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Abstract

Regeneration is the ability that allows organisms to replace missing organs or lost tissue

after injuries. This ability requires the coordinated activity of different cellular processes,

including programmed cell death. Apoptosis plays a key role as a source of signals neces-

sary for regeneration in different organisms. The imaginal discs of Drosophila melanogaster

provide a particularly well-characterised model system for studying the cellular and molecu-

lar mechanisms underlying regeneration. Although it has been shown that signals produced

by apoptotic cells are needed for homeostasis and regeneration of some tissues of this

organism, such as the adult midgut, the contribution of apoptosis to disc regeneration

remains unclear. Using a new method for studying disc regeneration in physiological condi-

tions, we have defined the pattern of cell death in regenerating discs. Our data indicate that

during disc regeneration, cell death increases first at the wound edge, but as regeneration

progresses dead cells can be observed in regions far away from the site of damage. This

result indicates that apoptotic signals initiated in the wound spread throughout the disc. We

also present results which suggest that the partial inhibition of apoptosis does not have a

major effect on disc regeneration. Finally, our results suggest that during disc regeneration

distinct apoptotic signals might be acting simultaneously.

Introduction

Regeneration allows organisms to restore the original shape, size and function of body parts

that have been lost or damaged. The imaginal wing discs of Drosophila melanogaster have the

capacity to regenerate during the larval stages and provide a particularly well-characterised

model system for analysing this phenomenon (review [1]). The imaginal wing discs are sac-

like structures that give rise to the wing and notum of the adult. The cells that constitute the

discs are specified early in embryogenesis. They start to divide during the first larval stage and

continue proliferating until the end of larval development. Since a series of classic experiments

by Ernst Hadorn (1940s to the 1970) [2–4] laid the basis for understanding imaginal disc

PLOS ONE | DOI:10.1371/journal.pone.0165554 November 28, 2016 1 / 20

a11111

OPENACCESS

Citation: Diaz-Garcia S, Ahmed S, Baonza A (2016)

Analysis of the Function of Apoptosis during

Imaginal Wing Disc Regeneration in Drosophila

melanogaster. PLoS ONE 11(11): e0165554.

doi:10.1371/journal.pone.0165554

Editor: Madhuri Kango-Singh, University of

Dayton, UNITED STATES

Received: March 31, 2016

Accepted: October 13, 2016

Published: November 28, 2016

Copyright: © 2016 Diaz-Garcia et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by a grant

obtained from the MEC (BFU2014-54153-P). SDG

was supported by an FPI fellowship from the

MICINN.

Competing Interests: The authors have declared

that no competing interests exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165554&domain=pdf
http://creativecommons.org/licenses/by/4.0/


regeneration, different experimental approaches have been used to study this process in Dro-
sophila. Classically disc regeneration has been studied in amputated discs that were cultivated

into the abdomen of an adult host where the cells of the discs proliferate but do not differenti-

ate [2,5,6]. More recently, a new system based on the Gal4/UAS binary system, in combination

with a temperature-sensitive Gal4 suppressor, Gal80ts, has been developed to genetically ablate

a region of the wing disc. This method allows the induction of cell death in specific domains of

the discs for a limited period of time, after which the discs recover [7–8]. The results obtained

from these studies have provided fundamental principles for a variety of cellular and molecular

processes involved in organ regeneration, such as tissue remodelling, migration, cell de-differ-

entiation, patterning, and control of cell proliferation (review in [1, 9,10]). All these processes

must be precisely regulated and coordinated during regeneration to restore the size and pat-

tern of the damaged organ. Recently different reports have shown that apoptosis plays essential

functions during animal regeneration [11–13]. One of the model organisms that has provided

the most compelling evidence for the contribution of apoptosis in regeneration is the freshwa-

ter polyp Hydra [14]. When the body of the Hydra is transversally sectioned, apoptosis is trig-

gered only in the lower half, that is the fragment that will re-grow a head, whereas it is

undetectable in the upper part that will form a new foot. The ectopic induction of cell death in

the upper part induces head formation and gives rise to a doubled-headed Hydra [14]. Apopto-

sis has also been shown to function during regeneration in vertebrate animals such as in the

case of Xenopus tadpoles [15] and in wound healing and liver regeneration in mice [16–17].

In Drosophila the role of cell death during disc regeneration remains largely unknown. The

different experimental procedures used to study disc regeneration present different problems

and have led to inconclusive results. Disc cutting and transplantation assays suggest that apo-

ptosis does not play an important role during disc regeneration, as disc regeneration seems to

proceed normally when cell death is suppressed by the over-expression of the baculoviral cas-

pase inhibitor p35 [18]. However, these experiments do not allow the analysis of the pattern

and size of the adult regenerated wings, thus it is not possible to determine whether regenera-

tion is normally completed. Furthermore, disc transplantation and in vivo culture conditions

increases the number of dead cells throughout the discs, even in control non-amputated discs

[18–19], therefore it remains unknown whether apoptosis increases during disc regeneration.

The genetic ablation experiments rely on the expression of pro-apoptotic genes in a specific

region of the discs; consequently cell death cannot be blocked in the targeted region, and it is

not possible to examine the effects that this produces during regeneration [7–8]. Moreover,

the ectopic expression of the pro-apoptotic genes may promote different cellular responses not

associated with regeneration; for instance it has been shown that apoptotic cells can induce

non-autonomous cell death in neighbouring cells [20]. Accordingly, a non-autonomous

increase of cell death in regenerating discs might be caused by the ectopic induction of the

apoptotic genes and not directly by the regeneration process. Thus, it still remains to be deter-

mined whether apoptosis is involved in disc regeneration [12, 20].

We recently have developed a method to study disc regeneration in vivo in physiological

conditions [21]. With this system is possible to study disc regeneration in its normal develop-

mental context. Furthermore, it is also possible to examine the possible effects of blocking apo-

ptosis on determination of the final size and pattern of the adult regenerating wings. We have

taken advantage of this method to define the pattern of apoptosis at different times during disc

regeneration. Our results indicate that in regenerating discs, cell death increases firstly at the

wound edge, but as regeneration progresses apoptosis is extended throughout the disc. We

have also found that partial inhibition of apoptosis does not have a major effect on disc regen-

eration. Finally, our data also suggest that during disc regeneration distinct mechanisms to

induce cell death might be cooperating.

