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Abstract

For ensemble learning, how to select and combine the candidate classifiers are two key

issues which influence the performance of the ensemble system dramatically. Random

vector functional link networks (RVFL) without direct input-to-output links is one of suitable

base-classifiers for ensemble systems because of its fast learning speed, simple structure

and good generalization performance. In this paper, to obtain a more compact ensemble

system with improved convergence performance, an improved ensemble of RVFL based on

attractive and repulsive particle swarm optimization (ARPSO) with double optimization strat-

egy is proposed. In the proposed method, ARPSO is applied to select and combine the can-

didate RVFL. As for using ARPSO to select the optimal base RVFL, ARPSO considers both

the convergence accuracy on the validation data and the diversity of the candidate ensem-

ble system to build the RVFL ensembles. In the process of combining RVFL, the ensemble

weights corresponding to the base RVFL are initialized by the minimum norm least-square

method and then further optimized by ARPSO. Finally, a few redundant RVFL is pruned,

and thus the more compact ensemble of RVFL is obtained. Moreover, in this paper, theoreti-

cal analysis and justification on how to prune the base classifiers on classification problem is

presented, and a simple and practically feasible strategy for pruning redundant base classifi-

ers on both classification and regression problems is proposed. Since the double optimiza-

tion is performed on the basis of the single optimization, the ensemble of RVFL built by the

proposed method outperforms that built by some single optimization methods. Experiment

results on function approximation and classification problems verify that the proposed

method could improve its convergence accuracy as well as reduce the complexity of the

ensemble system.
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Introduction

Neural network ensemble (NNE) is a learning mechanism which has a collection of a finite

number of neural networks trained for the same task [1]. Much work has shown that ensem-

ble-based machine learning approaches to classification could outperform canonical single-

predictor classifiers [2, 3]. By combining a set of so-called base classifiers, the deficiencies of

each classifier may be compensated by the efficiency of the others [4]. In the past decades, neu-

ral network ensemble has gained widespread interest among researchers in machine learning

community.

Traditional neural network ensemble usually selects backpropagation (BP) and radial basis

function (RBF) network models [5] as the base classifiers in many cases. Although these

ensembles of neural networks could obtain higher convergence accuracy than many single

classifiers, it is quite difficult to determine a suitable network structure and some parameters

in each base classifier. Moreover, the base classifiers require thousands of iterations to learn

the input to output relation in the given data, so the learning process of the base classifiers is

time consuming.

To overcome the defects of BP based learning algorithms, random vector functional link

networks (RVFL) was proposed [6] where actual values of the weights from the input layer to

hidden layer can be randomly generated in a suitable domain and kept fixed in the learning

stage [7]. Randomization has been getting increasing attention in the area of machine learning,

mostly thanks to the resulting simplicity and speed in the empirical training process [8, 9]. The

RVFL is a universal approximator for a continuous function on a bounded finite dimensional

set with a closed-form solution [10], and it has been employed to solve problems in diverse

domains [8]. The independently developed method, single hidden layered feedforward neural

networks with random weights (RWSLFN) in [11] without direct links between the inputs and

outputs, belongs to the family of RVFL. The experiment results in [8] verified that the direct

links between the inputs and outputs led to slightly better performance than RWSLFN in all

cases. However, RWSLFN has the potential of achieving better generalization performance

because of its simple network structure, and it also requires less computational cost than those

with the direct links. Moreover, a slight improvement on convergence accuracy of base classifi-

ers would not surely improve the convergence accuracy of ensemble system. Therefore, this

study focuses on RWSLFN ensemble.

As an effective learning algorithm for RWSLFN, extreme learning machine (ELM) [12] has

been widely used in various applications [13], which randomly chooses the input weights and

hidden biases and analytically determines the output weights of single hidden layered feedfor-

ward neural networks (SLFN). Different from traditional iterative learning algorithm for

RWSLFN, ELM not only has faster learning speed but also achieves better generalization per-

formance [14, 15]. Moreover, non-differentiable activation functions and straightforward solu-

tion are features and advantages of ELM. However, for randomly selecting the input weights

and hidden biases, the uncertainty performance and over-fitting of ELM still remain to be

solved [16, 17].

According to the above discussion, it is necessary and possible to select extreme learning

machine as the base classifiers in the neural network ensemble. To overcome the deficiencies

of single ELM and build an effective neural network ensemble, some ensemble of ELM were

proposed. In [18], Liu et al. proposed an ensemble of ELM (E-ELM) which embedded cross-

validation into the training phase for alleviating the overtraining problem and increasing the

predictive stability. In [19], an ELM ensemble was proposed to investigate the interactions of

different inducing factors affecting the evolution of landslide, which provided a good represen-

tation of the measured slide displacement behavior for the real data. In [20], an ensemble of
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online sequential extreme learning machine (EOS-ELM) was proposed to enhance the stability

of online sequential ELM. Tian et al. [21, 22] introduced Bagging and AdaBoost methods to

combine ELM to establish regression prediction model. In [23], an ensemble of ELM, called

LSTD-eELM, was proposed for value prediction in continuous-state problems. RMSE-ELM,

proposed in [24], recursively employed selective ensemble to pick out several optimal ELM

from bottom to top for the final ensemble. The experiments verified that the robustness perfor-

mance of RMSE-ELM was better than original ELM and some representative methods for

blended data.

Because of their better optimization performance, some evolutionary computation tech-

niques such as genetic algorithm (GA) [25] and particle swarm optimization (PSO) [26] are

used to build neural network ensemble. Zhou et al. [27] introduced GA based selective ensem-

bles (GASEN), which trained several individual neural networks and then employed GA to

select an optimum subset of individual neural networks to constitute an ensemble. In [4], a

multi-objective genetic programming approach to evolving accurate and diverse ensembles of

genetic program classifiers with good performance on both the minority and majority of clas-

ses was proposed. In [28], an evolutionary approach named as EE-ELM was proposed for con-

stituting ELM ensembles. EE-ELM employed the model diversity as fitness function to direct

the selection of base learners, and produced an optimal solution with ensemble size control

[28]. The experiment results demonstrated that the EE-ELM method outperformed some

ensemble techniques including simple average, bagging and AdaBoost, in terms of both effec-

tiveness and efficiency [28]. Compared with GA, PSO has its advantages such as easy to imple-

ment, few parameters and fast convergence rate [29–32]. These advantages make it suitable to

employ PSO to establish ensembles. In [33], a PSO based selective neural network ensemble

(PSOSEN) algorithm was proposed, which was used for the Nasdaq-100 index of Nasdaq

Stock MarketSM and the S&P CNX NIFTY stock index analysis. In [34], PSO was used to opti-

mize the weights associated to each base classifier, which showed the stable and improved per-

formance on the selected datasets.

