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Abstract

The fruit fly optimization algorithm (FOA) is a newly developed bio-inspired algorithm. The

continuous variant version of FOA has been proven to be a powerful evolutionary approach

to determining the optima of a numerical function on a continuous definition domain. In this

study, a discrete FOA (DFOA) is developed and applied to the traveling salesman problem

(TSP), a common combinatorial problem. In the DFOA, the TSP tour is represented by an

ordering of city indices, and the bio-inspired meta-heuristic search processes are executed

with two elaborately designed main procedures: the smelling and tasting processes. In the

smelling process, an effective crossover operator is used by the fruit fly group to search for

the neighbors of the best-known swarm location. During the tasting process, an edge inter-

section elimination (EXE) operator is designed to improve the neighbors of the non-opti-

mum food location in order to enhance the exploration performance of the DFOA. In

addition, benchmark instances from the TSPLIB are classified in order to test the searching

ability of the proposed algorithm. Furthermore, the effectiveness of the proposed DFOA is

compared to that of other meta-heuristic algorithms. The results indicate that the proposed

DFOA can be effectively used to solve TSPs, especially large-scale problems.

Introduction

The traveling salesman problem (TSP), one of the most complex combinatorial optimization
problems, has been extensively studied due to its practical applications. This problem can be
described as a salesman who wants to travel a series of n cities. Suppose that dij (i,j 2 {1,2,� � �,
n}), which denotes the distance between the traveling points i and j, is well known by the sales-
man. The salesman wants to select the route or tour that includes one stop in all of the cities
with the minimum travel distance. The route can begin in any city, but the salesmanmust
return to the city of departure. Other factors, such as time and cost, can be considered as well.
In a TSP, if the travel distance or cost from city i to city j equals from j to i, then it is considered
to be a symmetric problem, or otherwise, an asymmetric problem. Since any asymmetric
Euclidean TSP can be transformed into a symmetric problem, symmetric problems have been
more extensively studied. In fact, symmetric problems, particularly Euclidean TSPs involving
cities located in a two dimensional plane and in which Euclidean distances are used as a metric,
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play an important role in practical applications, such as VLSI chip fabrication, X-ray crystallog-
raphy, flexible flow shop scheduling, and schoolbus routing [1,2]. However, the TSP has been
proven to be an NP-hard problem, in which any exact approaches to determining optimal solu-
tions may necessitate the long running times associated with high dimensionality [3]. As a
result, researchers have primarily developed approaches that can only obtain near-optimal
solutions in a relatively short running time. However, others have attempted to develop optimi-
zation algorithms that function substantially well in practical cases rather than worst-case sce-
narios. Due to the importance of this problem in both practical applications and academic
research, intelligent and knowledge-basedalgorithms are needed.

