/1997 bubble shown in Fig 16, the positive bubbles followed by
crashes in 1994 and 1997 are correctly identified by both methods. But again, the quantile
regressions provide two negative bubble signals that correctly pinpoint rebounds, which are
missed by the L2 fitting method.

Table 4. List of the 16 historical bubbles.

Asset & Year of crash Data range Range of tend

S&P 500 1987 1984.01.02-1987.11.13 1986.11.14-1987.11.13

S&P 500 2007 2004.01.01-2009.12.31 2006.11.15-2009.12.31

DJIA 1929 1926.01.02-1930.12.31 1928.07.07-1930.12.31

Nasdaq Composite Index 2000 1993.01.01-2002.12.31 1995.11.16-2002.12.31

Chile 1991/1994 1987.10.01-2000.12.01 1990.08.15-2000.12.01

Venezuela 1997 1994.01.03-1999.12.30 1996.11.15-1999.12.30

Indonesia 1994/1997 1990.01.03-1999.12.30 1992.11.17-1999.12.30

Malaysia 1994 1991.01.01-1995.12.29 1993.11.15-1995.12.29

Thailand 1994 1990.01.01-1994.12.30 1992.11.13-1994.12.30

Hong Kong 1987/1994/1997 1980.01.02-1999.12.31 1982.11.16-1999.12.31

Hong Kong 2007 2000.01.03-2015.04.10 2003.01.17-2015.04.10

Sugar price 2002.01.01-2013.12.31 2004.11.15-2013.12.31

Brent Oil 2008 1990.01.01-2015.04.16 1992.11.13-2015.04.16

SSEC 2007/2009 2004.01.01-2014.12.31 2006.11.15-2014.12.31

SZSC 2007/2009 2004.01.01-2014.12.31 2006.11.15-2014.12.31

SSEC 2015 2011.02.23-2015.05.12 2014.01.07-2015.05.12

doi:10.1371/journal.pone.0165819.t004
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Fig 10. S&P 500 1987 bubble. Arithmetic average of the DS LPPLS Confidence and Trust indicators obtained using quantile regressions with

{q = 0.10, 0.20, . . ., 0.90} (red curve) and the standard L2 calibration method (green curve).

doi:10.1371/journal.pone.0165819.g010
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Fig 11. S&P 500 2007. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g011
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Fig 12. DJIA 1929. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g012
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Fig 13. Nasdaq Composite Index 2000. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g013
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Fig 14. Chile 1991/1994. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g014
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Fig 15. Venezuela 1997. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g015
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Fig 16. Indonesia 1994/1997. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g016
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Fig 17. Malaysia 1994. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g017
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Fig 18. Thailand 1994. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g018
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Fig 19. Hong Kong 1987/1994/1997. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g019

Early Warning Signals of Financial Crises with Multi-Scale QR-LPPLS

PLOS ONE | DOI:10.1371/journal.pone.0165819 November 2, 2016 32 / 43



Fig 20. Hong Kong 2007. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g020
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Fig 21. Sugar price. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g021
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Fig 22. Brent Oil 2008. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g022
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Fig 23. SSEC 2007/2009. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g023
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Fig 24. SZEC 2007/2009. Same as Fig 23.

doi:10.1371/journal.pone.0165819.g024
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Fig 25. SSEC 2015. Same as Fig 10.

doi:10.1371/journal.pone.0165819.g025
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The Malaysia 1994 bubble shown in Fig 17 exhibits a remarkably clean LPPLS pattern, so
that all indicators target precisely the peak and subsequent burst. We observe the same joint
performance for the Thailand 1994 bubble shown in Fig 18. However, the quantile regressions
provide warnings of a large secondary peak after the burst of the first large bubble, which is
missed by the L2 fitting method.

For the Hong Kong market shown in Figs 19 and 20 (see Ref. [7] for a discussion of the set
of bubbles and crashes that have punctuated this market again and again), we observe that the
L2 fitting method and quantile regressions provide similar indicators. The same conclusion
applies to the price time series of sugar shown in Fig 21, to the Brent Oil bubbles (see Ref. [43]
for the analysis of the 2008 bubble) shown in Fig 22 and to the SSEC Chinese index shown in
Fig 23 (see Ref. [35] for an early account).

For the SZEC Chinesemarket shown in Fig 24, the quantile regressions over-perform the L2

fitting method by identifying precisely the large rebound that occurred in the third quarter of
2008, while the L2 fitting method completely misses it. Concerning the SSEC 2015 bubble
shown in Fig 25, the main difference between the indicators provided by the quantile regres-
sions compared with the L2 fitting method is that the former provides earlier warnings of the
peak of the bubble that occurred in June 2015 as well as signatures of a previous large peak and
correction in early 2015. We refer to Ref. [39] for a description of the real-time analysis of the
development of the indicators that were used to predict the burst.