However, traditional PSO has the drawbacks of premature convergence and easily falling

into local minima [29, 35]. To avoid premature convergence effectively in the search process,

an improved PSO called attractive and repulsive particle swarm optimization (ARPSO) [36]

was proposed, which could obtain better search performance than traditional PSO by adap-

tively controlling the diversity of the swarm. In [37], we proposed an ensemble of ELM based

on ARPSO (E-ARPSOELM) which used ARPSO to select the base ELM by considering the

convergence accuracy of the ensemble system. In E-ARPSOELM [37], the ensemble weights

were simply calculated according to the validation accuracies of all selected ELM. Based on

the E-ARPSOELM, we proposed a diversity guided ensemble of ELM based on ARPSO

(DGEELMBARPSO) [38] which used ARPSO to select the base ELM from the initial ELM

pool by considering both the classification accuracy and diversity of the ensemble system rep-

resented by each particle. The DGEELMBARPSO method used the simple majority voting and

weighting voting methods as the decision rules. Experiment results verified that these ARPSO

based ELM ensembles obtained better convergence performance than some PSO based and

classical ELM ensembles.

In this paper, we further propose an improved ARPSO-based ELM ensemble by using

ARPSO to select and combine the base ELM. Different form the DGEELMBARPSO, the new

method uses ARPSO to perform double optimization in two phases. In the first phase, a modi-

fied ARPSO is employed to select the base ELM from the initial ELM pool by considering the

convergence accuracy and diversity of the candidate ensemble system, which is the same to the

DGEELMBARPSO method. In the second phase, we use ARPSO to optimize the ensemble

weights related to the selected ELM in this study, while the ensemble weights in [37, 38] were
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determined directly without any optimization. In this study, the initial ensemble weights

related to the selected ELM are obtained by the minimum norm least-square (LS) method

firstly. Then, with the initial ensemble weights, the traditional ARPSO is used to optimize the

ensemble weights. Finally, theoretical analysis and justification on how to prune redundant

base ELM in the ensemble system is presented for classification problems, and a practically fea-

sible pruning strategy is proposed in the proposed approach for both classification and regres-

sion problems. The proposed approach could not only further improve the convergence

accuracy of the ensemble system but also reduce the redundancy of the ensemble system.

Experiment results on function approximation, four benchmark classification problems from

UCI Repository database and two microarray data have verified the effectiveness of the pro-

posed method.

The remainder of this paper is organized as follows. Section 2 introduces the related meth-

ods including ELM and ARPSO algorithms. The improved ensemble of ELM is proposed in

Section 3. In Section 4, experiment results and discussion on seven data are given to verify the

efficiency and effectiveness of the proposed approach. Finally, the concluding remarks are

offered in Section 5. There are a lot of the abbreviations in this paper. For ease of understand-

ing, all the abbreviations and their paraphrases are listed in Table 1.

Preliminaries

Extreme learning machine

In [12], a learning algorithm for SLFN called extreme learning machine (ELM) was proposed

to solve the problem caused by gradient-based learning algorithms. ELM randomly chose the

input weights and hidden biases, and analytically determined the output weights of SLFN.

ELM has much better generalization performance with much faster learning speed than gradi-

ent-based algorithms [39, 40].

For N arbitrary distinct samples, (xi, ti), where xi = [xi1, xi2, . . . xin]T 2 Rn, ti = [ti1, ti2, . . ., tim]T

2 Rm, a SLFN with NH hidden neurons can approximate these N samples with zero error. This

means that

Hwo ¼ T ð1Þ

Table 1. Abbreviation comparison table.

Abbreviation Paraphrase Abbreviation Paraphrase

NNE neural network ensemble BP backpropagation

RBF radial basis function RVFL random vector functional link networks

SLFN single hidden layered feedforward neural networks RWSLFN SLFN with random weights

ELM extreme learning machine E-ELM an ensemble of ELM proposed in [18]

EOS-ELM an ensemble of online sequential ELM LSTD-eELM an ensemble of ELM proposed in [23]

RMSE-ELM an ensemble of ELM proposed in [24] GA genetic algorithm

PSO particle swarm optimization GASEN GA based selective ensembles

EE-ELM an ensemble of ELM proposed in [28] PSOSEN PSO based selective NNE

ARPSO attractive and repulsive PSO E-ARPSOELM an ensemble of ELM proposed in [37]

DGEELMBARPSO an ensemble of ELM proposed in [38] MP Moore-Penrose

LS least square APSO adaptive PSO

DO-EELM an ensemble of ELM based on double optimization RMSE root mean squared error

E-PSOELM an ensemble of ELM based on PSO SO-EELM an ensemble of ELM proposed in [38]

doi:10.1371/journal.pone.0165803.t001
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:

whi = [whi1, whi2, . . ., whin]T is the weight vector connecting the i-th hidden neuron to the input

neurons, woi = [woi1, woi2, . . ., woim]T is the weight vector connecting the i-th hidden neuron to

the output neurons, bi is the bias of the i-th hidden neuron, and g(�) is the activation function of

hidden neurons.

Thus, to determine the output weights is to find the least square (LS) solution to the given

linear system. The minimum norm LS solution to the linear system (1) is

wo ¼ H þT ð2Þ

where H+ is the Moore-Penrose (MP) generalized inverse of matrix H. The minimum norm

LS solution is unique and has the smallest norm among all the LS solutions. ELM using such

MP inverse method tends to obtain good generalization performance [16]. Since the solution

is obtained by an analytical method and all the parameters of SLFN need not be adjusted, ELM

converges much faster than gradient-based algorithms.