In the past twenty years, TSP problems have served as benchmarking and initial testing
tools for novel algorithms. These algorithms can be classified as exact approaches and approxi-
mate approaches or heuristics. Exact approaches are used to enumerate the optimal tours of
finite-stage TSPs. However, the running times of exact approaches are comparatively long in
power time complexity. Therefore, exact approaches cannot be effectively applied to large-scale
problems. In contrast, heuristics can be used to determine good tours in polynomial time com-
plexity, although they do not necessarily yield the optimum tours. SeyedMohsen Mousavi
et al. have developed two parameter-tuned meta-heuristics and two meta-heuristics algorithms
to solve a discounted inventory control problem or multi-itemmulti-period inventory control
problem under storage constraints and discounts [4,5], which greatly increased the scope of
application for heuristics. The heuristics for TSP can be subdivided into travel cycle construc-
tion approaches and improvement approaches. In travel cycle construction approaches, a tour
is generated in n steps by gradually adding the indices of different cities. Strategies used to
select the city in the next step include the nearest or farthest neighbor criteria, greedymethod,
Clarke-Wright algorithm [6], and Christofides algorithm [2]. In tour improvement
approaches, an entire tour is generated. Then, improvement or exchange strategies are
employed to improve those tours. These strategies include local search or local optimization,
simulated annealing [7], ant colony optimization [8], particle swarm optimization (PSO) [9],
and genetic algorithms (GA). Especially, PSO has been improved and used in many fields to
solve problems like a multi-product multi-period inventory control under inflation and dis-
count [10], and the integrated location and inventory control in a two-echelon supply chain
network [11]. However, local search is the most simple and effective approach. Since most of
the earlier studies that used GA to solve TSP focused on designing proper encoding representa-
tions, reproduction, crossover and mutation operators [12–14], they followed the evolution
strategy of simple genetic algorithms. Although these methods can be used as valuable refer-
ences for other evolutionary optimization algorithms, their performances are lacking compared
to local search approaches, such as the two-OPT, three-OPT, and Lin-Kernighan (LK)
approaches [15]. Currently, other new evolutionary optimization algorithms for TSPs exist,
such as the discrete bat algorithm [16], discrete firefly algorithms [17], and the discrete invasive
weed optimization algorithm [18]. Although these algorithms have yielded good results, they
still require further improvements and modification.Usually, tour construction and improve-
ment are combined to allow for the construction of initial tours and later improvement of
those tours, respectively. Therefore, a hybrid approach is more applicable. Baraglia et al. devel-
oped a hybrid GA with LK local search capabilities [19], Hung et al. also developed a hybrid
GA with LK in order to improve the local search capability of the GA [20]. Hybrid GAs utilize
global optimization capabilities of a GA and local optimization capabilities of other heuristics
to overcome premature. However, due to the complexity of genetic operators and local
improvement operators, hybrid GA approaches entail high computational loads and long CPU
running times. Thus, these approaches are not best applied to large-scale problems.
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Recently, Pan developed a novel optimization algorithm called the fruit fly optimization
algorithm (FOA) based on swarm intelligence by carefully observing the foraging behavior of
fruit flies [21]. The FOA possesses numerous advantages, including a simple structure, few
adjustable parameters, and a relatively short CPU running time. The FOA is also easy to pro-
gram and can be modified to other practical applications. Due to these advantages, the FOA
has been used to solve a wide range of optimization problems, including prediction and classifi-
cation problems [22–24], continuous function optimization problems [25], the multidimen-
sional knapsack problem [26], and scheduling problems [27]. And in the newest research
fields, identification of dynamic protein complexes [28], selecting evolutionary direction intel-
ligently and joint replenishment problems [29,30], also can acquire good results based on fruit
fly optimization algorithm. Although the original FOA has primarily been applied to problems
on a continuous definition domain, it can also be successfully applied to problems with contin-
uous variables. However, the FOA must be modified in order to effectivelymanage the discrete
variables associated with combinatorial optimization issues, such as the food source represen-
tations and effective generation mechanisms of candidate solutions near swarm locations in
the TSP, intelligent parallel test sheet generation [31], and flow shop scheduling problems with
intermingling equivalent sublots [32], optimizing a location allocation-inventory problem in a
two-echelon supply chain network [33], and the homogeneous fuzzy series-parallel redun-
dancy allocation problem [34]. As stated previously, the TSP is an NP-hard combinatorial opti-
mization issue involving a large search area that cannot be easily solved with traditional
algorithms. However, the FOA is a parallel evolutionary algorithm based on smelling and
vision processes. In addition, problem-dependent operators can be modified to adapt the
smelling process of an FOA to further enhance exploitation. Furthermore, local search meth-
ods can be effectively incorporated by sharing information regarding swarm food locations to
precipitate exploration. Therefore, the FOA could be modified to solve TSP. Li Heng-yu
adopted and adapted step size and mutation strategies in order to solve TSPs [35]. Wang Ke-fu
et al. introduced the radius of local optimum through which whether the fruit fly was in a local
optimum area could be judged [36]. Roulette method is used to initialize the path. At the same
time the local search ability and convergence speed up by using C2Opt to optimize the local
path [37]. Yin Lvjiang et al. integrated PSO and GA algorithm into FOA to improve its advan-
tages. IFOA and PSO were compared; for most of the traveling salesman problem, the effect of
the IFOA is better than the PSO, different from this paper that it for all [38]. The smell function
took into account randomly generated variant of the fruit fly encodingwith Bit Mutation Oper-
ator, and the data sets used in the experiment were different from us. The methods have been
discussed by Nitin S. Choubey et al. only applied to the instances with a small number of cities
[39]. However, these strategies can be further optimized. Therefore, in this study, a discrete
FOA containing a new strategy is used to solve the TSP. Specifically, an ordering of city indices
is used to directly represent the solution. Based on the characteristics of the problem, an effec-
tive crossover operator is designed for the smelling process of fruit flies. In addition, an effec-
tive local search method, the edge intersection elimination method, is used by the fruit fly
group to sense the smell of the swarm food location. According to the results, the combination
of the crossover operation and edge intersection elimination strategies in the DFOA effectively
prevented the occurrence of local optima and low convergence. Furthermore, the effectiveness
of the proposed DFOA is demonstrated with computational tests using benchmarking prob-
lems and a comparative analysis of other nature-inspired algorithms.

