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Abstract

Causal loop diagrams developed by groups capture a shared understanding of complex

problems and provide a visual tool to guide interventions. This paper explores the applica-

tion of network analytic methods as a new way to gain quantitative insight into the structure

of an obesity causal loop diagram to inform intervention design. Identification of the struc-

tural features of causal loop diagrams is likely to provide new insights into the emergent

properties of complex systems and analysing central drivers has the potential to identify

leverage points. The results found the structure of the obesity causal loop diagram to

resemble commonly observed empirical networks known for efficient spread of information.

Known drivers of obesity were found to be the most central variables along with others

unique to obesity prevention in the community. While causal loop diagrams are often spe-

cific to single communities, the analytic methods provide means to contrast and compare

multiple causal loop diagrams for complex problems.

Introduction

Complex problems can be difficult to understand and resolve due to the relationships between
their multiple dynamic causes. Obesity is a prime example [1], along with other population
health problems [2]. It has been suggested that any intervention seeking to tackle complexity
would be better served if a shared understanding of the complexity was developed to support
intervention design, implementation and evaluation [3]. Among the numerous approaches
available to understand and share knowledge of complexity [4], systems sciencemethods
appear the most promising [5]. System science techniques range in their utility for community
engagement and collect broad views of complexity from fully engaged, process drivenmethods
to small group highly quantitative approaches designed primarily to generate mathematical
simulation [6–8].

PLOS ONE | DOI:10.1371/journal.pone.0165459 October 27, 2016 1 / 14

a11111

OPENACCESS

Citation: McGlashan J, Johnstone M, Creighton D,

de la Haye K, Allender S (2016) Quantifying a

Systems Map: Network Analysis of a Childhood

Obesity Causal Loop Diagram. PLoS ONE 11(10):

e0165459. doi:10.1371/journal.pone.0165459

Editor: Houbing Song, West Virginia University,

UNITED STATES

Received: June 13, 2016

Accepted: October 12, 2016

Published: October 27, 2016

Copyright: © 2016 McGlashan et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: SA is supported by funding from an

Australian National Health and Medical Research

Council/Australian National Heart Foundation

Career Development Fellowship (APP1045836). He

is also a researcher on the US National Institutes of

Health grant titled, "Systems Science to Guide

Whole-of-Community Childhood Obesity

Interventions" (1R01HL115485-01A1) and within a

NHMRC Centre for Research Excellence in Obesity

Policy and Food Systems (APP1041020). This

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0165459&domain=pdf
http://creativecommons.org/licenses/by/4.0/


One technique that develops community engagement and input arises from system dynam-
ics (SD) and particularly group model building (GMB) which creates visual grounded logic
models called causal loop diagrams (CLDs) [9]. CLDs provide a method to ‘map’ the complex-
ity of a problem of interest that comprises variables, causal relationships and polarity. Variables
are dynamic causes or effects of the problem under study. Causal relationships are arrows that
represent a directed cause from one variable to another. Polarity captures the orientation of
each relationship, being either positive, where variables change in the same direction, or nega-
tive, where variables change in opposite directions.

Systems thinking and CLDs are an emergingmethod in public health [6], with a classic
example being the Foresight obesity systems map [10]. The Foresight map brought together
many of the world’s experts in obesity to develop a comprehensive picture of the factors and
relationships related to obesity. The resulting ‘obesity systems map’ presents a causal diagram
beginningwith energy balance at an individual level and expands to a set of 108 variables that
directly or indirectly influence energy balance.

To be successful, community level interventions should acknowledge the complexity of obe-
sity by implementing multiple strategies in the community [11]. For this reason, more recent
work has applied GMB techniques to develop CLDs of a complex problem from a community
perspective to underpin intervention design [12]. These diagrams have been used with large
numbers of community based health, government and lay people to visualize the range of, and
connections between,multiple dynamic variables. The CLDs developed are an explicit repre-
sentation of the shared mental model of the community group.

