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Abstract

Walking speed is widely used to study human health status. Wearable inertial measure-

ment units (IMU) are promising tools for the ambulatory measurement of walking speed.

Among wearable inertial sensors, the ones worn on the wrist, such as a watch or band,

have relatively higher potential to be easily incorporated into daily lifestyle. Using the arm

swing motion in walking, this paper proposes a regression model-based method for longitu-

dinal walking speed estimation using a wrist-worn IMU. A novel kinematic variable is pro-

posed, which finds the wrist acceleration in the principal axis (i.e. the direction of the arm

swing). This variable (called pca-acc) is obtained by applying sensor fusion on IMU data to

find the orientation followed by the use of principal component analysis. An experimental

evaluation was performed on 15 healthy young subjects during free walking trials. The

experimental results show that the use of the proposed pca-acc variable can significantly

improve the walking speed estimation accuracy when compared to the use of raw accelera-

tion information (p<0.01). When Gaussian process regression is used, the resulting walking

speed estimation accuracy and precision is about 5.9% and 4.7%, respectively.

Introduction

Walking speed is widely used to study human health status. Based on previous studies, walk-
ing speed can be used as a marker of mild cognitive impairment (MCI) [1–3]. For example,
the trajectories of weekly walking speed and the coefficient of variation of the walking speed
are shown to be among the most important parameters for the early detection of MCI in older
adults [1]. In addition to MCI, walking speed can also be used as a marker of multiple sclerosis
(MS) [4], Parkinson’s disease [5, 6], risk of falls [7], kidney disease [8], and adverse outcomes
in aging [9]. Hence, it can be considered as a powerful predictor of hospitalization, disability,
and survival [10, 11]. In a clinical setting, different protocols including the 4-meter [12],
10-meter [8], and 6-minute walking tests [13] and the timed up and go (TUG) test [9, 14]
have been used as standard tools to evaluate walking speed and gait parameters. However, the
short walking tests (e.g. the 10-meter walking test) are subject to bias due to their brevity [15]
and the longer tests are less accepted due to the space and time constraints in clinical exams
[16]. Additionally, the walking speed results of clinical tests cannot be fully applied to the
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free-living environment [17]. Furthermore, building precise pathological models of some dis-
ease for development of monitoring and treatment guidelines, requires access to longitudinal
measurements [18,19]. This emphasizes the need for a reliable system/method for longitudi-
nal (i.e. over long periods of time) and continuous walking speed measurement in real-world
situations.

Aiming at longitudinal walking speed measurement outside the clinical setting, some
researchers have used passive infrared (PIR) motion sensors. These PIR sensors can be
mounted on ceiling [20] or walls [21] of a residence and can measure the individuals’ walking
speed when they are in the field of view of the sensors. However, walking speed measurement
based on PIR sensors is limited to confined areas such as hallways. Additionally, such system
cannot differentiate betweenmultiple residents, limiting its application to independent-living
resident homes. Camera-based systems have also been used in the literature for in-home gait
speed measurement [22]. However, camera-based systems can get affected by the lighting con-
ditions, and similar to the PIR sensors, they are limited to confined areas and hence more suit-
able for clinical settings.

Fortunately, with recent advances in MEMS technology and wireless sensor networks, wear-
able inertialmeasurement units (IMU) have emerged as powerful devices for portable human
motion analysis [23–29]. Being self-contained, wearable inertial sensors can facilitate walking
speed measurement in an ambulatory fashion. Considering that the acceleration data from tri-
axial accelerometer in a wearable inertial sensor can be integrated to get the velocity, integra-
tion-based approaches have been widely used for speed tracking [30]. The main challenge in
integration-based approaches is the velocity drift over time that happens as a result of time-
varying bias in MEMS-based inertial sensors [31]. To mitigate the drift, some researchers have
proposed the detection of periodic foot stance phases during walking to reset the velocity to
zero through a process called zero velocity update (ZUPT) [30–34]. However, the need for
foot-stance detection requires the wearable sensor to be normally mounted on the leg (ideally
on the foot), which is inconvenient for longitudinal walking speed monitoring, particularly
indoors. Using waist-worn IMU, some studies have modeled the foot swing in walking as an
inverted pendulum to find a 3D walking kinematic model for speed estimation [35]. Addition-
ally, using a waist-mounted IMU, linear and nonlinear regression models have shown promis-
ing performances for ambulatory walking [13, 36–37] and swimming [38] speed estimation.
These regression-based approaches for walking speed estimation are based on mapping the
inherent pattern of acceleration and rate of turn information corresponding to the hip rotation
in a gait cycle to walking speed.