The remainder of this paper is organized as follows. In section 2, the mathematical formula-
tion of the TSP is described. In section 3, the original FOA is presented, and the DFOA proce-
dure of the TSP is illustrated in detail. In section 4, numerical testing results obtained using a
classified set of benchmarking problems and a comparison of the proposed DFOA and other
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existing algorithms are provided. The conclusions of this paper and future research opportuni-
ties are presented in section 5.

Problem Description

A symmetric TSP can be demonstrated on a complete undirected graph G = (V,E), whereV =
{1,. . ., n} denotes a vertex set, and E = {(i, j) | i, j2V,i 6¼ j} denotes an edge set [40,41]. Suppose
that the coordinates of vertex setV are known and that a distance matrixD = (dij) is defined by
edge set E. Let yij be a decision variable associated with each edge (i,j), where the decision vari-
able yij = 1, the route from city indices i to j, represents the path selected by a salesman, while
yij = 0 represents the path not selected by the salesman. In addition, suppose that S is the proper
subset of V, and |S| denotes the number of vertices included in the set S. These notations and
indices can be used to formulate the mixed integer programming formulation of a TSP as fol-
lows:

minZ ¼
Xn

i¼1

Xn

j¼1

dijyij ð1Þ

s:t:

Xn

j¼1

yij ¼ 1; i 2 V; ð2Þ

Xn

i¼1

yij ¼ 1; j 2 V; ð3Þ

X

i2S

X

j2S

yij � jSj � 1 8S � V; jSj 6¼ ; ð4Þ

yij 2 f0; 1g

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

where the objective function (1) is used to minimize the total tour distance, the entering con-
straints (2) indicate that the traveler can only travel to city j once, and the departure constraints
(3) indicate that the salesman can only depart from city i once. Constraints (2) and (3) ensure
that the traveler travels to each city only once, but do not eliminate the possibility of any sub-
tours. However, the elimination constants (4) prevent the formation of any subtours by the
traveler.

DFOA for TSP

Basic FOA

Fruit flies can distinguish various aromas to identify food sources as much as 40 km away.
Fruit flies can also identify food sources based on the flocking positions of other fruit flies.
When a fruit fly forages for food, it flies randomly in search of a position with a particular
odor. While foraging, a fly can send and receive information from its partners in order to com-
pare the fitness and determine the optimum location. After a fly discovers a favorable location,
it determines the fitness of the location via tasting. If the position no longer exists or the taste is
'biting', the fly will stop searching. The fly will then remain near the optimum region and send,
receive, and compare information with its partners. Pan developed the original FOA based on
this searching behavior [18].
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The basic FOA consists of a unique initialization process and a maximum generation-based
cycle of smelling, evaluating, and flocking. First, the control parameters of the FOA are defined,
including the maximum number of generations and population size, and the position of the
fruit fly swarm is initialized at random. Then, the FOA initiates the smelling, evaluation, and
concentration processes.