Network Analysis

A CLD is naturally represented as a graph or network of relationships among a set of variables,
and thus contains data that lends itself to network analysis [13]. Networks are entities com-
prised of nodes and edges, with edges representing relationships among nodes. Formally net-
works are represented as an adjacencymatrix, with nodes x, and the presence or absence of
edges between each pair of nodes xij = {0, 1}. Diverse types of problems can be represented as
networks and have been a focus of scientific research. For example, social networks are net-
works involving interactions among social entities, such as contact, co-authorship [14] and
music collaboration [15], along with other types of ‘non-social’ networks such as word co-
occurrence [16], brain structure [17], yeast interaction [18] and protein networks [19]. CLDs
can also be represented as a network and adjacencymatrix with variables x and directed causal
relationships between each pair of variables xij.

Network analysis provides a suite of quantitative techniques that can summarise the struc-
ture of a network and quantify the importance of its elements. Understanding the structural
features of a network as a whole can provide key insights into the ease or difficulty by which
information, influence, or physical matter flow through the network [20]. Measures that sum-
marize the position of nodes in a network can provide information on node importance or
function in the system [17].

Network analysis has been applied to causal symptom networks to identify central symp-
toms for psychopathology [21] and psychiatry [22]. Post-traumatic stress disorder symptoms
have also been explored via network analysis [23] along with persistent complex bereavement
disorder [24], and perceived relationships between anxiety, post-traumatic stress disorder and
depression [25].

In obesity, the analysis of networks has been employed in recent studies to investigate social
influence on obesity and broader interdependence between social networks and obesity-related
factors and outcomes including physical activity [26], food choice [27], sedentary behaviour
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[28], and bodymass index (BMI) [29] [30]. An application to systems biology identified key bio-
logical and metabolic variables related to obesity [31]. A comprehensive map of the obesity
related molecules has been recently developed and analysis of the network showed that the sys-
tem’s structure resembles a scale-free network topologywith well-defined variable clusters [32].
As this type of network topology is well known in network science, network theory provides use-
ful insights into the implications of this network topology for this particularmolecular system.

Network Analysis of a Causal Loop Diagram

Quantitative network analytic techniques such as network structure summaries and centrality
measures have yet to be applied to CLDs for the causes of obesity. As network analytic mea-
sures are applied in fields of network science, the application of these analytic tools allow us to
leverage knowledge and gain insights into the structure and function of the CLD.

Structuralmetrics that summarize the entire CLD’s topology include network density,
degree distribution, average path length, and modularity (described in Table 1). For example,
small path lengths are often seen in ‘small-world networks’ [33] and are indicative of the net-
work’s ability for efficient diffusion [34]. Interpretation of the network topologicalmeasures in
the context of a CLD are outlined in Table 1 along with their proposed implications for inter-
vention design.

To gain insight into the centrality and influence of each individual node, commonly applied
measures include degree and betweenness [35]. As the CLD network is directed, (not symmet-
ric) in-degree and out-degree are considered. In-degree is the number of edges directed to a
specific node, from other nodes in the network. Out-degree is the number of edges directed
from a particular node, to other nodes in the network. Betweenness centrality is a measure pro-
portional to the number of shortest paths a node lies on, with ‘shortest paths’ indicating the
minimum distance (number of edges) between a pair of nodes. Nodes with high betweenness
centrality lie on the paths that connect many pairs of nodes, and hence play a role in mediating

Table 1. Structural network measures and their proposed interpretation for causal loop diagrams and intervention planning.

Network

Analysis

Measure

Definition Interpretation in CLD Implication for Intervention Design

Density Fraction of edges present relative to the

maximum possible number of edges

given the set of nodes.

According to the group developing the

diagram, the fraction of causal relationships

that exist between pairs of variables that are

identified (relative to the number of possible

causal relationships, if each pair of variables

was causally related).