Cell Death and Discs Regeneration
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Materials and Methods

Drosophila stocks and genetics

The following stocks and Gal4 lines were used:

The UAS lines used included: UAS-GFP (Bloomington stock center), UAS-hepCA (II) [22],

UAS-puc2A [23], UAS-Diap1(III) [24], UAS-p35(III) (Bloomington stock center), and UAS-
eiger (a gift from G. Morata) [25].

We used the Gal4 lines enGal4 UAS-GFP/CyO, nubGal4/CyO, We obtained these lines from

Gines Morata (CBM, Madrid). Hh-dsRed Ci-Gal4 UAS-GFP/TM6B (a gift from Carlos Estella).

All of these stocks have been previously described in FlyBase (http://flybase.bio.indiana.edu/).

The reporter puc-LacZ line [23].

The flies stocks eiger1/Cyo and eiger3/S-T (a gift from Hermann Steller) [20].

Immunocytochemistry

Immunostaining of the wing discs was performed according to standard protocols. The follow-

ing antibodies were used: rabbit anti-cleaved Caspase-3 (Cell Signaling); rabbit anti-Phospho-

histone 3 (Upstate; 1:1000); mouse anti-CD2 (1:100; Serotech mouse anti- ß -Galactosidase

(Promega Z3778A; 1:200); mouse anti-Dl (C594.9B; 1:50); and mouse anti-Wg (4D4; 1:100),

were obtained from the Developmental Studies Hybridoma Bank at the University of Iowa.

Secondary antibodies (Molecular Probes) were used at dilutions of 1:200.

Analysis of cell proliferation and the expression patterns of different markers in control ani-

mals were performed by crossing en-Gal4 UAS-GFP/CyO flies to wildtype (wt).

Analysis of regeneration under conditions that prevented apoptosis

This analysis was performed by crossing w; en-Gal 4 UAS-GFP/CyO to w; nub-Gal4; UAS p35
(III) or to w; nub-Gal4; UAS-dIAP1(III) or to UAS-puc (II). To study eiger function during

regeneration eiger1; Hh-dsRe Ci-Gal4 UAS-GFP/S-T flies were crossed to eiger3/ eiger3.
Larvae were raised at 25˚C before the surgical elimination of the fragment and were main-

tained at that temperature for the rest of the development.

Ectopic activation of JNK signalling

This analysis was performed by crossing w; en-Gal 4 UAS-GFP/CyO; tub Gal80ts/ TM6b to w;
UAS- hepCA (II) or to w; UAS-eiger.

w; en-Gal 4 UAS-GFP/UAS- hepCA; tub Gal80ts/ + or with w; UAS-eiger larvae were raised at

17˚C until 240 hrs after egg laying (AEL) and then shifted to 29˚C for 24 hrs before analyzing

the expression of Cas3� or PH3. To study ectopic activation of JNK in eiger mutants, eiger1;
Hh-dsRed Ci-Gal4 UAS-GFP/S-T flies were crossed to eiger3; pucLacZ/TM6B.

Imaginal disc manipulation and analysis

Surgical ablation was performed on mid-late third instar en-Gal4 UAS-GFP larvae or w; en-Gal
4 UAS-GFP/+; nub-Gal4/+ (120–140 hrs AEL). Unless otherwise indicated larvae were raised

at 25˚C. The expression of UAS-GFP in the posterior compartment or the entire wing pouch

driven by en-Gal4 or nub-Gal4 respectively enabled the identification of the discs inside the

larvae using a binocular microscope (Leica MZFLIII) and UV light. A section of the posterior

or anterior/posterior compartment was removed by closing a pair of forceps over the wing

disc without breaking the larval cuticle. The larvae were maintained on ice during this process.

Cell Death and Discs Regeneration
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In vitro culture

Imaginal discs were cultured as described [26] except that we do not add Ecdysone to the

medium. The discs cultivated were eiger1 / eiger3; pucLacZ/+ or controls pucLacZ.

Mitotic and apoptotic index

We calculated the mitotic and apoptotic index as the average value of the ratio between the

number of cells in mitosis or dying in the posterior or anterior compartments, as detected

by the expression of phospho-histone3 (PH3) and Caspase-3, respectively, and the size of

the compartment in μm (PH3-positive or Cas3� cells/size of the compartment). We analyzed

at least 5 discs for each experiment. We only considered the wing blade and hinge

territories.

Results

Pattern of cell death during wing disc regeneration

The contribution of cell death to disc regeneration has remained elusive, as none of the

experimental approaches used to study this process have allowed it to be defined [18]. We

first have examined the parameters of cell death in regenerating discs using a method devel-

oped by us that allows the study of disc regeneration in its normal developmental context

[21]. Using this system we have amputated a fragment of the posterior compartment of en-
Gal4 UAS-GFP wing discs, and analysed discs labelled with cleaved Caspase-3 (Cas3�) anti-

body at different times after amputation; as a control we used the contra-lateral non-ampu-

tated wing discs. Surgical sections were inflicted in third instar larval discs (120–140 hrs

AEL). We observed that during the first 3 hrs of regeneration the number of dead cells was

not significantly increased in the wing blade region, and we only found a few dead cells close

to the wound edge (Figs 1 and 2). However, at 6 hrs after amputation (AC), the number of

dead cells strongly increased at the wound edge as well as in regions adjacent to it, extending

along the DV (Figs 1 and 2, and S1 Fig). Interestingly, even though we only eliminated a frag-

ment of the posterior compartment, we observed that Caspase-3 is also expressed in the ante-

rior compartment, in regions far away from the wound edge (Fig 1, S1 and S2 Figs). To

confirm that the Caspase-3 staining in the anterior compartment corresponds to apoptotic

cells and not to cellular debris or to posterior apoptotic cells that have moved away from the

wound site, we double stained regenerating discs for Capase-3 and DAPI. As seen in trans-

verse sections (S2 Fig), we found Caspase-3 positive cells in the anterior compartment that

are still integrated in the columnar epithelium. In addition, in contrast to posterior dying

cells, that always expressed GFP, the anterior apoptotic cells do not express this marker. All

these data indicate that during regeneration cell death can be induced in regions far away

from the wound.