For longitudinal health status monitoring, among the available state-of-the-art inertial sens-
ing-basedwearables, wrist-worn devices are the most user-friendly and compliant that do not
limit the freedomof movement and do not require specific dressing style (e.g. wearing a belt in
the case of waist-worn sensor). Thus, wrist-worn devices have relatively higher potential to be
easily incorporated into daily lifestyle and worn for longer hours. Similar to hip rotation in
each gait cycle [13], arm swing motion during walking is a periodicmotion pattern that is
highly correlated to walking speed: the faster the walking speed, the faster the arm swing
motion. However, in walking speed estimation based on regression models, free arm motion
necessitates the use of more complex algorithms to manipulate the acceleration and rate of
turn information and get a variable that is more representative of the arm swing motion.
Although extracting this variable is of high importance (because the accuracy of the regression
models depends on the set of chosen variables and the extracted features), it has not been
addressed in the existing literature.

Aiming at accurate walking speed estimation using a wrist-worn IMU, this paper provides a
novel processing method based on combined inertial sensor fusion and principal component
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analysis (PCA) for variable extraction. Experimental results show that the extracted variable
can improve the accuracy of wrist-basedwalking speed estimation.

Theoretical Method

Problem Definition

Considering that walking is represented by a set of features, this section is focused on formulat-
ing a mapping from walking-related features (predictors) to walking speed (response value)
using a regression model. In a regression problem, a training set (S) consisting of N-number
of D-dimensional predictors xi and noisy observations of the response value yi is given
(S ¼ fðxi; yiÞg

N
i¼1

). The goal of a regression model is to find the best-fit function f(xi) that pre-
dicts the response values. The Gaussian process regression (GPR) and regularized least squares
regression using least absolute shrinkage and selection operator (LSR-Lasso) models are the
two candidate regression methods used in this study.

Gaussian Process Regression

The objective of GPR, a well-known non-parametric regression technique, is to model the
dependency as follows [39]:

yi ¼ f ðxiÞ þ εi ð1Þ

where εi = N(0, σn
2) is the independent and identically, normally distributed noise terms. GPR

has two main advantages compared to conventional regression methods [40]:

1. It is a non-parametric regression method and the model structure is determined from data.

2. It uses a probabilistic approach that can model the prediction uncertainty.

A Gaussian process is completely identified by its mean μ(xi) and covariance function
Σ(xi, xj). The covariance function used here is a parameterized squared exponential (SE)
covariance function [39]:

Σðxi; xjÞ ¼ sf
2exp �

1

2ðxi � xjÞW
� 1ðxi � xjÞ

T

 !

ð2Þ

where σf is the signal variance and W = diag(l1, . . ., lD) is the diagonal matrix of length-scale
parameters. This covariance function implements automatic relevance determination (ARD)
as the length-scale values determine the effect of each predictor on the regression.

Assuming N training samples are available, for a new input, x�, the covariance matrix in
Eq (2) can be partitioned into two blocks [39]:

ΣNþ1 ¼
ΣN ΣN�

ΣT
N� a

 !

ð3Þ

where ΣN is the N × N covariance matrix of the training samples, ΣN� includes the elements of
Σ(xi, x�) and α represents Σ(x�, x�). A posteriorimean estimation and related variance can be
given respectively by

mðx�Þ ¼ ΣN� Σ
� 1

N y ð4Þ

s2ðx�Þ ¼ a � ΣT
N� Σ

� 1

N ΣN� ð5Þ

where y = [y1, . . ., yN]T.
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GPR is chosen herein because of its superior performance compared to other regression
models in [36] where a waist-worn IMU is used to estimate walking speed.