In dense networks, change in one variable

has a higher chance of causing change in

other variables, and to other parts of the

system. Sparse networks mean

interventions likely need to ‘seed’ change

in multiple parts of the network to impact

the whole system.

Degree

Distribution (in

and out)

The distribution of number of edges

leading to or exiting nodes in the network.

Distribution of how many causal relationships

variables are involved in.

Nodes with the highest degree will act as

‘hubs’ in the network [17]. Hubs in a CLD

system may be valuable for creating

change interventions as they are

perceived to influence or be influenced by

many other variables

Average path

length

The smallest number of ties between any

two nodes in the network, on average.

Informs the interconnectedness of the CLD

and its efficiency to spread change from one

variable to another.

A small average path length may allow a

change in one variable to cause change in

others with a small amount of effort, on

average.

Modularity The strength of the division of node

clusters in the network, which have dense

inter-connections but are sparsely

connected to nodes outside of the cluster

[36].

Detects structural clusters in the map, which

may correspond to variable themes, and

measures how segregated the clusters are

from each other.

If modularity is high interventions should

seed change within distinct clusters and

focus on variables with high betweenness

centrality to facilitate the spillover of

system-wide change across variables in

the network.

doi:10.1371/journal.pone.0165459.t001
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or managing the flow of information between nodes in the network. Definitions of the individ-
ual nodemetrics and their interpretation for the CLD are outlined in Fig 1.

Motivation

Once developed via GMB, CLDs are used in reference to the existing evidence base to develop
informed approaches to systems change for obesity prevention. To date, however, it has not
been clear how to determine leverage points, or the ease in which changes in one part of the
system will impact other parts of the system (if at all).

The motivation of this work comes from the desire for numerical summaries of CLD struc-
ture and quantifying the importance of variables to inform intervention design.

We hypothesise that through the application of network analysis topologicalmeasures,
insight will be gained about the structure of the community drivers of obesity and will allow
quantitative comparisons across communities. Further, the use of common centrality measures
will quantify the position and importance of variables within the system.

Fig 1. Individual node metrics: In-degree, Out-degree and Betweenness centrality interpretations for a causal

loop diagram.

doi:10.1371/journal.pone.0165459.g001
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In this paper we seek to answer the following research question:

How does the application of network analysis to a community developed causal loop diagram
advance our understanding of the system of childhood obesity drivers?

The remainder of this paper is structured as follows. The acquisition of data is outlined in
the following section along with the proposed procedure for the analysis. Numerical results are
presented for both the structure of the network, and the centrality of its nodes in the results sec-
tion. Finally, the discussion section interprets the results in the context of obesity prevention
and summarizes the future implications of this work.

Methods

Data

The data were originally presented by Allender et al. (2015) [12]. The data analysed in this sub-
mission and consent procedure for participants received ethics clearance from the institutional
review board of DeakinUniversity. Ethics Committee reference number HEAG-H 155_2014.
The CLD describing childhood obesity was developed via group model building across four
workshops in 2014. Data were collectedwith a working group of 12 participants and a final
workshop with 49 members of the broader community. The working group consisted of a
range of stakeholders including representatives from the Primary Care Partnership, District
Health Service and Local Government.

At the completion of the workshop series, a CLD was developed depicting the drivers of
childhoodobesity in the community. To minimise potential bias, the CLD was constructed by
iteratively seeking and implementing feedback from the working group and the broader com-
munity group. Note that the CLD analysed here was developed one workshop later than that
presented in [12].

Network Analysis Procedure

The CLD developed describing childhoodobesity was represented as a directed un-weighted
network to allow the application of network analysis.

Structural network measures (Table 1) were used to quantitatively summarize characteris-
tics of the network as a whole. This, in combination with network theories and network sci-
ence, provide insight into the qualities and function of this system: for example, it’s stability,
efficiency in spreading information or change, and other characteristics likely to be relevant to
planning system-wide intervention and change.