Particle swarm optimization

PSO is an evolutionary computation technique in search of the best solution by simulating

the movement of birds in a flock [26]. The population of the birds is called swarm, and the

members of the population are particles. Each particle represents a possible solution to the

optimization problem. During each iteration, each particle flies independently in its own

direction which is guided by its own previous best position as well as the global best position

of all the particles. Assume that the dimension of the search space is R, and the swarm is

S = (X1, X2, X3, . . ., XNp); each particle represents a position in R dimension space; the posi-

tion of the i-th particle in the search space is denoted as Xi = (xi1, xi2, . . ., xiR), i = 1, 2, . . ., Np,

where Np is the size of the swarm. The previous best position of the i-th particle is called

pbest which is expressed as Pi = (pi1, pi2, . . ., piR). The best position of the all particles are

called gbest which is expressed as Pg = (pg1, pg2, . . ., pgR). The velocity of the i-th particle is

expressed as Vi = (vi1, vi2, . . ., viR). According to [26], the basic PSO was described as:

Viðt þ 1Þ ¼ ViðtÞ þ c1 � randðÞ � ðPiðtÞ � XiðtÞÞ þ c2 � randðÞ � ðPgðtÞ � XiðtÞÞ ð3Þ

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ ð4Þ

where c1, c2 are the acceleration constants with positive values; rand() is a random number

ranged from 0 to 1.

To obtain better performance, an improved PSO called adaptive PSO (APSO) was proposed

[41], and the corresponding velocity update of particles was denoted as follows:

Viðt þ 1Þ ¼WðtÞ � ViðtÞ þ c1 � randðÞ � ðPiðtÞ � XiðtÞÞ þ c2 � randðÞ � ðPgðtÞ � XiðtÞÞð5Þ

where W(t) is the inertia weight to keep a balance between global search and local search. The
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inertia weight can be computed by the following equation:

WðtÞ ¼Wmax � t � ðWmax � WminÞ=NPSO ð6Þ

In Eq (6), Wmax, Wmin and Npso are the initial inertial weight, the final inertial weight and

the maximum optimization iterations, respectively.

Although PSO has shown good performance in solving many optimization problems, it suf-

fers from the problem of premature convergence like most of the stochastic search techniques,

particularly in multimodal optimization problems [42]. To overcome premature convergence

of PSO, in [36], attractive and repulsive particle swarm optimization (ARPSO), a diversity

guided method, was proposed which was described as:

Viðt þ 1Þ ¼ ViðtÞ þ dir � ½c1 � randðÞ � ðPiðtÞ� XiðtÞÞ þ c2 � randðÞ � ðPgðtÞ� XiðtÞÞ� ð7Þ

where dir ¼
� 1 diversity < dlow

1 diversity > dhigh

(

.

In [36], a function was proposed to calculate the diversity of the swarm as follows:

diversityðÞ ¼ ð
1

Np � jLjÞ �
XNp

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XR

j¼1
ðpij � pjÞ

2

r

ð8Þ

,

where |L| is the length of the maximum radius of the search space; pij is the j-th component of

the i-th particle and pj is the average of the j-th component over all particles.

In the attraction phase (dir = 1), the swarm is attracting, and consequently the diversity

decreases. When the diversity drops below the lower bound, dlow, the swarm switches to the

repulsion phase (dir = -1) when the swarm is repelling. When the diversity reaches the upper

bound, dhigh, the swarm switches back to the attraction phase. ARPSO alternates between

phases of exploiting and exploring—attraction and repulsion—low diversity and high diversity

and thus improve its search ability [36].

The Improved Ensemble of RVFL Based on Double Optimization

The proposed method (DO-EELM)

The critical steps to build an ensemble system include how to select the optimal base classifiers

and how to determine the ensemble weights for the selected base classifiers. In this study, dou-

ble optimization is performed by ARPSO to select the base ELM and optimize the ensemble

weights corresponding to each selected ELM. As for selecting the base classifiers, we use

APRSO to search the optimal ELM sets by considering both the classification performance

and diversity of the ensemble system, which makes the ensemble system gain high conver-

gence ability with comparatively high diversity. To obtain the optimal ensemble weights, the

initial weights of the selected base ELM are determined by the minimum norm LS method,

and then are further optimized by ARPSO. Moreover, to reduce the complexity of the ensem-

ble system without influencing the convergence accuracy of the ensemble system, a few base

ELM with much lower ensemble weights than others is pruned from the ensemble system.

Since the proposed ensemble of RVFL is built on ELM with double optimization based on

ARPSO, it is referred to as the DO-EELM. The rough framework of the DO-EELM is shown in

Fig 1.

The DO-EELM builds the effective ensemble system with two phases. In the first phase, a

modified ARPSO is used to select the optimal base ELM. The detailed steps are described as

follows:
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Step A1: Form an initial ELM pool. The dataset is divided into the training and testing data-

sets. On the training datasets, the Bagging method [43] is used to randomly assign different

sub-training datasets with the same size. With a sub-training dataset, a corresponding ELM is

randomly generated to train a SLFN. All ELM forms the initial ELM pool for further selection,

and they have the same number of hidden nodes. Moreover, the original training datasets are

further divided into the training and validation datasets.

Step A2: Initialize the swarm. Randomly initialize the position, Xi = (xi1, xi2, . . ., xiM), i = 1,

2, . . ., Np, and the velocity, Vi = (vi1, vi2, . . ., viM), of each particle, where M is the number of

the initial ELM pool and Np is the warm size. The value of the component of the i-th particle,

xij, is rounded as 1 or 0 which indicates the j-th ELM be selected or not to build the ensemble

system.

Step A3: Select the optimal base ELM subsets by the modified ARPSO.