Regularized Least Squares Regression Using Lasso

Lasso is the shrinkage and selectionmethod for regularized linear regression. LSR-Lasso, a
well-known parametric regression technique, minimizes the usual sum of squared errors, with
a bound on the sum of the absolute values of the coefficients to deliver a sparse solution, i.e. a
set of estimated regression coefficients in which only a small number is non-zero [41]. Given a
linear regression, the LSR-Lasso solves the ℓ1-penalized regression to minimize [41]:

1

2
SN

i¼1
ðyi � b0 � xi

TβÞ2 þ lSD
j¼1
jbjj ð6Þ

for unknown parameters β0 and β = [β1, . . ., βD]. The second term in Eq (6) is the penalty
function balancing the fit of the model with its complexity with the non-negative parameter λ
governing this trade-off [41]. The value of λ is chosen based on 10-fold cross-validation in
this study.

LSR-Lasso is chosen in this study to provide a performance baseline for GPR with the
SE-ARD covariance function.

Experimental Method

Participants

Fifteen young (nine males, six females) self-reported healthy students from Simon Fraser Uni-
versity participated in this study. The participants had an average age of 27±4 years, average
height of 1.69±0.08 m, average weight of 6510±10 kg, and average body mass index (BMI) of
23.07±2.3 kg/m2. Informed written consent was obtained from the participants and the experi-
mental protocol (No. 2013s0750) was approved by the Office of Research Ethics of Simon Fra-
ser University.

Hardware and Experimental Protocol

Raw inertial and magnetic data are collected from tri-axial accelerometers, gyroscopes, and
magnetometers at the rate of 100 Hz. The sensor is Xsens MTw worn by human subjects on
the wrist (Fig 1). Each subject is asked to walk for a distance of 30 m in indoor environment
for three different self-selectedwalking speed regimes: slow, normal, and fast. The subjects
are asked to keep their walking speed constant during each 30 m trial and each trial is
repeated four times per chosen speed regime, resulting in 12 trials per subject. To get the
ground truth average walking speed, the floor is divided into three segments of 10 m long
(accurately measured by a laser distance measuring tool with sub-centimeter accuracy), as
shown in Fig 1, and the time it takes for the subject to pass each segment is measured using a
stopwatch with an accuracy of 0.01 s. The criterion of line passage is when the subject’s right
foot passes the line and a human observer always walked with the subject to ensure a perfect
sagittal plane view.

For the purpose of demonstrating and further evaluating the performance of the proposed
walking speed estimation method in a real-world setting, five subjects (four males, one
female) are asked to perform a 12-min outdoor walking trial that includes 2 min of fast walk-
ing, 4 min of normal walking, and 6 min of slow walking. In these outdoor trials, Xsens MTi-
G-700 [consisting of tri-axial accelerometers, tri-axial gyroscopes, tri-axial magnetometers,
and the Global Positioning System (GPS)] is worn by the subjects on their left wrist and the
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reference walking speed is obtained by GPS/IMU fusion using our existing Kalman filter-
based fusion algorithm previously presented in [31]. Compared to the indoor trials, these
outdoor trials cover longer walking distances and durations and the subjects have the free-
dom to change their walking direction.

Analysis

Variable Computation

The raw data are used to calculate three different variables: magnitude of 3D acceleration (acc),
magnitude of external acceleration (ext-acc), and external acceleration in the principal axis
(pca-acc). The idea here is to start from raw acceleration data and apply step-by-step increas-
ingly more advanced signal processing techniques to process the raw inertial data to get a vari-
able that is more representative of the arm swing during walking. The above-mentioned three
variables are explained in the following:
acc. The norm (square root of the sum of squares) of acceleration components:

acc ¼ jsa j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa x

2 þ sa y
2 þ sa z

2

q
ð7Þ

where sai,i = x,y,z is the acceleration measured by each axis of the accelerometer in the sensor
frame (s-frame: a coordinate frame attached to the sensor).
ext-acc. This variable is the norm of gravity compensated acceleration (also known as

external acceleration). Removing the gravity component from the tri-axial accelerometer data
results in a variable that represents the pure acceleration of the arm during walking. The fol-
lowing steps are taken to get the ext-acc variable (Fig 2a):

• Orientation is obtained by fusing the tri-axial accelerometer, gyroscope, and magnetometer
using our previous Kalman filter-based sensor fusion algorithm in [42–44].

Fig 1. Experimental set-up. Left: a subject wearing MTw units; right: MTw unit and schematic of the test

field.

doi:10.1371/journal.pone.0165211.g001
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• The rotation matrix (nsR
s) [42] is calculated to represent the acceleration in the navigation

frame (na). The navigation frame (n-frame) is a local-level frame with its x- and y-axis in the
horizontal plane and its z-axis alignedwith the gravity vector).