Individual node summaries such as in-degree, out-degree and betweenness centrality are
described in Fig 1. Centrality measures inform the role and importance of obesity drivers in the
diagram. The structuralmeasures and centrality results can provide quantitative summaries
that could be used to inform the design of effective interventions.

Analysis and visualisation were conducted using Gephi [37], which applies well-established
algorithms for computing network statistics. The algorithm for calculating shortest paths is
provided by Brandes (2001) [38].

Results

Structure of the Causal Loop Diagram

The causal loop diagram for childhood obesity drivers developed by the participant group is
shown in Fig 2. The CLD comprises 114 variables and 209 relationships, with one node
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(variable 47)with no edges (an isolate). Table 2 shows the global network structure summaries.
S1 Table provides a key for node ID.

The network density is 0�016, meaning that this network contains 1�6% of the possible
edges expected in a completely interconnected network.Degree distributions are shown in Fig
3. The distribution of node in-degree ranges from 0 to 14, and shows a large number of nodes

Fig 2. Community developed CLD of obesity drivers displayed as a directed network.

doi:10.1371/journal.pone.0165459.g002

Table 2. Summary of network statistics for the CLD.

Nodes Edges Density Av. Path Length Modularity

114 209 0.016 4.65 0.56

doi:10.1371/journal.pone.0165459.t002
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have low in-degree, with few larger hubs present. The distribution of node out-degree ranged
from 0 to 7 and similar to in-degree is heavy-tailed. Unlike in-degree, however, it is rare for
nodes to have a an out-degree of 0, meaning its unlikely for a variable to not have an impact on
any others.

The average path length in the network is 4.65 meaning variables are able to reach each
other by following 4.65 causal paths, on average.

The two variables that are most distant, ‘Water taste’ and ‘Overeating’ (113! 77) have a
shortest path of 16, meaning the CLD has a diameter of 16.

The networkmodularity of 0.56, calculated via Gephi’s modularity function [36], indicates
the presence of structural clusters of variables in the network.

Variable Centrality

Fig 4a shows the variables associated (as a cause or effect) with the variable with the highest in-
degree. ‘Level of Physical Activity’ (variable 66) is effected by 14 other variables in the system
(in-degree = 14). Following this, is ‘Participation in Sports’ (84) (in-degree = 13), ‘Junk Food
Consumption’ (57) (in-degree = 11) and ‘Consumption of Soft Drink’ (26) (in-degree = 7).

As shown in Fig 4b, ‘Advertising/Sponsorship of Fast and Processed Food’ (variable 8) has
the ability to influence 7 other variables in the CLD and has the maximum out-degree. ‘Schools
with a Healthy Curriculum’ (98) has an out-degree of 6, followed by ‘Available Time’ (12),
‘Fear and Risk Averse Society’ (40) and ‘Single Parent Families’ (102) directly causing 5 factors
in the system (out-degree = 5).

Variables with a high betweenness centrality and the distribution of values are shown in
Fig 5. Similar to the distribution of degree, the majority of the variables have a low betweenness
with a small number of high value outliers. ‘Kids with Healthy Weight’ (variable 64) ranks
highest (betweenness = 804.6), followed by ‘Participation in Sports’ (84) (betweenness = 791.3),
‘Positive Body Image’ (88) (betweenness = 716.6), and ‘Junk Food Consumption’ (57)
(betweenness = 637.6).

Discussion

Statement of Principle Findings

The results have implications for understanding of the topological structure and key drivers of
childhoodobesity, specificallywithin (and perhaps not limited to) this community.

A number of the topologicalmeasures computed for the CLD were similar to that of well
studied, real networks, providing confidence in the representation of the CLD as a directed net-
work and the application of standard network analytic methods.

Fig 3. Distribution of node in and out degree (number of in and out bound edges for each node) for the

community developed obesity CLD.

doi:10.1371/journal.pone.0165459.g003
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For example, the pairing of low-density and low average path length is characteristic of
‘small-world’ network topologies [39]. While heavily tailed degree distributions (Fig 3) are
characteristic of ‘scale-free networks’ [40]. Small world and scale free networks, which are
observed in many empirical networks (social networks, the world wide web, and biological net-
works), have properties that are well known to influence the function and resilience of the net-
work, and provide useful insights into the function of the CLD.