Fig 1. The frame of the DO-EELM method.

doi:10.1371/journal.pone.0165803.g001
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Substep A3.1: Set Xi as the current pbest for the i-th particle, compute fitness values of all

particles, and find the global best position gbest. For regression problem, the fitness function is

the negative root mean squared error (RMSE) on the validation dataset. As for classification

problem, the fitness function is defined as the classification accuracy on the validation datasets

obtained by the ensemble system represented by the particle. The fitness function of the i-th

particle for classification problems is defined as follows:

f ðXiÞ ¼
XNv

k¼1

ðTk � Y
i
kÞ=Nv ð9Þ

where Nv is the number of samples in the validation datasets, Yi
k and Tk are the actual output

of the i-th ensemble system and the desired output for the k-th sample. When Yi
k is equal to Tk,

their inner product, Tk � Y
i
k, is equal to 1.

Substep A3.2: Update Vi and Xi according to Eqs (7) and (4), respecively. At the same time,

xij needs rounding operation and new population is generated. If xij is greater than 1, it will be

set as 1.

Substep A3.3: Calculate new fitness values of all particles, and update the pbest and gbest for

all particles. To obtain the ensemble system with improved diversity, the pbest and gbest are

updated according to Eqs (10) and (11), respectively.

Pi ¼
Xi ððf ðXiÞ � f ðPiÞÞ > aÞ or ðjf ðXiÞ � f ðPiÞj < a and divðXiÞ > divðPiÞÞ

Pi else
ð10Þ

(

Pg ¼
Xi ððf ðXiÞ � f ðPgÞÞ > aÞ or ðjf ðXiÞ � f ðPgÞj < a and divðXiÞ > divðPgÞÞ

Pg else
ð11Þ

(

f(Xi), f(Pi) and f(Pg) are the fineness values of the i-th particle, the pbest of the i-th particle and

the gbest of the swarm, respectively; div(Xi), div(Pi) and div(Pg) are the diversity of the ensemble

system represented by the i-th particle, the pbest of the i-th particle and the gbest of the swarm,

respectively.

The diversity is an important factor of ensemble algorithms and there is no agreed defini-

tion for diversity [44]. Assume that the each base ELM was a point in the space. An ELM could

be represented by its input weights, hidden biases, output weights and corresponding output

for a training sample. It is evident that the greater the distance between two ELM is, the greater

the difference between the two ELM is. The diversity of the ensemble system represented by

the i-th particle, div(Xi), is defined as follows:

divðXiÞ ¼



2
XNi � 1

k¼1

XNi

l¼kþ1

ðkWHk � WHlk
2

2
þ kBk � Blk

2

2
þ kWOk � WOlk

2

2
þkYk � Ylk

2

2
Þ

,

Ni � ðNi � 1Þ

v
u
u
t ð12Þ

where WHk and WHl are the input weights matrices of the k-th and l-th selected ELM, respec-

tively, in the i-th particle, Bk and Bl are the hidden biases vectors of the k-th and l-th selected

ELM, respectively, in the i-th particle, WOk and WOl are output weights matrices of the k-th

and l-th selected ELM, respectively, in the i-th particle, and Yk = (Yk1, Yk2, . . ., YkNtrain) and

Yl = (Yl1, Yl2, . . ., YlNtrain) are the actual output vectors of the k-th and l-th selected ELM,

respectively, in the i-th particle on all training data. Ni and Ntrain are the number of the base

ELM in the ensemble system represented by the i-th particle and the size of the training

datasets.
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Substep A3.4: The above optimization process from Substep A3.2 to Substep A3.3 is

repeated until the goal is met or the maximum optimization epochs are completed.

In the second phase, ARPSO is used to optimize the ensemble weights related to the selected

base ELM obtained in the first phase. The detailed steps are described as follows.

Step B1: Initialize the ensemble weights for all selected base ELM by the minimum norm LS

method. Assume that

~Y ~W ¼ TNtrain ð13Þ

where ~Y ¼

~Y 1;1 � � � ~Y 1;D

..

.
. . . ..

.

~YNtrain;1 . . . ~YNtrain;D

2

6
6
6
4

3

7
7
7
5

Ntrain�m�D

; ~W ¼

~W 1

..

.

~WD

2

6
6
6
4

3

7
7
7
5

T

D�1

; TNtrain ¼

tT
1

..

.

tTNtrain

2

6
6
4

3

7
7
5

Ntrain�m

.

~Y i;j is the output of the j-th ELM for the i-th training sample, ~Wi is the ensemble weight for

the i-th base ELM, and D is the number of the selected ELM in the first phase. By the minimum

norm LS method, the initial ensemble weights are calculated as follows:

~W ¼ ð~Y Þ
þ
TNtrain ð14Þ

Step B2: Use ARPSO to optimize the ensemble weights with the initial values obtained by

Eq (14). The optimization process in this phase is similar to that in the first phase, but some

details should be clarified. First, as for initializing the swarm, one particle is initialized as the

values obtained by Eq (14), and the other particles are randomly initialized within the values in

the interval of (0, 1). Second, the fitness function is also the corresponding classification accu-

racy and negative RMSE on the validation dataset for classification and regression problems,

respectively. Finally, the pbest and gbest are updated as those updated in the traditional PSO,

which is different from that in the first phase.

Step B3: Delete a few redundant base ELM without influencing the convergence accuracy of

the ensemble system.

Step B4: The optimal ensemble of ELM is obtained, and then applied to the test dataset.

From the DO-EELM approach, the following conclusion can be concluded.

First, in the process of selecting the base ELM, ARPSO considers not only the classification

accuracy on validation dataset but also the diversity of the corresponding ensemble system, so

the DO-EELM could obtain the ensemble of ELM with improved classification ability and

diversity.

Second, after searching the optimal base ELM subset which gains the best generalization

performance with comparatively high diversity in the process of the first optimization, the

DO-EELM further search the optimal ensemble weights to build the best ensemble of ELM in

the second optimization. Since the double optimization is performed based on the single opti-

mization, the DO-EELM could achieve the better convergence performance than those ensem-

bles of ELM with single optimization strategy. Moreover, the DO-EELM could build more

compact ensemble of ELM without decreasing the convergence performance because of prun-

ing the redundant base ELM. According to [45], the smaller neural networks could obtain bet-

ter generalization performance, so pruning the redundant base ELM from the ensemble

system in the DO-EELM could further improve the generalization performance of the ensem-

ble system.