• The gravity component of the acceleration is then removed:
na ext ¼

n
s R

sa � ng ð8Þ

where naext and ng are the tri-axial external acceleration vector and the gravity vector, respec-
tively, both in the n-frame.

• Finally, the ext-acc is calculated as

ext � acc ¼ jna extj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na ext;x

2 þ na ext;y
2 þ na ext;z

2

q
ð9Þ

pca-acc. This variable is the horizontal external acceleration in the direction of its highest
variations. Considering the problem of walking speed estimation based on arm swing motion,
one of the main shortcomings of the above 3D external acceleration (naext) is its dependency
on the direction of arm swing motion in the navigation frame. The first issue is the inter-sub-
ject variability of the arm swing angle (i.e. for the same walking speed, the direction of arm
swing with respect to the forward direction of motion varies between individuals). The second
issue is the intra-subject variability for different walking directions (i.e. for the same walking
speed, any changes in the walking direction result in a change in the absolute direction of the
arm swing in the navigation frame). In the above-mentioned two scenarios, variations in the
direction of arm swing result in changes in the components of naext. This will affect the magni-
tude of the ext-acc, which in the regression model will be interpreted as a change in the walking
speed. However, for a constant speed, the direction of arm swing should not affect the estima-
tion of walking speed ideally. Thus, the pca-acc is proposed in here as a direction-independent
variable. To obtain the pca-acc (Fig 2b), PCA [45] is applied on the first two components (the
horizontal components) of naext to find the direction of the highest acceleration variation in the
horizontal plane, which is alignedwith the direction of arm swing. The pca-acc variable is sim-
ply the acceleration in this direction (the first principal component).

Fig 2. Variables calculation method. (a) ext-acc variable and (b) pca-acc variable.

doi:10.1371/journal.pone.0165211.g002
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Feature Extraction

The sensor data from the IMU are low-pass filtered using a Butterworth filter with a cut-off fre-
quency of 20 HZ considering that activities of daily living (ADL) fall in the frequency range of
0.1 to 10 HZ [40]. Each of the above-mentioned three variable streams is divided into 5-s
epochs. The 5-s window is selected based on the window size proposed in [36] and that the
periodicity of the signal should be captured in this snapshot. Within each epoch, the following
time-domain (TD) and frequency-domain (FD) features are calculated.
TD features. Eight TD features are used in this study including the statistical features con-

sisting of mean, standard deviation (SD), median, mode, and mean of absolute values plus

other features such as the number of mean crossing, signal magnitude area (
XN

n¼1
jx½n�j), and

energy (
XN

n¼1
x2½n�).

FD features. A 512-point fast Fourier transform (FFT) is used within each epoch to obtain
frequency information. The first 40 coefficients of the single-sided amplitude spectrumare
used as FD features. These 40 coefficients correspond to the frequency range of less than 8 Hz.
This frequency range is selected based on the inspection of the Fourier transforms from the 15
subjects.

Training versus Testing

Two modeling approaches have been compared in this study: subject-specificmodel versus
generalizedmodel. Considering N subjects, to train and test the models, for each subject, 20%
of the subject-specificdata set (of the short indoor tests) was randomly sampled and parti-
tioned into test data, the remaining fraction constituting training data. The subject-specific
model for subject n was trained using subject n’s training data and was tested on subject n’s test
data. The generalizedmodel for subject n was trained using all data from the remaining sub-
jects and predictions were made on subject n’s test data. For each model, the process was
repeated for 10 times for different randomly sampled data and the results were averaged. The
final reported error is the error averaged across all participants.

For the generalizedmodels, along with TD and FD feature sets, two anthropomorphic
parameters including height and weight of the subjects are included in the input features. It is
shown that these two features can potentially improve the generalizability of the models [46].