We found similar results in wing discs analysed at later stages (20 hrs AC) (Figs 1 and 2,

S1 and S2 Figs). At this stage we frequently observed clusters of dead cells in the anterior

compartment (Fig 1 and S2 Fig). The increasing number of dead cells decreased in discs ana-

lysed at 48 hrs AC (Figs 1 and 2). The elimination of a fragment of the anterior compartment

causes similar defects to those observed when we amputate part of the posterior compart-

ment [21].

Altogether, our data indicate that during disc regeneration, apoptosis is first activated at the

wound edge and in adjacent regions, but as regeneration progresses an apoptotic signal, or

mechanical tension, induces cell death throughout the wing disc.

Cell Death and Discs Regeneration
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Fig 1. Pattern of cell death during wing disc regeneration. (A-E’) Third instar wing en-Gal4 UAS-GFP

discs stained for the apoptotic marker anti-cleaved Caspase-3 (blue in A-E, and grey in A’-E’) and anti-Wg

(red A-E). (A-A’) Control discs. (B-B’) Regenerating discs at 3 hrs after cut (AC). We only observed a few dead

cells at the wound edge or in the region adjacent. (C-C’) Regenerating discs at 6 hrs AC; we observed a

significant increase in the number of dead cells in the posterior, as well as the anterior compartments. Note

the increased number of dying cells along the d/v boundary. (D-D’) 20 hrs AC, we still observed a high number

Cell Death and Discs Regeneration
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Ectopic expression of DIAP is not sufficient to block cell death during

regeneration

We explored the possible requirement of apoptosis during disc regeneration by analysing the

effects caused by the inhibition of cell death in regenerating discs. To this end we over-

expressed different factors that suppressed cell death. One important family of Caspase inhibi-

tors are the IAP (Inhibitor of Apoptosis Proteins), which can bind to and inhibit Caspases. In

cells that are committed to die, the proapoptotic genes Reaper, Hid, and Grim inhibit the activ-

ity of the Drosophila IAP1 (dIAP). We first tried to block cell death in regenerating discs by

over-expressing dIAP. As described above, in regenerating control discs cell death increases

not only in the region near to the wound edge, but also in regions far away from it. Thus, we

observed apoptotic cells in the anterior compartment, even though we only amputated a frag-

ment of the posterior compartment. Therefore, to better evaluate the role of cell death during

regeneration we over-expressed dIAP1 in the entire wing pouch. To this end we expressed

UAS-dIAP1 under the control of en-Gal4 together with nub-Gal4, which drives the expression

of Gal4 in the wing pouch. We amputated part of the posterior or anterior compartment of

these discs and analysed the spatial and temporal pattern of cell death and proliferation in

regenerating wing discs at different times AC. We found that at the different times analysed,

the distribution of Caspase-3 positive cells in amputated discs that over-express dIAP1 is very

similar to that observed in control amputated discs (Fig 3 compared with Fig 1) (Apoptotic

index in the wing blade of these discs at 20 hrs AC is 0,0018±0,0004, n = 5 vs 0,0014±0,0003 in

Control regenerating discs n = 8). As previously reported for control amputated discs [21], we

observed that between 18–24 hours after amputation, cell proliferation increases in the region

near to the wound edge, as assayed with the mitotic marker (PH3) (Mitotic index 0,0037

±0,0007 in regenerating discs that over-expressed dIAP1, n = 7 vs 0,0021 ± 0,0005 in control

non amputated contralateral discs, n = 7, p<0.01). The increased proliferation in these discs is

similar to that observed in control regenerating discs (1,76 ±0,3 vs 1,7± 0,1 in control

of apoptotic cells throughout the wing disc. (E-E’) 48 hrs AC, there is a reduction in the number of dead cells in

both compartments. Schematic illustrations on the left indicate the cutting lines and the regions eliminated in

each disc.

doi:10.1371/journal.pone.0165554.g001

Fig 2. Cell death during wing disc regeneration. Bar chart shows the average apoptotic index in the

posterior (black square) and anterior (grey) compartments of regenerating discs at different times AC. The

error bars represent the standard deviation.

doi:10.1371/journal.pone.0165554.g002
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regenerating discs) (S3 Fig) [21]. Moreover, as it occurs in control regenerating wings discs

between 18–20 hrs AC, the expression of Wingless (Wg) disappears from part of the dorsal-

ventral (d/v) boundary in 69% (n = 9) of the wing discs analysed (in control regenerating discs

Wg disappear in 76% n = 29). The size of adult regenerated wings derived from these discs is

comparable to control regenerated wings (data not shown). All these data imply that the

ectopic expression of dIAP1 is not disturbing disc regeneration, in addition they also suggest

that the over-expression of dIAP1 is not sufficient to block apoptosis during disc regeneration.

JNK signalling is required to induce apoptosis during disc regeneration

Our results indicate that regeneration promotes cell death not only in the region adjacent to

the wound edge, but also in regions that were away from it. This effect suggests the existence of

one or more signals that are activated near the damaged epithelia and that spread throughout

the rest of the disc. Different reports have shown that the Jun-N terminal Kinase (JNK)

Fig 3. The over-expression of dIAP is not sufficient to block apoptosis during disc regeneration. (A-D”) Third instar

wing en-Gal4 UAS-GFP / nub-Gal4; UAS-dIAP1/+ discs stained for anti-cleaved Caspase-3 (blue in A-D, and grey in A”-D”)

and anti-Wg (red A-D and grey A’-D’). (A-A”) Control en-Gal4 UAS-GFP/nub-Gal4; UAS-dIAP1/+ disc. (B-B”) Regenerating

en-Gal4 UAS-GFP / nub-Gal4; UAS-dIAP1/+ discs at 3 hrs AC. As in control discs, we found a few dead cells at the wound

edge or in the region adjacent. (C-C”) 20 hrs AC, we observed a high number of dead cells throughout the wing blade. (D-D”)

48 hrs AC, as observed in control discs, at this time there is a reduction in the number of dead cells in both compartments.