Third, the DO-EELM selects the base ELM by ARPSO, so it could control the size of the

ensemble system adaptively.
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Finally, since the output weights for each ELM are analytically determined, the computa-

tional complexity of the DO-EELM is the same as that of ARPSO.

The computational complexity of the DO-EELM method can be calculated as follows:

CCDO� EELM ¼ OðMÞ þ OðIterarpso1 � Narpso1 �MÞ þ OðIterarpso2 � Narpso2 � DÞ þ OðDÞ ð15Þ

where Iterarpso1 and Narpso1 are the maximum iterations and swarm size of the ARPSO in the

first phase, respectively; Iterarpso2 and Narpso2 are the maximum iterations and swarm size of the

ARPSO in the second phase, respectively; M and D are the size of the initial ELM pool and the

number of the selected ELM in the first phase. The four items on the right side of Eq (15) are

the computational complexity of establishing initial ELM pool, selecting the base ELM by the

modified ARPSO, optimizing the ensemble weights by the traditional ARPSO, and pruning

the redundant base ELM from the ensemble system, respectively. Since Iterarpso1 and Iterarpso2
(Narpso1 and Narpso2) are the same order of magnitude and M is greater than D, the computa-

tional complexity of the DO-EELM method is approximated as O(Iterarpso1 × Narpso1 ×M)

which is the same as that of ARPSO.

The space complexity of the DO-EELM method can be calculated as follows:

SCDO� EELM ¼ OðNsamÞ þ OðM � ððNin þ 1Þ � Nh þ Nh � NoÞ

þ OðNarpso1 � 3MÞ þ OðNarpso2 � 3DÞ ð16Þ

where Nsam is the number of all samples in dataset; Nin, Nh, No are the number of input nodes,

hidden nodes and output nodes, respectively, of the SLFN in each base ELM. The four items

on the right side of Eq (16) are the space complexity of all samples, all ELM in the initial

gene pool, the modified ARPSO in the first phase and the traditional ARPSO in the second

phase, respectively. Similarly, Since Narpso1 and Narpso2 are the same order of magnitude

and M is greater than D, the space complexity of the DO-EELM method is approximated as

O(Nsam) + O(M × ((Nin + 1) ×Nh + Nh ×No + Narpso1).

Theoretical analysis and discussion of pruning the base ELM

Assume that D base ELM is selected by ARPSO, and the ensemble weight of the i-th base ELM

is ~Wi; ði ¼ 1; 2; � � � � � � ; DÞ; The output of each base ELM is an m-dimensional vector where

only one component is equal to one indicating the sample class, and the other components are

zero. For the l-th training sample, the output of the k-th base ELM is ~Y l;k, (l = 1, 2, . . ., Ntrain,

k = 1, 2, . . ., D.), and the output of the ensemble system is ~Y l ¼
XD

k¼1

~Wk �
~Y l;k. Obviously, the

j-th component of ~Y l, can be represented as
XD

r¼1

~Wjr , and the jr is defined as follows:

jr ¼
r The r � th base ELM identifies the l � th sample as the j � th class:

0 else
ð17Þ

(

where ~W 0 is equal to zero. Moreover, the following equations are easily obtained.

Xm

j¼1

XD

r¼1

~Wjr ¼
XD

i¼1

~Wi ð18Þ

fjrg \ firg ¼ ;; i 6¼ j ð19Þ

For classification problem, if the value of the k-th component of ~Y l is the largest among
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those of all components, the ensemble system will identify the l-th training sample as the k-th

class.

To prune the redundant base ELM is to delete those base ELM without influencing the clas-

sification result of the ensemble system. Assume that the j-th base ELM identifies the l-th sam-

ple as the k-th class. When the j-th base ELM is deleted, the value of the k-th component of the

ensemble system is changed to
XD

r¼1

~Wkr
� ~Wj. On one hand, if the ensemble system identifies

the l-th sample as the p-th class where p is not same as k, to delete the j-th base ELM will not

change the classification result of the ensemble system on the l-th sample because of

XD

r¼1

~Wkr
� ~Wj <

XD

r¼1

~Wkr
<
XD

r¼1

~Wpr
. On the other hand, if the ensemble system identifies

the l-th sample as the k-th class, to delete the j-th base ELM will not change the classification

result of the ensemble system on the l-th sample when the value of the k-th component of the

output vector of the ensemble system,
XD

r¼1

~Wkr
� ~Wj, is still the largest among those of all out-

put components of the ensemble system after deleting the j-th base ELM.

From the above analysis, when deleting the j-th base ELM does not change the classification

results of the ensemble system on all the samples, the j-th base ELM is redundant and should

be pruned. For classification problems, we can further draw the conclusion as follows.

Theorem 1 Assume that D base ELM forms the ensemble system, and the ensemble weight

of the j-th base ELM is ~Wj; ðj ¼ 1; 2; � � � � � � ; DÞ; The sum of the ensemble weights of the D
base ELM is equal to one. When the maximal values of the output components of the ensemble

system on all samples are always greater than ~Wj þ 0:5, the j-th base ELM could be deleted

without influencing the classification results of the ensemble system.

Proof: For simplicity, we consider the l-th sample firstly. The ensemble system identifies

this sample as the k-th class, which means that the k-th component of the output vector of the

ensemble system,
XD

r¼1

~Wkr
, has the maximal value of all output components of the ensemble

system.

According to the above analysis, if the j-th base ELM outputs different class on the l-th sam-

ple from the ensemble system, deleting the j-th base ELM certainly will not change the value of

the k-th component of the output vector of the ensemble system.

