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Abstract

Background

HIV and malaria geographically overlap. HIV protease inhibitors kill malaria parasites in vitro

and in vivo, but further evaluation in clinical studies is needed.

Methods

Thirty-one children from Malawi aged 4–62 months were followed every 3 months and at

intercurrent illness visits for�47 months (September 2009-December 2011). We compared
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malaria parasite carriage by blood smear microscopy (BS) and confirmed clinical malaria

incidence (CCM, or positive BS with malaria symptoms) in children initiated on HIV antiretro-

viral therapy (ART) with zidovudine, lamivudine, and either nevirapine (NVP), a non-nucleo-

side reverse transcriptase inhibitor, or lopinavir-ritonavir (LPV-rtv), a protease inhibitor.

Results

We found an association between increased time to recurrent positive BS, but not CCM,

when anti-malarial treatment and LPV-rtv based ART were used concurrently and when

accounting for a LPV-rtv and antimalarial treatment interaction (adjusted HR 0.39; 95% CI

(0.17,0.89); p = 0.03).

Conclusions

LPV-rtv in combination with malaria treatment was associated with lower risk of recurrent

positive BS, but not CCM, in HIV-infected children. Larger, randomized studies are needed

to confirm these findings which may permit ART optimization for malaria-endemic settings.

Trial Registration

ClinicalTrials.gov NCT00719602

Introduction

Malaria is highly prevalent in many areas of the world where HIV-infected children live, espe-

cially sub-Saharan Africa. Studies have shown that when HIV and malaria are present as co-

infections, each disease can enhance the pathogenicity of the other[1]. Moreover, as more

patients are managed for HIV infection in malaria endemic areas, understanding HIV drug

impact on malaria infection is important. If selecting certain antiretroviral regimens over oth-

ers may not only treat HIV but also potentially reduce malaria burden, such approaches could

be employed as an additional intervention to reduce malaria burden where HIV and malaria

are co-endemic.

The World Health Organization (WHO) recommends HIV management with combination

antiretroviral therapy (ART), with first line therapy including a non-nucleoside reverse tran-

scriptase inhibitor (NNRTI) and 2 nucleoside reverse transcriptase inhibitors (NRTIs), with

few exceptions, and second line therapy including an HIV protease inhibitor (HIV PI) and 2

NRTIs [2]. Both in vitro and in vivo data with Plasmodium suggest that HIV PIs kill various life

cycle stages of malaria parasites [3–7], indicating these drugs may influence malaria infection

in people. Indeed, a clinical study in which children who were randomized to receive protease

inhibitor lopinavir-ritonavir (LPV-rtv)-based antiretroviral therapy (ART) had fewer cases of

recurrent clinical malaria when compared with NNRTI nevirapine (NVP)-based ART in an

area of high malaria transmission intensity [8].

Because transmission intensity influences the dynamics of malaria infection and interven-

tion efficacy [9], we sought to quantify the impact of different antiretroviral regimens on para-

site carriage in HIV-infected children by microscopy and clinical malaria in the first such

study performed in children in an area of low to moderate transmission. Herein we describe

malaria infection in children who received either LPV-rtv based ART (LPV-rtv ART) or NVP-

based ART (NVP ART) as treatment for HIV infection in the clinical substudy P1068s, which

was a substudy to the larger, randomized HIV pediatric treatment study, P1060 [10, 11].
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Methods

Study Population

P1068s was substudy to the International Maternal Pediatric Adolescent AIDS Clinical Trials

Network (IMPAACT) study P1060, details of which have been reported elsewhere [10, 11].

Briefly, P1060 was an HIV treatment study conducted at 6 countries in sub-Saharan Africa

and India that enrolled HIV-infected children aged 2 months-36 months who qualified for

treatment according to World Health Organization (WHO) criteria. Children were random-

ized to receive zidovudine and lamivudine combined with either NVP or LPV-rtv, and were

followed for< = 47 months (median follow-up 32 months), and stratified by exposure to NVP

at birth and by age (<1 year vs.> = 1 year) in the context of P1068s. ART failure was defined

as permanent discontinuation of the treatment regimen for any reason, including the need for

treatment of tuberculosis during the course of the study [10, 11].