The low density means the network is sparse, and changes in one variable may not impact
other parts of the system as quickly as a dense network. Thus, planning leverage points will have
to bemore strategic and acknowledge the topology of the network. Low density could also imply
sophisticated development of the CLD, as although all factors are indirectly related (via childhood
obesity), only the direct, proximal causal relationships were identified by the participant group.

Measuring path length gives further insight by evaluating distances of minimum causal
chains between variables. According to Hovmand (2013) [9], long causal chains are often disre-
garded due to the likelihoodof interference. The maximum shortest path (diameter) of length
16, from ‘Water Taste’ to ‘Overeating’, could be an example of this, and it may not be wise to
place confidence in this chain. However, on average, the path length between variables in the
diagram is 4.65 meaning the CLD resembles a network with a structure efficient in the spread
of information and influence [41].

The modularity value of 0.56 is indicative of a divided network [42], highlighting the pres-
ence of variable clusters in the CLD. This result further asserts the importance of acknowledg-
ing variables with high betweenness centrality (Fig 5), as their ‘mediating’ role will facilitate the
spillover of change from one cluster to other clusters in the system.

Fig 4. A summary of the relationships to and from the variables with the highest in-degree and out-degree in the system, respectively.

doi:10.1371/journal.pone.0165459.g004
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If an intervention focused around the consumption of soft drink, for example, were to even-
tually impact ‘Level of Physical Activity’, it would need to traverse the high betweenness vari-
ables ‘Kids with a Healthy Weight’, ‘Positive Body Image’ and ‘Junk Food Consumption’. An
intervention around town infrastructure,may eventually influence the consumption of junk-
food via ‘Kids with a Healthy Weight’ and ‘Screen Time’.

Fig 5. Variables with the highest betweenness centrality- the ‘mediators’ of the causal loop diagram shown (a) by node size in the network, (b)

the distribution of values and (c) a table of values for nodes with the highest betweenness centrality.

doi:10.1371/journal.pone.0165459.g005
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Many variables with high betweennesswere identified in multiple feedback loops during the
development of the CLD [12], which further asserts their power as a leverage point [43]. For
example, the variable ‘Positive Body Image’ is a part of a feedback loop. ‘Positive Body Image’
directly influences ‘Participation in Sports’ and ‘Level of Physical Activity’. ‘Participation in
Sports’ impacts ‘Kids with a Healthy Weight’, which in turn reinforces improvement in ‘Posi-
tive Body Image’.

High in-degree variables, those that are most causally influenced by others in the system,
are indeedwell recogniseddrivers of childhood obesity, including those related to physical
activity [44] along with the consumption of both unhealthy food and sugar sweetened bever-
ages [10].

The advertising of unhealthy food and curriculumof local schools have the greatest influ-
ence, (highest out-degree),meaning they have the ability to influence the greatest number of
other variables in the system and may be powerful in initiating system-wide change. Often,
high out-degree variables had an in-degree of zero (‘Advertising/Sponsorship of Fast and Pro-
cessed Food’, ‘Mechanization Advances in Technology’, ‘Single Parent Families’ and ‘[Local
Sporting] Club size’). This means that although these variables may be influence change in
many other variables, the community has not identified variables that cause change to these
important influencer variables and therefore it is possible that the community may not have an
ability to alter them. ‘School with Healthy Curriculum’, however, impacts many others (out-
degree = 6), can be changed by ‘School Canteen Policy’, which could be a promising leverage
point that will affect variables such as ‘Healthy Literacy’, ‘Junk Food Consumption’ and ‘Nor-
malising Healthy Culture’.