Results and Discussion

Effect of the PCA on External Acceleration Signal

Fig 3 shows the horizontal components of the external acceleration in the directions of x- and
y-axis (of the n-frame) in addition to the direction of the principal axis (pca-acc) during 7 s of a
12-min outdoor walking trial. In this figure, the amplitude of the acceleration in the x-axis
grows, whereas the one in the y-axis shrinks (happening when the walking direction changes).
However, because the pca-acc signal always captures the acceleration in the principal axis
(pointing toward the direction of motion), the amplitude of the pca-acc variable remains con-
stant when the walking speed is constant, but the direction changes (see Fig 3). Thus, the pca-
acc variable is expected to provide better estimates of walking speed compared to the external
acceleration signal in each axis. Similar observation has also been made in [40]; when raw 3D
acceleration data are used to estimate energy expenditure, the x-axis acceleration is coinci-
dently alignedwith the forward direction of motion, providing better accuracy compared to
the y- and z-axis. On the contrary, the magnitude of 3D external acceleration (ext-acc) is
another variable that will get affected less by the changes in walking direction compared to the
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acceleration in individual axes. In Fig 4, the pca-acc and ext-acc signals are compared to each
other in the FD. This figure shows the Fourier transform magnitude for both pca-acc and ext-
acc variables for the three different walking speed regimes (slow, normal, and fast) based on
the data set collected from one subject. Based on this figure, compared to ext-acc, the pca-acc
variable shares a relatively clearer pattern of peaks between the three walking regimes with the
corresponding peaks moving to the higher frequencies and growing in amplitude as the walk-
ing speed gets faster. This clear pattern has the potential to provide relatively more accurate
estimation of the walking speed.

Performance of the Generalized GPR Model

Table 1 shows the walking speed estimation accuracy of the generalizedGPR model for the
three different variables: pca-acc, ext-acc, and acc. In this table, the reported mean absolute
error (MAE) and root mean square error (RMSE) are used as the measures of accuracy, and
the SD shows the precision. Based on this table, when using the pca-acc variable, MAE and
RMSE are about 5.9±4.7% and 7.9±5.6 cm/s, respectively. Compared to the ext-acc and acc var-
iables, employing pca-acc results in significantly better estimation accuracy. Using analysis of
variance (ANOVA), p<0.01 shows that the results are statistically significant. Also shown in
Table 1 are the walking speed estimation errors when FD features are not being used (the two
anthropomorphic features are used in both cases) in the generalizedGPR model. As it can be
seen, the effect of removing the FD features on the accuracy obtained by the ext-acc and acc
variables is negligible (changes in MAE is<1%), whereas, for pca-acc, the accuracy is changed
from 5.9% to 15.6%. This shows that the variations in the frequency spectrumof the pca-acc
variable (which in turn is correlated to the changes in frequency and amplitude of arm swing)

Fig 3. TD comparison between the variables. External acceleration signal in the directions of x- and y-axis

of the n-frame and the principal axis (pca-acc) during 7 s of outdoor walking trial.

doi:10.1371/journal.pone.0165211.g003
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is highly correlated to walking speed. The regression analysis and Bland-Altman plots for the
predicted walking speed values based on the GPR generalizedmodel using the pca-acc variable
(and combined FD and TD features) are shown in Fig 5a and 5b, respectively. The black line in
Fig 5a shows the line of best fit (y = 0.903x+11.7) and the gray line shows the ideal line (y = x)
representing the perfect correlation between the reference and GPR model predicted walking
speed. Although the line of best fit slightly deviates from the ideal line due to the prediction
errors, the analysis shows a very strong linear correlation between the predicted and reference
walking speed values (Pearson’s r = 0.9742, p<0.001). The Bland-Altman plot shows that,
except for a few outliers (mainly at the lower speed range), the error is mainly kept within 95%
limits of agreement and that there is no significant systematic dependence of the estimation
error on the walking speed. The obtained accuracy using the pca-acc variable is better than the
MAE of 6.96% in [20] using ceiling-mounted RF transceivers and the RMSE of 8 to 15 cm/s in
[21] using wall-mounted RF transceivers for longitudinal in-home walking speed monitoring
is used for the early detection of MCI. The positive results herein demonstrate the potential of
the proposed wrist-worn method for the monitoring of walking speed as an early marker of

Fig 4. FD comparison between the variables. Fourier transform magnitude for the pca-acc and ext-acc

signals from one subject.

doi:10.1371/journal.pone.0165211.g004

Table 1. Walking speed estimation error (different variables).