(E) Bar chart shows the average apoptotic index in control regenerating discs (Control) and en-Gal4 UAS-GFP / nub-Gal4;

UAS-dIAP1/+ (nubG4 enG4 UAS dIAP1) discs at 20hrs AC. Here and in the rest of figures the error bars represent the

standard deviation. Schematic illustrations on the left indicate the cutting lines and the regions eliminated in each disc.

doi:10.1371/journal.pone.0165554.g003
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signalling pathway plays an important role during regeneration and its function is also involved

in the induction of apoptosis [19, 27–31]. During disc regeneration, this pathway is initially acti-

vated in the cells that form the wound edge, but as regeneration progresses its activity expands

to most of the cells within the disc [19] (S4 and S5 Figs). Recently, it has been shown that apo-

ptotic cells can also induce non-autonomous cell death in neighbouring cells and tissues [20].

Interestingly this process, that has been termed apoptosis-induced apoptosis, relies on the pro-

duction of the TNF ortholog Eiger by apoptotic cells [20]. This factor activates the JNK pathway

in neighbouring cells and in adjacent regions, inducing them to die [12,20]. All these results are

consistent with a possible function of this signaling pathway in the induction of apoptosis in

cells adjacent to the wound as well as in regions far away from it during regeneration.

We explored the possible function of the JNK signalling pathway promoting cell death dur-

ing regeneration by analysing the expression of Caspase-3 in regenerating eiger loss of function

mutant discs. To this end we amputated a fragment of eiger3 /eiger1; Hh-dsRed Ci-Gal4
UAS-GFP/+ wing discs and analysed the apoptotic pattern. We found that in these discs cell

death was strongly reduced at 20 hrs AC compared to control regenerating discs (Apoptotic

index is 0,0018±0,0004, n = 5 in control regenerating discs vs 0,00077±0,00018, n = 5 in eiger3

/eiger1; Hh-dsRed Ci-Gal4 UAS-GFP/+ regenerating discs, p<0.01) (Fig 4). However, we still

observed a significant number of dead cells specifically in the region close to the wound site

(Fig 4 and S6 Fig). We also have examined the pattern of cell proliferation in eiger3/eiger1

mutant regenerating discs. We found that in contrast to control regenerating discs, that at 20

hrs AC show a strong increase of cell proliferation in the damaged region (1,7±0,1, n = 7

higher than in control non-damaged region), in eiger3/eiger1 mutant regenerating discs cell

proliferation is only slightly increased (1,3 ± 0,2 n = 4, p<0.01) (Fig 5). In addition, we found

that 6 hrs AC the amputated eiger3/eiger1 discs are unhealed, at this time wound healing is

completed in control discs (S4 Fig). Finally in contrast to control regenerating discs, that show

a partial loss of Wg expression at 20 hrs AC (see above) [21], in eiger3/eiger1 regenerating discs

the expression of Wg remains unaffected during regeneration (S6 Fig). All these data suggests

that in the eiger3/eiger1 mutant, disc regeneration is arrested or delayed. This is consistent with

previous reports which indicate that the over-expression of the phosphatase puckered (puc),
which controls the activity of JNK signalling by a negative feedback loop [23], inhibits or

delays wound healing and regeneration [19]. We found similar results when puc is over-

expressed in regenerating discs that were amputated using our method (S7 Fig).

Our data suggest that eiger plays an important role in activating autonomous and non-

autonomous apoptosis during disc regeneration. However, the presence of numerous dead

cells in regenerating eiger mutant discs, in contrast with the complete suppression of apoptosis

in these mutant discs after cell death induction [20] implies that during disc regeneration, in

addition to JNK signalling, other signaling pathways might be involved in the induction of

apoptosis. Alternatively, JNK might be activated by other mechanisms independently of Eiger,

or both processes might be operating together during disc regeneration. The JNK signalling

pathway can be triggered via a number of means in different contexts [32–33], therefore we

first examined the activity of JNK signalling in eiger3/eiger1 regenerating discs. To this end we

used a LacZ insertion in the gene puckered (puc). As previously reported, we observed that in

regenerating control discs this reporter was activated firstly at the wound edge, but later

expanded to most of the cells of the wing blade [19] (S4 and S5 Figs). Interestingly, we found

that although the expression of puc-LacZ is strongly down-regulated in regenerating eiger3/
eiger1 discs compared to control regenerating discs, we observed some cells at the wound edge

that express high levels of this reporter (analysed at 6 hrs and 20 hrs AC) (S4 and S5 Figs).

These data suggest that in addition to Eiger, other mechanisms and signals activate JNK signal-

ling during disc regeneration at the wound edge.

Cell Death and Discs Regeneration
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The existence of apoptotic cells in regenerating eiger mutant discs far away from the wound

edges suggest that the induction of apoptosis during disc regeneration does not only depend

on the apoptosis-induced apoptosis mechanism triggered by Eiger. Consistent with this

hypothesis, we found that the temporary ectopic expression of eiger using the Gal4/Gal80Ts

system (see M&M), causes massive apoptosis in the targeted region (posterior compartment,

autonomous cell death), but only induces the apoptosis of a few cells in the anterior compart-

ment (non autonomous cell death) (cell death density 0,00027647 ± 3,84519E-05, n = 5 in the

anterior compartment of discs over-expressing eiger vs 0,00119 ±0,00042,n = 8 in the anterior

compartment of control regenerating discs) (Fig 6). Thus, cell death was 4 times higher in the

anterior compartment of control regenerating discs than in discs over-expressing eiger. More-

over, in contrast to control regenerating discs, most of the dead cells in the anterior compart-

ment of these mutant discs were adjacent to the anterior/posterior boundary (Fig 6 compare

to Fig 1). We have found that the ectopic activation of JNK signalling by the over-expression

of an activated form of hemipterous (hepCA) [34] cause similar effects (cell death density

0,000251323±6,98223E-05, n = 5 in the anterior compartment of discs over-expressing hepCA

vs 0,00119 ±0,00042,n = 8 in the anterior compartment of control regenerating discs) (Fig 6).