The malaria substudy described herein, P1068s, was conducted at three sites with endemic

malaria transmission according to published data at the time, which included Kampala,

Uganda; Lusaka, Zambia; and Lilongwe, Malawi [12–14]. Analysis was performed only on

data from the Malawi site, however, because of low blood smear positivity rates at the other

sites: among the 74 subjects enrolled at the Zambia and Uganda sites, only 8 subjects had a

positive blood smear over the course of follow-up for a total of 19 positive BS over the com-

bined 4 year accrual and follow-up period, although one child in Uganda died from uncon-

firmed but suspected severe malaria [11].

All participants from the parent HIV treatment study, P1060 were eligible for inclusion in

this malaria substudy. Although not randomized for the primary objectives of the P1068s sub-

study described herein, it was originally intended the randomization of P1060 would be used

for P1068s; however, due to later initiation of this substudy, a number of subjects had switched

from the regimen to which they had been originally randomized. Thus, most data collected

under P1068s that links treatment to outcome is observational and most analysis was con-

ducted using an “as-treated” approach.

Follow-Up

Study visits were conducted 2 and 4 weeks after the initiation of treatment, every 4 weeks until

week 16, at week 24, and every 12 weeks thereafter, and patients were encouraged to come in

for intercurrent illness. Follow up for P1068s paralleled P1060 (Table 1).

History and physical exams were completed at all scheduled and intercurrent illness visits,

and children were seen by study physicians at all visits. Heel or finger stick or venous blood

were used to prepare thick blood smear using 2% Giemsa for 30 minutes, in addition to dried

Table 1. Demographic Information for Children Enrolled into P1068s from Lilongwe, Malawi.

Characteristics LPV-rtv ART only,

N = 16

NVP ART only,

N = 7

Switched from NVP ART to LPV-rtv

ART, N = 8

Male # subjects (%) 7 (43.8%) 4 (57.1%) 3 (37.5%)

Enrollment Age (months), Median (min, max) 28.4 (3.9, 61.3) 33.0 (24.8, 51.9) 33.9 (25.8, 61.8)

Duration of Follow-Up on P1068s (months), Median (min, max) 42.7 (22.3, 46.8) 43.1 (20.7,45.4) 36.8 (20.9,46.8)

Duration on LPV-rtv ART during P1068s (months), Median (min,

max)

42.7 (22.3, 46.8) – 24.4 (8.6, 42.6)

Follow-Up Time Prior to Switching ART regimen (months),

Median (min, max)

42.7 (22.3, 46.8) 43.1 (8.3, 45.4) 1.2 (0.0,14.5)

Positive Blood Smear Count, Median (min, max) 2.5 (0.0, 16.0) 3.0 (0.0, 19.0) 3.0 (0.0, 5.0)

Count Confirmed Clinical Malaria, Median (min, max) 2.5 (0.0, 15.0) 3.0 (0.0, 15.0) 2.5 (0.0, 5.0)

Months on P1060 before P1068s enrollment, Median (min, max) 12.2 (8.2, 32.6) 11.9 (9.6, 34.3) 12.2 (8.2,34.2)

doi:10.1371/journal.pone.0165140.t001
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blood spots (DBS, with 50 µL/spot) collected on Whatman 903 paper (Florham Park, NJ) and

handled as previously described [15] for confirmatory PCR (see Supporting Information, S1

File [16, 17]). CD4 cell count, CD4%, and HIV viral load were measured in real time during

the P1060 trial [11]. Subjects were diagnosed with malaria on site and treated as per WHO rec-

ommendations, which for this study included artemether-lumefantrine for uncomplicated

malaria and quinine or artesunate for severe malaria [18].

Study Site

In Malawi, trimethoprim-sulfamethoxazole prophylaxis was administered as per WHO guide-

lines [19, 20], and all patients received prophylaxis. At the beginning of the study, the infant

feeding policy was exclusive breastfeeding recommended for the first 6 months, which

changed to the first 12 months of life as per WHO, in 2010 [21], but this was not adopted by

Malawi until July 2011. All children on study were given an insecticide-treated bednet at the

beginning of the study and lived within 30 km of the study site. Clinical illness was managed

based on the Integrated Management of Childhood Illness Guidelines [22].