Variable Combined FD and TD features TD features only

MAE (%) SD (%) RMSE (cm/s) SD (cm/s) MAE (%) SD (%) RMSE (cm/s) SD (cm/s)

pca-acc 5.9 4.7 7.9 5.6 15.6 7.0 17.3 7.5

ext-acc 12.13 6.97 14.57 7.78 11.8 6.98 14.5 8.28

acc 14.4 8.26 16.53 8.49 14.24 6.89 14.3 7.66

Evaluation of the walking speed estimation error based on the generalized GPR model for various variables and feature sets.

doi:10.1371/journal.pone.0165211.t001
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health issues. Compared to the systems based on the ceiling and wall-mounted sensors in [20,
21], which are only applicable to confined hallways in single resident homes, the proposed sys-
tem offers the advantage of being self-contained and can be easily used indoor/outdoor
environments.

As the best walking speed estimation accuracy for the GPR model is obtained using the pca-
acc variable and a combination of FD and TD features, the reported results in the following sec-
tions are based on the same variables and feature sets.

Comparison Between the Generalized GPR and Subject-Specific GPR

Models

Table 2 shows the walking speed estimation errors for the generalized and subject-specificGPR
models in various walking speed regimes: slow (50–100 cm/s), normal (100–150 cm/s), and
fast (150–200 cm/s). Based on this table, the generalized and subject-specificmodels have very

Fig 5. Regression and Bland-Altman plots. (a) Regression analysis for the generalized GPR model and (b) Bland-Altman plot for comparison of the

reference walking speed values and the predicted values from the generalized GPR model using the pca-acc variable. The upper and lower horizontal

lines show the 95% limits of agreement and the middle horizontal line shows the bias.

doi:10.1371/journal.pone.0165211.g005

Table 2. Walking speed estimation error (different models).

Speed regime Generalized model Subject-specific model

MAE (%) SD (%) RMSE (cm/s) SD (cm/s) MAE (%) SD (%) RMSE (cm/s) SD (cm/s)

Slow 8.9 5.6 7.5 4.2 2.6 3.3 2.6 2.6

Normal 4.4 4.3 6.6 5.3 4.5 5.5 7.3 7.0

Fast 4.5 4.1 9.5 7.3 4.5 3.2 8.1 5.5

Comparison between generalized GPR and subject-specific GPR models in walking speed estimation for various speed regimes: slow (50–100 cm/s),

normal (100–150 cm/s), and fast (150–200 cm/s).

doi:10.1371/journal.pone.0165211.t002
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similar performances for normal and fast walking speed regimes. However, for slow walking
regime, the RMSE of the generalizedmodel is about 7.5 cm/s (MAE of 8.9%), whereas the one
for the subject-specificmodel is about 2.6 cm/s (MAE of 2.6%). This can be explained as fol-
lows: the generalizedmodel has to fit the model simultaneously across subjects and within each
subject. Compared to normal and fast walking, both the frequency and amplitude of arm swing
is very weak in slow walking, and for most subjects, the arm swing differs the most at their low-
est walking speeds. Intuitively, given that the generalizedmodel has to trade off between overall
accuracy and subject-specificaccuracy, the model is optimized over the most similar input
points, which correspond to arm swing motion in normal and fast walking regimes. To shed
further light on this issue, a separate generalizedmodel is trained for the slow walking regime
by excluding the data points that correspond to the velocities of above 100 cm/s. The results
show that this new model can reduce the RMSE to 5.1 cm/s (and the MAE to 6.2%). This obser-
vation suggests that, if one is interested in estimating slow walking speeds (e.g. tracking walking
speed of the elderly), a model that is trained specifically for the speed regime of interest may
provide a better accuracy.

Performance of the Generalized LSR-Lasso Model

Fig 6 shows the Bland-Altman plots for the predicted walking speed values based on the gen-
eralized LSR-Lasso model. Similar to the generalizedGPR model, outliers are mainly in the
lower speed range and the error is mainly kept within 95% limits of agreement. The RMSE of
the estimated walking speed is about 10.7 cm/s (SD = 7 cm/s) and the MAE is 12.78%
(SD = 7.7%). Compared to the generalizedGPR model, the LSR-Lasso model has a larger pre-
diction error (p<0.01). This comparison shows that the data-driven estimation of the model

Fig 6. Bland-Altman plot. Comparison of the reference walking speed values and the predicted values

based on the generalized LSR-Lasso model.