Altogether our results imply that the activation of JNK signaling is not sufficient alone to

induce the strong pattern of apoptosis in regions both adjacent and far away from the wound

observed in regenerating discs, and suggest that additional mechanisms are involved in the

induction of cell death during regeneration.

Ectopic expression of p35 in regenerating discs

Our results indicate that neither the ectopic expression of dIAP or the down-regulation of JNK

was sufficient to completely eliminate apoptosis during disc regeneration. To further study the

role of apoptosis during regeneration we have examined whether the over-expression of the

baculoviral caspase inhibitor p35, which blocks effector caspases without affecting initiator

Fig 4. Apoptosis is reduced in egr1/egr3 regenerating discs. (A-B’) Third instar wing discs stained for the apoptotic

marker anti-cleaved Caspase-3 (blue in A-B, and grey in A’-B’). (A-A”) Control HhdsRed-CiGal4 UAS-GFP/+ regenerating

discs amputated in the anterior compartment. (B-B”) Regenerating eiger3/eiger1; HhdsRed Ci-Gal4 UAS-GFP/+ discs at 20

hrs after cut. We found that there is a reduction in the number of dead cells in both compartments. (C) Bar chart shows the

average apoptotic index in control regenerating discs amputated in the anterior compartment (Control) and eiger3/eiger1;

HhdsRed Ci-Gal4 UAS-GFP/+ (eiger3/eiger1) regenerating discs at 20 hrs AC. Note that the apoptotic index of discs

amputated in the anterior compartment is very similar to that observed in discs amputated in the posterior compartment (see

Fig 2). Schematic illustrations on the left indicate the cutting lines and the regions eliminated in each disc.

doi:10.1371/journal.pone.0165554.g004
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Fig 5. Regenerative growth is reduced in egr1/egr3 regenerating discs. (A-B’) Third instar wing discs

stained for the mitotic marker phospho-Histone H3 (blue in A-B, and grey in A’-B’) and anti-Wg (red in A-B).

(A-A’) Control HhdsRed Ci-Gal4 UAS-GFP/+ disc. (B-B’) Regenerating eiger3/eiger1; HhdsRed Ci-Gal4

UAS-GFP/+ discs at 20 hrs after cut. We found that there is a reduction in the number of mitotic cells in both

compartments. (C) Bar charts show the average fold change in the mitotic index of control regenerating discs

(control), and eiger3/eiger1;HhdsRedCi-Gal4 UAS-GFP/+ regenerating discs (eiger3/eiger1) at 20 hrs AC,

compared to control non-regenerating discs.

doi:10.1371/journal.pone.0165554.g005
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Fig 6. Ectopic activation of JNK signalling is not sufficient to induce the”non autonomous” cell death

observed in regenerating control discs. (A-C’) Third instar en-Gal4 UAS-eiger UAS-GFP /Tub-Gal80ts

wing discs (A-A’), and en-Gal4 UAS-hepCA UAS-GFP /Tub-Gal80ts wing discs (B-C’). Larvae were shifted

from 17˚C to 29˚C for 24 hrs before the staining. The discs were stained with anti-cleaved Caspase-3 (red in

A-C, and grey in A’-C’); anti-Wg (blue A-B). (A-A’) The ectopic expression of eiger in the posterior

compartment only induces the apoptosis of a few scattered cells in the anterior compartment (arrows),

compared with regenerating discs Fig 1. (B-B’) Although cell death is massively induced in the posterior

compartment of en-Gal4 UAS-hepCA UAS-GFP /Tub-Gal80ts discs, we only found a few apoptotic cells in the
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caspases [35], is sufficient to totally block cell death during regeneration. To this end we have

amputated en-Gal4 nub–Gal4 UAS-p35/+ discs and analysed cell death 20 hrs AC. Previously it

has been shown that in in vivo cultivated regenerating discs, the ectopic expression of p35
almost completely suppressed apoptosis [18]. Consistent with this, we observed that at 20 hrs

AC the number of cells expressing the apoptotic marker Caspase-3 is strongly reduced in en-
Gal4 nub–Gal4 UAS-p35 discs compared to control regenerating discs (S8 Fig). However, we

still observed cells that express this marker in regions near to the wound as well as in regions

far away from it (S8 Fig). We next examined whether the partial suppression of apoptosis

observed in these discs alters the pattern of cell proliferation associated with regeneration. It

has been proposed that the ectopic expression of p35 in a context where apoptosis increases

can generate undead cells. These type of cells produce mitotic signals that promote the over

proliferation of surrounding tissue [36–38]. Thus, it is possible that the presence of undead

cells perturb cell proliferation in these discs and the spreading of survival signals. We studied

the spatial and temporal pattern of cell proliferation in en-Gal4 nub–Gal4 UAS-p35/+ regener-

ating discs at 20 hrs AC (Fig 7). We have previously shown that at this time the density of

mitotic cells in the amputated compartment was 1,7±0,1 (n = 7) higher than in non-amputated

compartment. We found similar results in en-Gal4 nub–Gal4 UAS-p35/+ regenerating discs,

since at 20 hrs AC the mitotic density in the amputated compartment of these discs was 1,56

±0,15 (n = 5) higher than in the non-amputated compartment (Fig 7). As previously reported

for control regenerating discs, we observed that most of the mitotic cells were located in the

region adjacent to the wound.

To further analyse whether regeneration was perturbed in en-Gal4 nub–Gal4 UAS-p35/+
regenerating discs, we examined the expression of Wg. As in control regenerating discs, we

observed that in 60% (n = 7) of the en-Gal4 nub–Gal4 UAS-p35 regenerating discs the expres-

sion of Wg disappeared from part of the D/V boundary in the region close to the wound edge.

In all these cases the down-regulation of Wg expands more than 15 cell rows from the wound

site [21]) (Fig 8). As we found in control regenerating discs, in en-Gal4 nub–Gal4 UAS-p35/+
regenerating discs the vein/intervein pattern is disrupted during regeneration (Fig 8) [21].