Strengths and weaknesses of the study

Network analysis provides a novel way to quantify drivers of obesity in a community led CLD.
The CLD was developed using a method that ensures strong comparability and repeatability
between sessions. This work extends on other attempts to quantify networks by expressly
focusing on grounded community perspectives of drivers of disease. The centrality analyses in
this study did not consider polarity and delay of the relationships, which will be considered in a
subsequent study. It is also noted that results presented in this paper are specific to a single
community’s systems map, however, the network analysis interpretations are applicable to all
causal loop diagrams.

Strengths and weaknesses in relation to other studies

Some of the key drivers identified in the analysis are well studied causes of obesity and are pres-
ent in the Foresight map [10], but others are specific to the community. This is due to the dif-
ference in development of the two diagrams. The CLD in this work was developed by
community participants rather than experts, to ensure the diagramwas of us for intervention
design specific to the community. Finegood et al. (2010) [1] also applied network analysis tech-
niques to an existing systems map of obesity drivers, however, the objectives and methods in
this project focus on numerical rather than visual summaries.

Similar work has been conducted ‘beneath the skin’ by Jagannadham et al. (2016) [32] who
found the structure of the biological obesity system has a heavy-tailed degree distribution and
highmodularity. Above the skin, we have noticed a similar scale-free structure in the commu-
nity drivers of obesity.
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Implications of the study

We found that the community developedCLD of obesity drivers studied in this paper has a
structure similar to other well studied networks.With this knowledge, conclusions regarding
the structure of a problem can be extracted.

For population health problems, the insight of central variables can aid intervention plan-
ning by understanding their role in the system. Global network measures will provide insight
into how the system’s structure can be leveraged for more efficient system-wide change.

Computing quantitative measures also allows comparison among CLDs. A comparison of
diagram structure and central variables before and after an intervention could be insightful to
measure changes in the problem over time. Spatial comparisons, such as comparing the struc-
ture CLDs between communities, could allow towns with similar results to leverage successful
interventions.

The framework presented in this paper may provide the means to gain insight into causal
loop diagrams, not just for obesity, but for all complex problems.

Unanswered questions and future research

A comparison with additional CLDs for obesity, along with other problems could give interest-
ing insight into the similarities or differences of the topological structure found in this research.
Acknowledgement of some similarities between this map and the Foresight map have been
made, though further insight or quantification of their overlap using network analysis tech-
niques could provide valuable information.

An alternative method to quantify the contents of systems maps for decisionmaking and
intervention design are stock and flow diagrams [45], which have been applied to population
health problems [46] [47]. Conversion of CLDs to stock and flowmodels, however, relies on
assumptions and development of mathematical equations for elements in the model. The
quantitative measures used in this research allow application directly to a CLD immediately
following its creation. Future work could consider the results from obtained network analysis
to inform the quantification and simulation of system dynamics models. For example, by simu-
lating changes that target the most central nodes in the CLD.

System dynamic models should not considered as static, and should change as the problem
evolves. Therefore, the CLD and results presented in this study should not be taken as a ‘final’
model [12]. A promising method to allow real-time collection of system data in the community
is wireless sensor networks [48], which can allow for monitoring and recognition of activity
and changing states of the system [49]. Such an approach may provide a means to update infor-
mation about the system and models in real-time [50], and thus deploy more adaptive and
timely intervention strategies [51].

Conclusion

The main contribution of this paper is the application of network analysis to a well grounded
community developed causal loop diagram of obesity drivers. This method is a novel way to
identify central variables in a systems map for obesity and to gain an in-depth understanding
of the structure of the diagram and thus of the problem. The CLD network of community obe-
sity drivers is sparse, and has characteristics observed in other empirical networks known to be
efficient for information distribution. Centrality analysis was applied to all variables to identify
their role in the system. Insight from network analysis can aid community groups in interven-
tion design by considering a variable’s position in the network.Well known causes of obesity
ranked highest in this study increasing confidence in the proposedmethod, though interesting
insights unique to this community were also uncovered.
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