doi:10.1371/journal.pone.0165211.g006
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structure in the GPR model can more effectively capture the influence of each input feature
on the output walking speed. A better performance of the GPR model compared to the LSR
model has also been observed in [38], where the generalizedGPR and LSR models are used to
estimate swimming velocity using a waist-worn IMU. In general, once the model is learned,
the computational complexity of a nonparametric approach such as GPR for a new estima-
tion depends on the number of training data points (N) and is of order O(N3); whereas the
one for the parametric approaches such as LSR-Lasso depends on the dimension of the input
data space (d) and is of order O(d3) [40]. The computational cost can be an important factor
when implementing these algorithms in resource-constrained platforms such as wearable
devices.

Testing of the Generalized GPR Model on Outdoor Free Walking Data

In this part, the experimental data from the five outdoor free walking trials are used to examine
how well the trained generalizedGPR model (based on short indoor walking trials that are lim-
ited to straight-line walking) will perform for wrist-basedwalking speed estimation in real-
world environment (where the walking path is not limited to a straight line). Fig 7 shows the
estimated outdoor walking speed along with the reference speed from our previously verified
GPS-IMU fusion algorithm [31], which is more accurate than using GPS alone, for slow, nor-
mal, and fast walking speed regimes during a sample 12-min trial from one subject. It can be
seen that the generalizedGPR model can clearly differentiate between the three walking speed
regimes. The variations of walking speed within each speed regime are expected considering
the various turns in the walking path (Fig 7, inset) and the natural variations in free walking
speed over time. Comparing the predicted walking speed from the five outdoor trials to the
GPS walking speed shows a high correlation between the two measurements (Pearson’s
r = 0.916, p<0.001).

Limitations of the Results

The experimental results presented in this paper may have some limitations. The first part of
the limitations is with regard to the measurement errors of the reference system. For the indoor
experiments, although the accuracy of the stopwatch is 0.01 s, the human response time for
pressing the stopwatch button is in the order of 0.1 s. Additionally, the proposed method is
based on the assumption of free arm swing during walking. In reality, this assumption would
not be satisfied in occasions such as carrying a bag, putting hand in the pocket, and walking
with walkers. However, although there is no arm swing in these situations, because the arm is
now fixed to the trunk, the acceleration profile of the wrist will be similar to that of the trunk.
Regression model-basedwalking speed estimation using trunk acceleration is already
addressed in the literature [13, 36]. Thus, in real-world applications, these situations can be
identified using a proper activity classification algorithm and a separate regression model
should be trained for walking speed estimation in such cases.

Conclusion

A regression model-basedhuman walking speed estimation algorithm is presented, which uses
the inertial data from a wrist-worn IMU. The arm swing motion is represented by a novel vari-
able called pca-acc, which is highly correlated to walking speed in terms of both temporal and
frequency characteristics. Experimental results from 15 young subjects showed that using the
proposed pca-acc variable will result in significantly better walking speed estimation accuracy
compared to the use of raw acceleration variables (p<0.01). Using combined TD and FD fea-
tures of the pca-acc variable, a generalizedGPR model resulted in accuracy and precision of
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about 5.9% and 4.7%, respectively. Based on the experimental results, the generalized and sub-
ject-specificGPR models tend to perform similarly, except for the slow walking regime (speed
<100 cm/s) where a subject-specificmodel provided better estimation accuracy. Compared to
the generalized LSR-Lasso, the generalizedGPR model performed significantly better (p<0.01)
for wrist-basedwalking speed estimation. Experimental results from a 12-min outdoor walking
trial demonstrated the feasibility of using the proposed method for wrist-basedwalking speed
estimation in a real-world environment. In the future, by undertaking a larger study and col-
lecting data across a range of anthropomorphic parameters such as height, weight, and BMI,
the generalizability of the proposed method will be further evaluated. Also, the authors plan to
carry out clinical investigations to collect real-world data from elderly subjects with diverse
ranges of age, weight, and height and to fine tune the regression model for longitudinal walking
speed estimation in older adults.

Fig 7. Outdoor walking speed. Estimated walking speed based on the generalized GPR model and the one from GPS-IMU fusion during a

12-min outdoor walking trial.

doi:10.1371/journal.pone.0165211.g007
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