Finally, we examined the adult regenerated wings developed from en-Gal4 nub–Gal4 UAS-
p35/+ larvae amputated at different times during development. As observed in control regen-

erated wings, dependent on the time when the amputation was performed, we found different

categories of regenerated adult wings. When the cut was produced late in development (140–

160 Hours AEL, 0-24h before puparium formation (BPF), we find that as in controls, 100% of

the adult regenerated wings displayed lack of wing tissue (n = 220 control vs n = 25 of nub–

Gal4 UAS-p35/+ wings) (S9 Fig). Most of the wing discs of en-Gal4 nub–Gal4 UAS-p35/+ lar-

vae amputated at earlier stages (120–140 hr AEL, 24-48h BPF), gave rise to adult wings that

contain small or large nicks (86%, n = 7), and 14% of the wing analysed have completed the

regeneration process and were normal compared with the control contra-lateral wing. These

results are similar to those observed in control regenerated wings amputated at that stage, thus

76% of these wings contain nicks, whereas 23% have completed the regeneration process

anterior compartment (arrows). (C-C’) High magnification of en-Gal4 UAS-hepCA UAS-GFP /Tub-Gal80ts

discs. Most apoptotic cells in the A/P boundary are posterior cells, since they also express GFP (arrowheads),

only a few dead cells are anterior (arrows). (D) Bar chart shows the average apoptotic index in the anterior

compartment of control regenerating discs (control), en-Gal4 UAS-eiger UAS-GFP /Tub-Gal80ts (enG4 eiger)

and discs en-Gal4 UAS-hepCA UAS-GFP /Tub-Gal80ts (enG4 hepCA). Cell death index 0,000251323

±6,98223E-05, n = 5 and 0,00027647 ± 3,84519E-05, n = 5 in the anterior compartment of discs over-

expressing hepCA and eiger respectively vs 0,00119 ±0,00042,n = 8 in the anterior compartment of control

regenerating discs.

doi:10.1371/journal.pone.0165554.g006
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(n = 220) (in this later category we included the normal patterned regenerated wings that were

smaller than control contra-lateral wing [21]).

Altogether our data indicate that the partial suppression of apoptosis produced by the

ectopic expression of p35 in regenerating discs has a minor effect in the process of

regeneration.

Discussion

Regeneration involves multiple cellular processes to restore the damaged organs or tissues.

One of the mechanisms that has been proposed to play a key role as a source of signals required

for regeneration in different organisms is apoptosis [11–13]. Apoptotic cells generate multiple

signals that can influence the surrounding cells in different ways. The mitogenic properties of

apoptotic cells are largely known; dying cells produce secreted diffusible mitogenic signals that

stimulate cell proliferation [12]. In addition, recently it has been described that cell death can

also induce non-autonomous cell death in neighbouring cells [20]. This process, of apoptosis-

induced apoptosis can induce synchronized communal death, a mechanism that might play

different roles in the extensive remodelling and morphogenetic events that take place during

regeneration. Although the Drosophila imaginal discs have been used as a classical model to

study regeneration, little is known about the role that apoptosis may play during disc regenera-

tion. The main difficulty in studying the contribution of apoptosis to the regeneration of the

discs relies on the different experimental approaches that have been used. The classical method

to study disc regeneration—disc transplantation—causes massive cell death even in control

non-amputated discs [18–19], therefore it is impossible to know whether regeneration induces

cell death. The more recently developed assays of genetic ablation rely on the expression of

pro-apoptotic genes in a specific region of the discs, whereby it is not possible to block cell

Fig 7. Pattern of cell proliferation in en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating discs. (A-B’) Third instar wing discs stained for the

mitotic marker Phospho-Histone H3 (red in A-B, and grey in A’-B’). (A-A’) en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ control contralateral discs. (B-B’)

en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating disc at 20 hrs AC. (C) Bar charts show the average fold change in the mitotic index of control

regenerating discs (control), and en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating discs (nubG4 P35 Reg) at 20 hrs AC. Schematic illustrations

on the left indicate the cutting lines and the regions eliminated in each disc.

doi:10.1371/journal.pone.0165554.g007
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death in the damaged region. We have used a method to study disc regeneration in physiologi-

cal conditions that has allowed us to define the pattern of cell death that occurs during this

process. Our results indicate that after the amputation of a fragment of the disc, cell death

increases, firstly at wound edge, but as regeneration progresses apoptosis is expanded through-

out the disc. Using our method, we have evaluated the contribution of cell death to the early

stages of disc regeneration.

Fig 8. Expression of Wg and Delta in regenerating en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ discs 20

hrs AC. (A-B’) Expression of Wg, shown by anti-Wg (red in A-B, and grey A’-B’). (C-D’) Expression of Delta

(red in C-D, and grey C’-D’). (A-A’ and C-C’) Control en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ third instar non

amputated discs. (B-B’ and D-D’) en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating discs at 20hrs AC.

On the left, illustrations of the discs are shown indicating the cutting lines and the regions eliminated in the

discs shown by panels A-D. (B-B’) Example of an en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating disc

at 20 hrs AC in which the expression of Wg disappears in the d/v boundary near the wound edge (arrowhead

in B’). In this disc the expression of the internal ring of Wg was restored. (D-D’) The vein/intervein pattern

defined by Dl was disrupted in en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating discs dissected 20 hrs

AC (D-D’ compared to C-C’).

doi:10.1371/journal.pone.0165554.g008
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One of the limitations of our system is that the earliest time in which we can eliminate a

fragment of the discs is between 96-120h AEL. We have previously shown that during this

interval of time the amputated discs can fully regenerate and give rise to a completely regener-

ated adult wing [21]. In addition, recent results from our group suggest that at that time the

different signals associated to regenerative growth such as JNK, Hippo signaling and JAK/Stat

are activated (SD-G, SA and AB, in preparation). All these data suggest that in our experimen-

tal conditions, the regenerative response is similar to that described at earlier stages. However,

we cannot rule out that cell death might be playing a different function during earlier stages of

regeneration.