Overall, the DS LPPLS Confidence and Trust indicators are found to have strong diagnostic
power to identify the market regimes during which prices tend to accelerate upward (resp.
downward) and which are followed by strong corrections (resp. rallies). This conclusion holds
both for the L2 fitting method and the quantile regressions. In addition, one can observe a
larger sensitivity of the quantile regressions for the detection of negative bubbles and the subse-
quent rebounds.

Concluding remarks

This study has shown that positive (resp. negative) bubbles followed by large crashes/correc-
tions (resp. rallies) can be identified by diagnosing the existence of log-periodicpower law sin-
gular (LPPLS) structures in the log-price dynamics. Given the stochastic nature of log-prices,
significant variability in the estimatations and in the predictions is unavoidable. The analysis of
their stability and sensitivity with respect to tend, q and time scale dt is very helpful. We have
provided evidence that financial markets exhibit a degree of inefficiencyand a potential for
predictability, especially during regimes when bubbles develop.

The innovation of the present article includes: (1) the introduction of the quantile regression
applied to the LPPLS detection problem, and the comparison with the L2-based calibration
method; (2) the combination of the many quantile regressions with a multi-scale analysis and
presentations of the Quantile-Violin and dt-Violin plots; (3) the implementation of the DS
LPPLS Confidence and Trust indicators through resampling and filtering that finally provides
an aggregation and consolidation of the wealth of signals generated at multi-scales and many
quantile levels; (4) the detailed analysis of the S&P 500 1987 bubble and the application of the
methodology to a total of 16 empirical financial time series exhibiting each at least one massive
bubble.

These innovations have the ultimate goal of becoming part of an early warning system that
could be run by a central bank, say, to inform it towards appropriate counter measures of
impending critical transitions [16, 44–48]. Although the next step of constructing an explicit
early warning system is not investigated here [49], the introduction of our newmetrics and
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methodology to develop real world scenarios could provide useful precursors to incorporate in
an early warning system.

Overall, the results demonstrate that the quantile regression of LPPLS signals contributes
useful early warning signals and the systemic indicators exhibit significant predictive ability
around the real critical time when the burst/rally occurs.We also found that the quantile
regression method improves on the L2 based calibration method by providing richer and more
stable scenarios. Quantile regression especially focuses on estimating multiple super-exponen-
tial rates of change in the quantiles of the distributions of log-price conditional at tend with dif-
ferent time scales dt. It thus presents many new possibilities for the statistical analysis and
interpretation of observational data. With the implementation of the systematic indicators, the
hybrid form of ensemble forecasting provides a new benchmark on early warning signals of
financial crises. From a broader scientific and societal perspective, our article supports a reori-
entation toward ensemble forecasts based on extractingmulti-dimensional information from
the noisy signal at multiple scales.

Supporting Information

S1 Fig. S&P 500 1987 bubble. (A) Three groups of DS LPPLS Trust indicator. (B) Three
groups of DS LPPLS Confidence indicator. (C) Three groups of the product of DS LPPLS Trust
and Confidence indicator. For all panels, the green line is obtained by using the standard L2 cal-
ibration method while the red lines are obtained using quantile regressions. In each panel, the
top group is obtained using the first decile q = 0.10 quantile regression, the middle group is the
arithmetic average over the 9 deciles {q = 0.10, 0.20, . . ., 0.90} and the bottom group is the geo-
metric average over the same 9 deciles {q = 0.10, 0.20, . . ., 0.90}.
(TIF)

S2 Fig. S&P 500 2007. Same as S1 Fig.
(TIF)

S3 Fig. DJIA 1929. Same as S1 Fig.
(TIF)

S4 Fig. Nasdaq Composite Index 2000. Same as S1 Fig.
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S11 Fig. Hong Kong 2007. Same as S1 Fig.
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S12 Fig. Sugar price. Same as S1 Fig.
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S13 Fig. Brent Oil 2008. Same as S1 Fig.
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32. Araújo MB, New M. Ensemble forecasting of species distributions. Trends in Ecology & Evolution.

2007; 22(1):42–47. doi: 10.1016/j.tree.2006.09.010

33. McNees SK. The uses and abuses of ‘consensus’ forecasts. Journal of Forecasting. 1992; 11(8):703–

710. doi: 10.1002/for.3980110807

34. Gluzman S, Sornette D. Log-periodic route to fractal functions. Physical Review E. 2002; 65

(3):036142. doi: 10.1103/PhysRevE.65.036142 PMID: 11909200

35. Jiang ZQ, Zhou WX, Sornette D, Woodard R, Bastiaensen K, Cauwels P. Bubble diagnosis and predic-

tion of the 2005–2007 and 2008–2009 Chinese stock market bubbles. Journal of Economic Behavior &

Organization. 2010; 74(3):149–162. doi: 10.1016/j.jebo.2010.02.007

36. Filimonov V, Sornette D. A stable and robust calibration scheme of the log-periodic power law model.

Physica A: Statistical Mechanics and its Applications. 2013; 392(17):3698–3707. doi: 10.1016/j.physa.