During the smelling process, a population of fruit flies utilize osphresis to search for food
sources near the fly fruit swarm location. After that, the population evaluates the location
based on the fitness value or smell concentration of each fruit fly. When the best-known smell
location is identified, the fruit fly swarm utilizes sight osphresis to move toward the source in a
flocking process. The FOA repeats these three steps until reaching the maximum number of
generations. Since the original FOA can only be applied to continuous optimization problems,
it was modifiedherein to solve the TSP.

Food Source Representation

In the continuous version of the FOA, each solution is represents a swarm location, or food
source. Each fruit fly flies through the n-dimensional space by studying the historical potential
location determined by the swarm population. For this reason, fruit flies tend to fly toward rel-
atively good search regions during the foraging process [14]. Let the X_axis denote the swarm
location. Then an individual fruit fly will search for a food source Xi = (xi1,xi2,. . .,xin) as fol-
lows:

Xi ¼ X axisþ RandomValue ð5Þ

In an instance of the TSP, a set of indices are given to identify sites. It is common to use
these indices as cities' encoding order for the problem. Thus, in the direct encoding scheme,
each dimension of the food source is used to represent an index of cities. Therefore, a food
source identified by an individual fruit fly represents a sequence of the traveling route. An
example of a feasible solution for a TSP with 6 cities is illustrated in Fig 1.

Population Initialization

Rather than generating random tours that form the food location of an FOA's initial popula-
tion, a tour construction heuristic, such as the nearest neighbor (NN) heuristic or other inser-
tion heuristics, can be used. Since an entire population must be generated, the heuristic in use
should be capable of creating distinct tours. For example, the closest neighbor heuristic allows
for the construction of n distinct tours, where n is the number of cities, and each city can act as
the starting point of the heuristic. In the simulation herein, when the population size is less

Fig 1. Food source and its corresponding tour.

doi:10.1371/journal.pone.0165804.g001
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than or equal to the number of cities, the initial population is created using a different starting
point NN. Otherwise, the initial population is created via random permutation.

Smelling Process

After a series of controlled initializations, fruit flies concentrate on the best-known swarm loca-
tion. In addition, the surroundings, or the neighbors of the optimum swarm location, are
explored. This is a basic explanation of the smelling search process. Based on this idea and the
discrete particle swarm optimization of the TSP, a crossover operator
 was introduced in
order to rewrite Eq (5) for the generation of food sources in a basic FOA.

Xtþ1

i ¼ Xt
i 
 X axis ð6Þ

In Eq (6), Xt
i represents the food source identified by fruit fly i at time step t, and X_axis is the

optimum swarm location at time step t. Many studies concerning the crossover operator

have been conducted [1]. A simple two-point crossover approach was employed herein to
determine how much information an individual fruit fly gathers from the swarm. This
approach was selected due to its relatively high efficiency and effectiveness in large-scale prob-
lems compared to the PMX, OX, CX, and ERX approaches. The following steps were included
in the crossover procedure:

Step 1. For the best-known food source X_axis identified by fruit flies, randomly generate
two crossover positions c1 and c2 (c1 6¼ c2). Then, for the food source Xt

i found by fruit fly i at
time step t, delete the city indices in Xt

i that are equivalent to the indices from position c1 to c2
in X_axis, the new incomplete food source Xtþ1

i is produced.
Step 2. In the deleted cities’ positions and the tail of Xtþ1

i , suppose that gþ
j
¼ LðXt

i Þ �

LðXtþ1
i Þ is the gain from inserting the segment from position c1 to c2 in X_axis into position j,

and that g �
j
is the gain from inversely inserting the segment. If a position with a maximum of gj

exists and gj� 0, i.e. the tour length can be shortened, then insert the segment from position c1
to c2 in X_axis. Otherwise, restore Xt

i , such that Xtþ1
i is equivalent to Xt

i .
An example of the individual fruit fly crossover with the best-known swarm location is illus-

trated in Fig 2. First, two crossover positions c1 = 3 and c2 = 5 are generated randomly in
X_axis. Since the city indices 2, 7, and 4 in Xt

i are equivalent to the indices from position c1 to
c2 in X_axis, they are deleted from Xt

i . Thus, three alternative positions which can insert the
segment (2,7,4) or its inverse (4,7,2) remain in Xtþ1

i , including the places between 3 and 8, 8
and 1, and the place behind city 6. Suppose that the gain gþ