Apoptosis-induced apoptosis mechanism during disc regeneration

The pattern of cell death that we have observed in regenerating discs is consistent with a

model in which dead cells generated at the wound edge can induce cell death throughout the

entire disc by an apoptosis-induced apoptosis mechanism. It has been shown that this process

relies on the production of Eiger by the dying cells, which activates the JNK pathway in neigh-

bouring cells, inducing them to die [20]. The evolution of the activity of this signaling pathway

during disc regeneration, firstly at the wound edge and later in most of the cells of the wing

pouch, is consistent with this model [19] (S4 and S5 Figs). However, our observations suggest

that although an apoptosis-induced apoptosis mechanism mediated by eiger might be involved

in promoting cell death in regenerating discs, other signals and mechanisms are also required.

Thus, we have found that cell death is not completely abolished in regenerating eiger mutant

discs, as occurs after cell death induction [20]. In addition, the ectopic activation of eiger is not

sufficient to induce the high number of “non autonomous”dead cells found in regenerating

discs. These data suggest that during regeneration, either there are apoptotic signals that are

independent of JNK signalling, or there are additional mechanisms, independent of eiger, that

trigger JNK signaling. Interestingly, we found that in eiger mutant discs, JNK signaling is

active, though mostly in the cells around the wound edge. This result implies that during

regeneration, the JNK pathway is activated by an alternative way to Eiger, at least in some cells.

Previous studies have demonstrated that loss of epithelial integrity induces JNK signaling. This

might be mediated by proteins like the small GTPase, Rho1, that is known to control epithelial

morphogenesis and integrity through its ability to regulate the cytoskeleton, and can promote

JNK pathway activity through an interaction with Slpr, an upstream component of the JNK

pathway [32]. Thus, the epithelial damage caused by the amputation could initially activate

JNK signalling through a mechanism independent of eiger, and therefore induce cell death,

even in absence of eiger. However, the fact that the activity of JNK signalling in eiger mutant

regenerating discs is mostly restricted to the wound edges, though we found apoptotic cells far

away from this site, and that the ectopic activation of JNK signalling is not sufficient to repro-

duce the strong increase “non-autonomous” cell death observed during disc regeneration, sug-

gests that apoptotic signals independent of JNK signaling are triggered during regeneration.

Recently, it has been reported that after inducing cell death or as consequence of the mechani-

cal stress generated during wounding, imaginal disc cells produce reactive oxygen species

(ROS) [39]. ROS, either by diffusing from cell to cell or by propagating their production in sur-

rounding cells, function as a paracrine signal that can stimulate the activity of stress-activated

protein kinases such as, p38 and JNK stress MAP kinases [39]. Thus, ROS production might

result in extensive spreading of apoptotic signals to adjacent cells through activation of these

signalling pathways, and likely through other undefined death pathways that may trigger apo-

ptosis independent of JNK signalling. In this scenario, the elimination of eiger would not be

sufficient to block all the apoptosis during discs regeneration.
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Apoptosis-induced proliferation mechanism during disc regeneration

This process seems best suited to aid complete regeneration, since dying cells generate after

amputation might promote cell proliferation of the surrounding tissue to restore the tissue lost

after damage. The nature of these signaling molecules differs depending on the tissue [12]. Dif-

ferent reports using distinct experimental approaches to study disc regeneration have led to

divergent conclusions about the mitogenic signals involved in regeneration [8–7,40–41]. Thus,

whereas some authors have proposed that the ortholog of mammalian Wnt, Wingless (Wg) is

necessary for imaginal disc regeneration, other authors have showed that Wg is not required

for this process [7,21,40–41]. Therefore, the role of apoptosis-induced proliferation and the

molecules involved in this process as a compensatory mechanism during disc regeneration

remains unresolved. Here we have shown that a partial suppression of cell death during regen-

eration by over-expressing p35 does not have any measurable effect on cell proliferation dur-

ing early stages of regeneration. We have also partially inhibited cell death in regenerating

discs by down-regulating JNK signalling. Previously, it has been shown that mutations of

members of this pathway strongly reduce the number of mitotic cells in regenerating discs

[18–19]. Considering the multiple functions of JNK signaling during regeneration [19,27–30],

and that the down-regulation of this pathway disrupts wound healing and regeneration in

wing discs (see results) [19], the effect on cell proliferation could be indirect and not a conse-

quence of the reduced apoptosis.

In summary our results suggest that apoptosis does not seem to play an important role

inducing cell proliferation during regeneration, since partial suppression of cell death does not

affect cell proliferation at early stages of regeneration. However, as we have not completely

inhibited cell death in regenerating discs, we cannot rule out that programmed cell death con-

tributes to effectively complete disc regeneration.

The variety of processes that take place during regeneration, such as remodelling, migration

and, reorganization of epithelia, likely requires the elimination of “unwanted cells”. This could

be achieved by the action of different cell death-induced mechanisms that might co-operate

during regeneration, increasing the robustness of the process. Then it is possible that the

mechanical stress and tissue tensions generated during amputation, in addition to the activa-

tion of signaling pathways previously mentioned, also might trigger new unidentified signals

to promote apoptosis and/or other mechanisms of programmed cell death, such as autophagy

and necroptosis. Functional redundancy of some of these mechanisms could explain the diffi-

culty in completely eliminating cell death during regeneration. This would be consistent with

our observations which indicate that the inhibition of only one pro-apoptotic pathway is not

sufficient to block cell death during regeneration.

Supporting Information

S1 Fig. Pattern of cell death during wing disc regeneration. (A-D’) Third instar wing en-
Gal4 UAS-GFP discs stained for the apoptotic marker anti-cleaved Caspase-3 (red in A-D, and

grey in A’-D’). (A-A’) Control discs. (B-B’) Regenerating discs at 3 hrs after cut (AC). We only

observed dead cells in the wound edge or in the region adjacent. (C-C’) Regenerating discs at 6

hrs AC; we observed a significant increase in the number of dead cells in the posterior as well

as the anterior compartments. (D-D’) 20 hrs AC, we observed a high number of apoptotic cells

in the region near to the wound edge, as well as in the anterior compartment. Note the cluster

of dead cells in the anterior compartment. Schematic illustrations on the left indicate the cut-

ting lines and the regions eliminated in each disc.