2013.04.012

37. Hintze JL, Nelson RD. Violin plots: A box plot-density trace synergism. The American Statistician.

1998; 52(2):181–184. doi: 10.1080/00031305.1998.10480559

38. Sornette D, Zhou WX. Predictability of large future changes in major financial indices. International

Journal of Forecasting. 2006; 22(1):153–168. doi: 10.1016/j.ijforecast.2005.02.004

39. Sornette D, Demos G, Zhang Q, Cauwels P, Filimonov V, Zhang Q. Real-time prediction and post-mor-

tem analysis of the Shanghai 2015 stock market bubble and crash. Journal of Investment Strategies.

2015; 4(4):77–95. doi: 10.21314/JOIS.2015.063

40. Bothmer HCGV, Meister C. Predicting critical crashes? A new restriction for the free variables. Physica

A: Statistical Mechanics and its Applications. 2003; 320:539–547. doi: 10.1016/S0378-4371(02)

01535-2

41. Johansen A, Sornette D. The Nasdaq crash of April 2000: Yet another example of log-periodicity in a

speculative bubble ending in a crash. The European Physical Journal B-Condensed Matter and Com-

plex Systems. 2000; 17(2):319–328. doi: 10.1007/s100510070147

42. Johansen A, Sornette D. Bubbles and anti-bubbles in Latin-American, Asian and Western stock mar-

kets: An empirical study. International Journal of Theoretical and Applied Finance. 2001; 4(6):853–

920. doi: 10.1142/S0219024901001218

43. Sornette D, Woodard R, Zhou WX. The 2006–2008 oil bubble: Evidence of speculation, and prediction.

Physica A: Statistical Mechanics and its Applications. 2009; 388(8):1571–1576. doi: 10.1016/j.physa.

2009.01.011

44. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, et al. Early-warning signals

for critical transitions. Nature. 2009; 461(7260):53–59. doi: 10.1038/nature08227 PMID: 19727193

45. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, et al. Methods for detecting early

warnings of critical transitions in time series illustrated using simulated ecological data. PloS one.

2012; 7(7):e41010. doi: 10.1371/journal.pone.0041010 PMID: 22815897

46. Roubini N, Mihm S. Crisis economics: A crash course in the future of finance. New York: Penguin

Press; 2010.

47. Lenton T, Livina V, Dakos V, Van Nes E, Scheffer M. Early warning of climate tipping points from criti-

cal slowing down: Comparing methods to improve robustness. Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and Engineering Sciences. 2012; 370(1962):1185–1204.

doi: 10.1098/rsta.2011.0304

48. Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, et al. Anticipating critical tran-

sitions. Science. 2012; 338(6105):344–348. doi: 10.1126/science.1225244 PMID: 23087241

49. Guttal V, Raghavendra S, Goel N, Hoarau Q. Lack of critical slowing down suggests that financial melt-

downs are not critical transitions, yet rising variability could signal systemic risk. PloS one. 2016; 11(1):

e0144198. doi: 10.1371/journal.pone.0144198 PMID: 26761792

Early Warning Signals of Financial Crises with Multi-Scale QR-LPPLS

PLOS ONE | DOI:10.1371/journal.pone.0165819 November 2, 2016 43 / 43

http://dx.doi.org/10.1145/355616.361024
http://dx.doi.org/10.1016/j.tree.2006.09.010
http://dx.doi.org/10.1002/for.3980110807
http://dx.doi.org/10.1103/PhysRevE.65.036142
http://www.ncbi.nlm.nih.gov/pubmed/11909200
http://dx.doi.org/10.1016/j.jebo.2010.02.007
http://dx.doi.org/10.1016/j.physa.2013.04.012
http://dx.doi.org/10.1016/j.physa.2013.04.012
http://dx.doi.org/10.1080/00031305.1998.10480559
http://dx.doi.org/10.1016/j.ijforecast.2005.02.004
http://dx.doi.org/10.21314/JOIS.2015.063
http://dx.doi.org/10.1016/S0378-4371(02)01535-2
http://dx.doi.org/10.1016/S0378-4371(02)01535-2
http://dx.doi.org/10.1007/s100510070147
http://dx.doi.org/10.1142/S0219024901001218
http://dx.doi.org/10.1016/j.physa.2009.01.011
http://dx.doi.org/10.1016/j.physa.2009.01.011
http://dx.doi.org/10.1038/nature08227
http://www.ncbi.nlm.nih.gov/pubmed/19727193
http://dx.doi.org/10.1371/journal.pone.0041010
http://www.ncbi.nlm.nih.gov/pubmed/22815897
http://dx.doi.org/10.1098/rsta.2011.0304
http://dx.doi.org/10.1126/science.1225244
http://www.ncbi.nlm.nih.gov/pubmed/23087241
http://dx.doi.org/10.1371/journal.pone.0144198
http://www.ncbi.nlm.nih.gov/pubmed/26761792