1
between cities 3 and 8 is 60, where

g �
1
is 65, the gain gþ

2
between cities 8 and 1 is 55, where g �

2
is 50, and the gain gþ

3
behind city 6 is

40, where g �
3
is 45. As maxfgþ

1
; g �

1
; gþ

2
; g �

2
; gþ

3
; g �

3
g ¼ g �

1
, then, the first location is selected, and

segment (4,7,2) is inserted.
When the doubly connection list is applied to the tour, the crossover operator can be com-

puted using a constant time complexity, and the total complexity of the fruit fly swarm can be
expressed as O(n).

Similar to the basic FOA, the population is evaluated with the DFOA by computing the
smell concentration value of each fruit fly. However, in a TSP, the minimum tour length is con-
sidered best, and the smell concentration judgement value Smelli is computed directly using
the tour length of Xt

i . Then, the fruit fly with the best smell concentration is identified.

½Smellbest indexbest� ¼ minðSmellÞ ð7Þ

If the local best Smell value is less than the global best Smell value, the fruit fly group will
retain the minimum concentration value Smellbest as Smell

g
best Smell and save the indexbest fruit
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fly as X_axis, or the optimum swarm location. At this time, the fruit fly swarm will use sight to
fly toward that position.

However, if the value of Smellbest is not the global optimum, the basic FOA will repeat the
smelling process on the last X_axis, and the solution can easily decay into local optimum.
Therefore, it is necessary to include the not-so-good locations in further explorations.

Tasting Process

In order to enhance the convergence speed of the DFOA, an edge intersection elimination
(EXE) operator that accounts for the characteristics of the current best tour was introduced
into the fruit fly tasting process, where edge-edge intersections in the current tour were consid-
ered reflective of improvement.

Theorem 1. In a 2-dimensional Euclidean TSP, an optimal tour includes no edge-edge
intersections.

Proof. LetX = (. . .,i,i + 1,..,j,j+ 1,. . .) be an optimal trip, where L(X) denotes the total cycle
length. Assume that an edge (i,i+1) with a cross edge (j,j+1) and intersection point of 0 exists, as
shown in Fig 3. If j is exchanged with i + 1 and the order of the indices between j and i + 1 are
reversed, a new tour X’ = (. . .,i,j,..,i+ 1,j + 1,. . .) can be obtained. If X is an optimal tour, then L
(X')� L(X). Therefore, the calculation of the total tour length L(X) contains di,i+1 and dj,j+1, and
the total tour length L(X ') includes di,j and di+1,j+1. According to Fig 3,

di;iþ1 þ dj;jþ1 ¼ di;0 þ d0 ;iþ1 þ dj;0 þ d0 ;jþ1 ¼ di;0 þ dj;0 þ d0;iþ1 þ d0;jþ1:

where di,0+ dj,0> di,j and d0,i+1+d0,j+1>di+1,j+1.
Thus, di,i+1+dj,j+1>di,j+di+1,j+1. Since the remaining cumulative distances of L(X) are equal

to L(X '),

LðX0Þ < LðXÞ;

which is a contradiction.