(TIF)

Cell Death and Discs Regeneration

PLOS ONE | DOI:10.1371/journal.pone.0165554 November 28, 2016 16 / 20

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165554.s001


S2 Fig. Pattern of cell death during wing disc regeneration. (A-F”) Third instar wing en-
Gal4 UAS-GFP regenerating discs double staining for the apoptotic marker anti-cleaved Cas-

pase-3 (Blue in A,C, E and F) and DAPI (red in A,C,E and F) at 20hrs AC. (A-B) Regenerating

discs at 20 hrs AC; we observed dead cells in the posterior as well as in the anterior compart-

ments. (C-D) Higher magnification of the panels (A-B), note the cluster of dead cells in the

anterior compartment. These apoptotic anterior cells, to difference to posterior apoptotic cells,

do not express GFP (Arrows). (E-F”) Y-Z projections show a cross-section at the position of

the white line in the posterior compartment (E-E”) or the anterior compartment green line

(F-F”). We observe Caspase-3 positive cells in the anterior compartment that are integrated in

the columnar epithelium (arrowhead in F). Posterior apoptotic cells express GFP (arrow in E).

(TIF)

S3 Fig. Pattern of proliferation in en-Gal4 UAS-GFP nub-Gal4; UAS-DIAP1/+ regenerating

discs. (A-B”) Third instar wing discs stained for the mitotic marker Phospho-Histone H3

(blue in A-B, and grey in A”-B”) and anti-Wg (red in A-B, and grey in A’-B’). (A-A”) en-Gal4
UAS-GFP nub-Gal4; UAS-DIAP1/+ control non-amputated contra-lateral discs. (B-B”) en-
Gal4 UAS-GFP nub-Gal4; UAS-DIAP1/+ regenerating disc at 20 hrs AC. Cell proliferation

increases in the posterior compartment of these discs. (C) Bar charts show the average fold

change in the mitotic index of control regenerating discs (control), and en-Gal4 UAS-GFP
nub-Gal4; UAS-DIAP1/+ regenerating discs (nubG4 dIAP1 reg) at 20 hrs AC, compared to

control non-regenerating discs. The error bars represent the standard deviation. Schematic

illustrations on the left indicate the cutting lines and the regions eliminated in each disc.

(TIF)

S4 Fig. Expression of puc-LacZ reporter in eiger3/eiger1 regenerating discs at 6 hrs AC. (A-

A”) Third instar eiger3/eiger1; pucLacZ/+ control non-amputated discs. (B-B”) Third instar

pucLacZ/+ amputated discs. (C-C”) eiger3/eiger1; puc-LacZ /+ amputated discs. The discs were

cultivated during 6 hrs after amputation (see M&M). The discs were stained with phalloidin

(red in A–C, and grey A’-C’); and anti-ß-Galactosidase (green in A-C and grey in A”-C”) to

reveal the pattern of expression of JNK reporter puc-lacZ. In eiger3/eiger1mutant discs the

expression of the reporter is mostly restricted to the wound edges (compared C-C” with B-B”).

Optical z-sections below the panels showed a cross-section at the position of the white line.

Note that to difference to control discs, that have completed the wound healing process

(arrows in Optical z-section in B-B’) and the epithelial integrity is restored, in eiger3/eiger1mu-

tants the wound is unhealed, and the epithelial is disrupted at the wound site (arrowheads in

Optical z-sections C-C”).

(TIF)

S5 Fig. Expression of puc-LacZ reporter in eiger3/eiger1 regenerating discs at 20 hrs AC. (A-

A’) Third instar Hh-dsRed Ci-Gal4 UAS-GFP/ puc-LacZ non-amputated control discs. (B-B’)

Third instar en-Gal4 UAS-GFP/ puc-LacZ amputated discs. (C-C’) eiger3/eiger1; Hh-dsRed Ci-
Gal4 UAS-GFP/puc-LacZ /+ amputated discs. The discs were analysed 20 hrs AC. The discs

were stained with anti-ß-Galactosidase (red in A-C and grey in A’-C’) to reveal the pattern of

expression of JNK reporter puc-lacZ. In eiger3/eiger1mutant discs the expression of the reporter

is mostly restricted to the wound edges (compared C with B).

(TIF)

S6 Fig. Apoptosis is reduced in egr1/egr3 regenerating discs. (A-A”) Third instar eiger3/
eiger1; Hh-dsRed Ci-Gal4 UAS-GFP/+ discs wing stained for the apoptotic marker anti-cleaved

Caspase-3 (blue in A and A”, and grey in A’) and anti-Wg (red in A and A”), at 20 hrs AC.

(TIF)
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S7 Fig. Expression of Wg in regenerating en-Gal4 UAS-puc UAS-GFP/+ discs 20 hrs AC.

(A-C”) Expression of Wg, stained with anti-Wg (red in A-C, and grey A’-C”) in control third

instar non amputated discs (A-A”), control amputated discs (B-B”) and en-Gal4 UAS-puc
UAS-GFP/+ regenerating discs at 20 hrs AC (C-C”). (C-C”) In en-Gal4 UAS-puc UAS-GFP/+
regenerating discs 20 hrs AC the expression of Wg does not disappears at the d/v boundary as

it occurs in control regenerating discs (B-B”).

(TIF)

S8 Fig. Apoptotic pattern in en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating discs.

(A-B’) Discs stained for the apoptotic marker anti-cleaved Caspase-3 (red in A-B, and grey in

A’-B’). (A-A’) Control en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ non-amputated discs. (B-B’)

en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ regenerating discs at 20 hrs AC. We observed that cell

dead in reduced compared to control regenerating discs (compared to Fig 1).

(TIF)

S9 Fig. Regenerated adult en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ wings. (A) Different

examples of adult regenerated en-Gal4 nub-Gal4 UAS-p35 UAS-GFP/+ wings, and control con-

tralateral wings (lower wings, Wt). The discs were amputated at different times during devel-

opment. Depending on the size of the fragment amputated and time passed BPF (left) we

observed a range of regenerated adult wing phenotypes.

(TIF)
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