Since the sum of the ensemble weights of the D base ELM is equal to one, the Eqs (18) and

(19) has the form as follows:

Xm

j¼1

XD

r¼1

~Wjr ¼ 1 s:t: fjrg \ firg ¼ ;; i 6¼ j ð20Þ

If the j-th base ELM outputs the same class on the l-th sample from the ensemble system,

deleting the j-th base ELM means that the value of the k-th component of the output vector of

the ensemble system changes to
XD

r¼1

~Wkr
� ~Wj. Since the maximal values of the output com-

ponents of the ensemble system on all samples are always greater than ~Wj þ 0:5, the value of

the
XD

r¼1

~Wkr
� ~Wj is greater than 0.5. According to Eq (20), the value of the

XD

r¼1

~Wkr
� ~Wj is

still the largest value of all components of the output vector of the ensemble system, so the
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ensemble system still identifies the l-th sample as the k-th class after deleting the j-th base

ELM.

Therefore, the j-th base ELM could be deleted without influencing the classification result

on the l-th sample of the ensemble system.

The above proof also suits for other samples, and thus Theorem 1 is proved.

If the condition in Theorem 1,
XD

i¼1

~Wi ¼ 1, is not satisfied, the condition will be realized by

normalizing the ensemble weight of each base ELM as follows:

Ŵ j ¼
~Wj

XD

i¼1

~Wi

; ðj ¼ 1; 2; � � � � � � ; DÞ ð21Þ

where Ŵ j is the normalized ensemble weight of the j-th base ELM.

The above analysis and theorem provide a theoretical guide on how to prune the redundant

base ELM for classification problems. However, the theoretical guide has two limitations

which make the guide not suitable in most real cases. One is that the conditions of pruning the

redundant base ELM are too rigorous, which can not be satisfied in most real cases. The other

is that the above analysis and theorem only suit for classification problems but regression

problems. For regression problem, the ultimate output of the ensemble system is the weighted

sum of the output of all base ELM, so the above pruning method is not feasible.

Thus, we propose a more practically feasible strategy to prune the redundant base ELM in

the DO-EELM which deletes the base ELM with much lower ensemble weights than others.

When the ensemble weight of a base ELM is less than the predetermined threshold, β, the

ELM will be pruned from the ensemble system. This strategy is feasible and flexible for both

classification and regression problems. However, it is difficult to determine the value of the

threshold. Generally, β is much less than the mean value of all ensemble weights, and the spe-

cific value should be determined by trial and error.

Experiment Results and Discussion

In this section, to verify the effectiveness of the proposed approach, the DO-EELM is com-

pared with E-ELM [18], EOS-ELM [20], E-PSOELM, E-ARPSOELM [37] and DGEELM-

BARPSO [38] on seven datasets. The E-PSOELM is similar to the E-ARPSOELM, while it uses

adaptive PSO to select base ELM. Since the DGEELMBARPSO uses ARPSO to perform single

optimization, we rename it SO-EELM in this section. We conduct experiments on one func-

tion approximation, four benchmark classification and two microarray data classification

problems. Since support vector machine (SVM) is an effective learning algorithm with high

performance, it is also compared with the proposed method in this section. The simulations

for SVM on all data are carried out using compiled SVM package: LIBSVM which are available

at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. The kernel function used in SVM is radial basis

function on all datasets. All the results shown in this paper are the mean values of 20 trials.

Function approximation

In this section, all algorithms are used to approximate the ‘SinC’ function

y ¼
sinðxÞ=x x 6¼ 0

1 x ¼ 0

(

. A training set (xi, yi) and testing set (xj, yj) with 1000 data, respec-

tively, are created where xis and xjs are uniformly randomly distributed on the interval
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(-10,10). Moreover, large uniform noise distributed in [-0.2, 0.2] has been added to all the

training samples while the testing data remains noise-free.

In the experiments, the number of the hidden nodes in all base ELM is 20. The activation

functions of hidden nodes in all ELM are the sigmoid functions. For E-ELM and EOS-ELM,

the number of the base ELM is fixed as twelve in the ensemble systems. As for ARPSO in the

E-ARPSOELM, SO-EELM and DO-EELM on all datasets, the inertia weights Wmax and Wmin

are set as 0.9 and 0.1, respectively; the parameters dlow, dhigh, c1 and c2 are selected as 5e-6,

0.25, 2 and 2; the population size is 50; the size of the initial ELM pool is 40. The parameters

values of basic PSO in E-PSOELM are same as those of ARPSO in ARPSO based ensemble of

ELM. The parameter, α, is selected as 0.0005 in the SO-EELM and DO-EELM, and the thresh-

old, β, is selected as 0.05 in the DO-EELM. These parameters are determined by trial and error

and according to the guidance given in [29, 30, 41]. The corresponding results are shown in

Table 2. The results of SVM are directly cited from the literature [46].

From Table 2, the DO-EELM method obtains the least test RMSE with the least number of

ELM than the other ELM ensembles, which indicates that the proposed method could build

more compact ensemble system with better generalization performance than the other ensem-

ble of ELM. SVM obtains less test RMSE than other ELM ensembles but the DO-EELM. With

the similar train RMSE, different test RMSE indicates different generalization performance of

the ELM ensembles. For example, the train RMSE values of the E-ELM and DO-EELM are

almost the same, but the test RMSE values of the E-ELM and DO-EELM vary greatly. This

result demonstrates that the ensemble of ELM built by the DO-EELM has much better general-

ization performance than that built by the E-ELM.

Fig 2 shows the diversity values of different ensemble of ELM with 20 independent runs.

The ensemble system built by the DO-EELM has higher diversity than those built by the

E-ELM, E-PSOELM and E-ARPSOELM in all runs. The diversity of the ensemble system built

by the DO-EELM is less than that of the E-OSELM and SO-EELM, which lies mainly in the

fact that the ensemble system built by the DO-EELM has fewer ELM members than that of the

E-OSELM and SO-EELM. Therefore, the proposed method could build the ensemble system

with comparatively high diversity.

The number of ELM in the E-ELM and E-OSELM is predetermined by trial and error,

while the one in the E-PSOELM, E-ARPSOELM, SO-EELM and DO-EELM is determined

adaptively in the selection process. Fig 3 shows the ELM number curves in the four PSO based

ensemble of ELM with 20 independent runs. The DO-EELM selects least number of ELM of

all PSO based ELM ensembles in most of runs, which indicates that the DO-EELM could

establish more compact ensemble system than other ELM ensembles.