Fig 2. Crossover for the TSP.

doi:10.1371/journal.pone.0165804.g002
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However, assume that two edges (p1,p2) and (q1,q2) exist. In a 2-dimensional Euclidean TSP,
if the bounded rectangle of (p1,p2) does not cross the bounded rectangle of (q1,q2), (p1,p2) and
(q1,q2) do not intersect. Otherwise, the following intersection judgment can be used:

1. If (p1,p2) intersects (q1,q2), then the vector products can be expressed as (p1-q1)×(q2-
q1)×(q2-q1) ×(p2-q1)�0.

2. If (q1,q2) intersects (p1,p2), then the vector products can be expressed as (q1-p1)×(p2-
p1)×(p2-p1) ×(q2-p1)�0.

Therefore, according to the above theory and intersection judgment rules, the steps of the
EXE operator are as follows:

Step 1. From the current tour X, select the city by index i.

Step 2. From the current tour X, select the city by index j = i+2.

Step 3. If edge(i,i+1) intersects edge(j,j+1), then exchange j with i+1 and reverse the order of
the indices between j and i+1 in X.

Step 4. If i = = 1 and j�n-1, or i6¼1 and j�n, define j = j+1 and return to step 2.

Step 5. If i�n-2, define i = i+1 and return to step 1.

In order to eliminate edge intersections,C2
n � n ¼ nðn � 3Þ=2 edges must be examined for

possible intersections with the given tour X. Therefore, the worst possible time complexity of
the EXE operator can be written as O(n2).

An example of the EXE operator is illustrated from Fig 4 to Fig 5. Fig 4 shows the initial
tour for TSPLIB problem pr1002 which is sequenced by city numbers, its tour length is 349438.
It’s obvious that there are some edge-edge intersections in the current tour. Fig 5 shows the
improved tour after carrying out the EXE operator, there are no edge-edge intersections, and
its tour length is shortened into 280797. The changed gap is 19.64%.

Fig 3. Edge intersection elimination exchange.

doi:10.1371/journal.pone.0165804.g003
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DFOA Procedures

A flowchart of the DFOA is displayed in Fig 6.
As shown in Fig 6, other than the initialization process, the DFOA primarily involves two

procedures. In the smelling procedure, the neighbors of the best-known swarm food location
are exploited. In the tasting procedure, the neighbors of the non-optimum swarm food location
are further investigated with the EXE operator, and the current best swarm food location is
updated. Because both of exploitation and exploration are considered in the proposed DFOA,
it was expected to yield satisfactory results when applied to the TSP.

Numerical Testing Results and Comparisons

A set of benchmark TSP cases (available at theWeb site http://www.iwr.uni-heidelberg.de/
groups/comopt/software/TSPLIB95/) are used for numerical tests in literature. Those selective
instances (S1 File) were also used for the numerical tests in this paper. The proposed DFOA
was coded using ANSI C and executed with the GNU gcc compiler (version 4.83) on an Intel

Fig 4. An initial tour for pr1002.

doi:10.1371/journal.pone.0165804.g004
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Machine with Core2 TM, a 2.3 GHz processor, and 4GB RAM. The DFOATSP program is pro-
vided in S2 File. The proposed DFOA included only two fundamental parameters, the popula-
tion size (N), and maximum number of generations (MaxGen), which were defined as N = 5
andMaxGen = 100 herein, respectively. The DFOA, Parallel Hybrid Genetic Algorithm
(PHGA) [42], and PSO were applied to small, middle, and large instances 20 times each using
the same parameters. The results, including the reported optimal tour length (Optimum), aver-
age tour length (Mean), standard deviation (SD), best tour length (Best), and average CPU run-
ning time (CPU), are provided in Tables 1–3. Due to its large computation load and extended
CPU running time, the PSO did not yield results when applied to the large instances.

As shown in Tables 1–3, the DFOA yielded smaller average tour length values than the other
two algorithms, indicating that the proposedDFOA was more effectivewhen applied to the TSP.
As stated in the population and number of PHGA evolution generations can be increased to
obtain better results. However, thesemeasures would increase the computational load and time.
Therefore, the proposedDFOA required less CPU time than the PSO and PHGA.