Classification problems

In this subsection, the performance of the DO-EELM method is tested on the four benchmark

classification problems from UCI Machine Repository Database (http://archive.ics.uci.edu/ml/)

Table 2. The results of approximating the Sinc function by the seven algorithms.

Algorithms Train RMSE Test RMSE±Std. Mean size of ELM ensemble

SVM 0.1149 0.0130±0.0012 /

E-ELM 0.1157 0.0166±6.7086e-04 12

E-OSELM 0.1163 0.0167±6.3027e-04 12

E-PSOELM 0.1164 0.0163±8.6240e-04 10.3

E-ARPSOELM 0.1153 0.0161±8.6240e-04 9.7

SO-EELM 0.1161 0.0133±6.8036e-04 9.6

DO-EELM 0.1156 0.0113±5.7065e-04 6.83

doi:10.1371/journal.pone.0165803.t002
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including Diabetes, Satellite Image, Wine and Image Segmentation data, and two microarray

data which is hard to classify including Lung and Brain cancer data. The Lung data is available

at http://www.genome.wi.mit.edu/MPR/lung and http://www.pnas.org, and the Brain cancer

data is available at http://linus.nci.nih.gov/~brb/DataArchive_New.html. The specifications of

the six data are presented in Table 3. For the Diabetes data, we use the “Pima Indians Diabetes

Database” produced in the Applied Physics Laboratory, Johns Hopkins University, 1988. More-

over, the training sets and validation sets occupy 70% and 30% of the whole training sets,

respectively.

For two microarray data, we use the KMeans-GCSI-MBPSO-ELM approach [30] to per-

form gene selection, and four and ten genes are selected for the Brain cancer and Lung data,

respectively. The number of the hidden nodes in all base ELM is the same, which is 25, 400, 15,

180, 15 and 20 on Diabetes, Satellite Image, Wine, Image Segmentation, Brain cancer and

Lung data, respectively. The values for the other parameters are the same as those in the above

function approximation problem.

Table 4 shows the mean classification results of the seven algorithms on the six classification

problems. The SO-EELM uses the average weighting voting method as the decision rule. From

Table 4, the DO-EELM achieves the highest test accuracies among all ensemble of ELM on all

data. All ELM ensembles obtain higher test accuracies with less standard deviation than SVM

on all data except the Brain cancer data. On the Brain cancer data, SVM achieves higher test

accuracy than all ELM ensembles except the DO-EELM. The DO-EELM selects fewer ELM to

build the ensemble system than other ensemble methods in all cases. Similarly, the proposed

ensemble of ELM gains the better generalization performance with more compact structure

Fig 2. The diversity curves of different ensembles of ELM on approximating the SinC function with 20 independent runs.

doi:10.1371/journal.pone.0165803.g002
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than other ELM ensembles and SVM. From [47], the regularized discriminant analysis method

also achieved 100% classification accuracy as the DO-EELM on the Wine data. The regularized

discriminant analysis method has the potential to increase the power of discriminant analysis

in settings for which sample sizes are small and the number of measurement variables is large,

Fig 3. The number of the ELM in the four PSO based ensembles of ELM on approximating the SinC function with 20 independent runs.

doi:10.1371/journal.pone.0165803.g003

Table 3. The specifications of the six datasets.

Dataset Train set Test set Categories Attributes

Diabetes 576 192 2 8

Satellite Image 4435 2000 6 36

Wine 120 58 3 13

Image Segmentation 1500 810 7 19

Brain cancer 41 19 2 7129

Lung 140 63 5 3312

doi:10.1371/journal.pone.0165803.t003

An Improved Ensemble of RVFL Based on PSO with Double Optimization Strategy

PLOS ONE | DOI:10.1371/journal.pone.0165803 November 11, 2016 15 / 23



while it substantially improves misclassification risk when the population class covariance

matrices are not close to being equal and/or the sample size is too small for even linear dis-

criminant analysis to be viable [48]. Since the deficiencies of each ELM may be compensated

by the efficiency of the others, the DO-EELM could achieve comparatively high classification

Table 4. Classification results of the seven algorithms on the six data.

Data Algorithms Train accuracy Test accuracy±Std. Mean size of ELM ensemble

Diabetes SVM 0.7807 0.7747±0.0252 /

E-ELM 0.7886 0.8271±0.0112 12

EOS-ELM 0.7877 0.8279±0.0109 12

E-PSOELM 0.8176 0.8316±0.0085 12.35

E-ARPSOELM 0.8223 0.8359±0.0077 12.7

SO-EELM 0.8147 0.8367±0.0073 11.05

DO-EELM 0.8256 0.8536±0.0055 9.6

Satellite Image SVM 0.8825 0.8689±0.0035 /

E-ELM 0.9227 0.8927±0.0031 12

EOS-ELM 0.9232 0.8926±0.0028 12

E-PSOELM 0.9311 0.8936±0.0031 14.6

E-ARPSOELM 0.9316 0.8976±0.0023 7.9

SO-EELM 0.9279 0.9006±0.0023 6.5

DO-EELM 0.9335 0.9018±0.0022 6

Wine SVM 0.9973 0.9529±0.0258 /

E-ELM 0.9875 0.9819±0.0163 12

EOS-ELM 0.9975 0.9886±0.0087 12

E-PSOELM 0.9997 0.9888±0.0083 15

E-ARPSOELM 1 0.9914±0.0088 15.55

SO-EELM 1 0.9936±0.0087 8.8

DO-EELM 1 1±0 5.2

Image Segmentation SVM 0.9393 0.9336±0.0081 /

E-ELM 0.9722 0.9496±0.0040 12

EOS-ELM 0.9736 0.9523±0.0035 12

E-PSOELM 0.9772 0.9530±0.0030 14.85

E-ARPSOELM 0.9828 0.9562±0.0030 12.7

SO-EELM 0.9819 0.9575±0.0032 11.6

DO-EELM 0.9822 0.9665±0.0028 9.3

Brain cancer SVM 0.8817 0.8368±0.0449 /

E-ELM 0.9853 0.7336±0.0290 12

EOS-ELM 0.9676 0.7368±0.0301 12

E-PSOELM 0.9769 0.7368±0.0273 13.35

E-ARPSOELM 0.9808 0.7395±0.0118 11.05

SO-EELM 0.9786 0.7893±0.0207 11.65

DO-EELM 0.9808 0.8737±0.0106 8.75

Lung SVM 0.9861 0.9548±0.0165 /

E-ELM 0.9911 0.9865±0.0093 12

EOS-ELM 0.9911 0.9873±0.0083 12

E-PSOELM 0.9896 0.9906±0.0087 15

E-ARPSOELM 0.9876 0.9960±0.0109 11.35

SO-EELM 0.9763 0.9921±0.0096 10.8

DO-EELM 1 1±0 8.3

doi:10.1371/journal.pone.0165803.t004
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accuracy on most data including the Wind data. However, because of its double optimization

procedure and being an ensemble method, the DO-EELM requires much more training time

than the regularized discriminant analysis method.

Fig 4 shows the diversity values of different ensemble of ELM on the six classification prob-

lems with 20 independent runs. The diversity of the ensemble system built by the DO-EELM is

about medium level of those of all ELM ensembles on all data except the Wine data. The diver-

sity value of the ELM ensembles built by DO-EELM is always less than that of the SO-EELM in

all cases, and it is the least in most of runs on the Wine data. The DO-EELM has no distinct

advantage of absolute diversity over the other ensemble of ELM, because the size of the ensem-

ble system built by the DO-EELM is much less than that of other algorithms.

Fig 5 shows the ELM number in the four PSO based ensemble of ELM with 20 independent

runs. In most of cases, the proposed method could build an ensemble system with fewer num-

ber of ELM than other PSO based ELM ensembles.

Discussions

Fig 6 depicts the curve of the convergence accuracy as the value of the parameter α is selected

in the interval of (0, 0.002] in the DO-EELM on the seven data. As for the classification prob-

lems, the test accuracy has a slightly downward trend except the Lung data as the value of the

parameter α increases. As for approximating the Sinc function, the test RMSE has an upward

trend as the value of the parameter α increases. Form Fig 6, the optimal value of the parameter

α is 0.0005 in the DO-EELM on all datasets.

Fig 4. The diversity curves of different ensembles of ELM on the six classification problems with 20 independent runs.

doi:10.1371/journal.pone.0165803.g004
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Fig 7 depicts the curve of the convergence accuracy as the value of the parameter β is selected

in the interval of [0.01, 0.15] in the DO-EELM. As the value of the parameter β increases, the

test accuracy has a downward trend on the four benchmark classification problems. As for two

microarray data, the suitable interval of β is [0.05, 0.10]. As for approximating the Sinc function,

the test RMSE has an upward trend as the value of the parameter β increases, especially as the

parameter β is greater than 0.1.

Figs 6 and 7 provide a guide on how to select the values of the parameters α and β in

the DO-EELM. In general, these parameters should be selected empirically in particular

applications.

Fig 8 shows the effect of the size of the initial ELM pool on the convergence performance in

the DO-EELM. In the experiments, all parameters except the size of the initial ELM pool are

fixed as their optimal values, the size of the initial ELM pool is select from 20 to 60. The test

accuracy has a slightly upward trend on all classification problems as the number of the ELM

in the initial ELM pool increases. For approximating the Sinc function, the suitable size of the

initial ELM pool is between 40 and 50. From Fig 8, it is a reasonable choice that the size of the

initial ELM pool is set as 40 on all data.

The optimization of the ensemble weights in the DO-EELM not only reduces the complex-

ity of the ensemble system, but also improves the classification performance of the ensemble

system. Fig 9 shows the convergence accuracy between two approaches on the seven data with

20 independent runs. One is the DO-EELM where the initial ensemble weights obtained by

the minimum norm LS method are optimized by ARPSO in the second phase, and the other is

that the ultimate ensemble weights are obtained by the minimum norm LS method without

Fig 5. The number of the ELM in the four PSO based ensembles of ELM on the six classification problems with 20 independent runs.

doi:10.1371/journal.pone.0165803.g005
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Fig 6. The convergence accuracy vs the different values of the parameter α in the DO-EELM method.

doi:10.1371/journal.pone.0165803.g006

Fig 7. The convergence accuracy vs the different values of the parameter β in the DO-EELM method.

doi:10.1371/journal.pone.0165803.g007

An Improved Ensemble of RVFL Based on PSO with Double Optimization Strategy

PLOS ONE | DOI:10.1371/journal.pone.0165803 November 11, 2016 19 / 23



the further optimization. Two approaches easily achieve 100% test accuracy on the Wine data,

while the test accuracy of the DO-EELM is higher than or equal to that of the other approach

on the other five classification problems in each run. For function approximation, the

DO-EELM achieves the less test RMSE than the other method in most of runs. Therefore, it is

necessary to optimize the initial ensemble weights obtained by the minimum norm LS method

with ARPSO.

Conclusions

To establish an effective ensemble of RVFL, the double optimization strategy based on ARPSO

was proposed to select the base ELM and determine the ensemble weights in this study. In the

first phase, ARPSO selected the optimal base ELM sets by considering the classification perfor-

mance as well as the diversity of the ensemble of RVFL. In the second phase, the ensemble

weights were determined by the minimum norm LS method and ARPSO. Finally, to obtain

more compact ensemble system, it was further pruned by deleting the redundant base ELM.

Experiment results on the function approximation and six classification problems verified that

the proposed approach could gain much higher generalization performance with fewer num-

ber of ELM in the ensemble system than some PSO based ensembles of ELM with single opti-

mization and other classical ones. It is evident that the establishment of the initial ELM pool is

also an important step in the proposed method. A reasonable initial ELM pool will not only

improve the convergence performance of the ensemble system but also decrease the optimiza-

tion cost. Future work will include how to establish a more effective initial ELM pool and

apply the DO-EELM to more complex problems.

Fig 8. The convergence accuracy vs the size of the initial ELM pool in the DO-EELM method.

doi:10.1371/journal.pone.0165803.g008
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