Fig 5. An EXE improved tour for pr1002.

doi:10.1371/journal.pone.0165804.g005
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Conclusions

In this study, a novel discrete fruit fly optimization algorithmwas applied to the traveling sales-
man problem (TSP). An effective crossover operator was developed in order to allow the fruit
fly group to search the neighbors of the best-known swarm location. Tasting and smelling pro-
cesses were introduced into the algorithm. In addition, an edge intersection elimination

Fig 6. DFOA flowchart.

doi:10.1371/journal.pone.0165804.g006
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operator was incorporated into the DFOA in order to improve the neighbors of the non-opti-
mum food location. According to the results of the computational tests and comparisons, the
proposed DFOA yielded better answers for all of the cases with less computational effort. This
research not only provided a TSP with a powerful solution algorithm, but also realized the
application of a DFOA to a discrete field. The proposed DFOA is a population-based parallel
algorithmwith few required simple search frameworks and control parameters. A number of
local search operators or knowledge-basedprinciples can be easily implanted into the frame-
work of the proposed DFOA.

Therefore, future work could focus on the development of adaptive algorithms with param-
eter learningmechanisms and the implementation of other problem-specific features that
could improve the performance of the DFOA. In addition, the proposed DFOA could be
applied to other variations of the TSP, such as fixed edges are listed that are required to appear
in each solution to the problem, Hamiltonian cycle or path problem, Capacitated vehicle rout-
ing problem etc. Furthermore, while the proposed encoding schema is hard to carry out cross-
over, an effective solution representation schema, which is suitable for crossover and inheriting
the properties from parental tour, can be designed in a future work. Moreover, new candidate

Table 1. Comparison of the DFOA, PHGA, and PSO on small-scale TSP instances after 20 repetitions.

TSP instances PHGA PSO DFOA

Name Optimum Mean SD Mean SD Best Mean SD CPU(s)

D493 35002 35032.7 43.9 36012.3 140.5 35002 35010.9 15.4 5.0

U574 36905 36983.2 91.3 37113.9 157.2 36905 36933.9 30.9 2.6

Pcb442 50778 50838.2 89.7 50923.3 213.7 50778 50841.5 65.4 3.0

Rat575 6773 6779.5 10.1 6798.6 40.3 6773 6777.3 2.4 2.1

Ali535 202310 202389.1 91.5 202350.8 256.9 202308 202323.6 25.3 2.5

doi:10.1371/journal.pone.0165804.t001

Table 3. Comparison of the DFOA and PHGA on large-scale TSP instances after 20 repetitions.

TSP instances PHGA DFOA

Name Optimum Mean SD Best Mean SD CPU(s)

Rl11849 923132 923360.3 302.4 923132 923250.3 213.4 260

Rl5915 565530 565623.7 113.3 565530 565613.4 122.9 52

Fl3795 28772 28904.3 167.9 28772 28890.2 135.4 116

D2103 80330 80453.6 156.3 80330 80422 113.5 123

U2319 234256 234396.1 157.8 234256 234273.0 29.3 32

doi:10.1371/journal.pone.0165804.t003

Table 2. Comparison of the DFOA, PHGA, and PSO on medium-scale TSP instances after 20 repetitions.

TSP instances PHGA PSO DFOA

Name Optimum Mean SD Mean SD Best Mean SD CPU(s)

Pr1002 259045 259246.7 230.6 259323.5 278.8 259045 259144.1 117.4 2.0

Fl1400 20127 20189.4 89.3 20235.3 145.9 20127 20138.9 12.9 3.2

vm1748 336556 336644.3 110.3 336778.1 289.4 336556 336570.8 15.4 9.0

Rl1304 252948 253100.5 79.8 253178.3 167.3 252948 252960.3 13.5 3.0

Pcb1173 56892 56983.6 120.5 57113.2 158.9 56892 56903.6 15.3 2.5

doi:10.1371/journal.pone.0165804.t002
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sets generation mechanisms, not only the NN, but a good estimate of the edges’ chances of
belonging to an optimal tour, and more effective local search methods can be used in a future
work.
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