Malaria transmission in Malawi is perennial and holoendemic, with seasonal increases after

the rains from November to April. Malaria mapping analysis in Malawi showed lack of signifi-

cant changes in transmission between 2000–2010, with a population-adjusted P. falciparum
rate (PAPfr2-10) in 2010 of 32%; this encompasses part of the period in which this study was

conducted [23].

Ethics

This substudy was approved by site-specific institutional review boards (IRBs), including the

New York University School of Medicine (NYU) IRB (January 17, 2008) and the Malawian

Ministry of Health and Population National Health Sciences Research Committee (June 8,

2009) and the NIH/NIAID IRB through a reliance agreement with NYU IRB (May 18, 2012).

Each child’s parent or legal guardian provided written informed consent. The study was first

opened to accrual on August 19, 2009 with the first patient enrolled September 25, 2009.

Laboratory Procedures

A blood smear was deemed negative if no parasites were seen in> = 200 high-powered fields.

All blood smears in the study, with the exception of one P. malariae sample from Lilongwe,

were reported as P. falciparum. The diagnosis and management of malaria was based readings

of blood smears on site, but reported results herein are from reads performed at NYU, with a

primary and secondary reads by two microscopists, with discrepant results resolved and a ran-

dom subset of smears reviewed by a third microscopist.

Quality control of blood smear reading was maintained by 30 hours of training which cov-

ered both slide preparation, cover slipping, microscope care and maintenance and identifica-

tion and quantification of malaria parasites, both at NYU and at study sites. Over the time

period of the study the NYU microscopists were proficiency tested four times using archived

smears provided by Hydas World Health (http://hydasworldhealth.org/), whose stock smears

are read by WHO Level 1-Certified microscopists [24]. Each examination consisted of 15

cover-slipped, Giemsa stained blood smears containing thick and thin blood smears from

malaria infected and uninfected blood. Blood smears included either single or mixed infec-

tions of Plasmodium falciparum, vivax, ovale or malariae. For the total 60 test slides, the read-

ers’ overall sensitivity was 100%, specificity 92%, and density determination was within

+/-25% of the accepted value in 96% of the slides. During the final 2 years of the study, the sen-

sitivity and specificity were both tested at 100%. Separately, DNA was isolated from DBS and
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parasite genomic DNA was detected using real time from DBS collected for confirmation in

parallel to smears.

Statistical Methods

The primary end points were the time to first or recurrent events of and the rate of positive

malaria blood smear (BS) or confirmed clinical malaria (CCM), defined as a positive BS with

diagnosed malaria symptoms, as per WHO guidelines [18]. Only episodes of CCM greater

than 14 days apart were considered, as those were assumed to represent new infections rather

than recrudescence [9].

Thirty-one of 288 subjects from the P1060 parent study enrolled in P1068s, and 8 of these

31 children changed regimens based on the primary study before or after enrollment. For this

reason we undertook an as-treated analysis, attempting to link observed treatment and

observed outcomes. Per-protocol analysis, censoring subjects when they switched regimens,

and as-randomized analysis (as randomized for the P1060 parent study) analysis are also pro-

vided in Supporting Information (S2 File and S1 and S2 Tables).

During this study, another clinical trial suggested that a drug interaction between LPV-rtv

and lumefantrine (the second component of artemether-lumefantrine, used for treatment of

uncomplicated malaria) reduced clinical malaria burden in children on LPV-rtv ART in an

area of high transmission intensity [8]. For this reason, the relationship between time to recur-

rent episodes of malaria (positive BS or CCM) and ART and potential synergy between HIV

ART and malaria treatment is the primary scientific question evaluated in this report. This

analysis was conducted by fitting a recurrent event (count process) Cox model [25]. Malaria

treatment is considered a time-varying indicator in the models, until the occurrence of a

malaria event, censoring by ART change or censoring by the end of follow up. Both malaria

treatment and ART regimen were treated as time-varying covariates and models were adjusted

for average CD4% over prior period, sex, age at enrollment, months since start of enrollment

into P1060 to start of P1068s and an indicator for malnutrition status (as defined by mid-

upper arm circumference [26]) collected at each study visit.

In addition to evaluation of recurrent malaria events, comparisons of the rate of incident

positive BS and CCM per time at risk by HIV treatment type was analyzed using negative bino-

mial models including an offset for time-on-trial and adjusted for potential confounders. HIV

treatment was accounted for using the following three time categories of LPV-rtv ART use:

LPV-rtv ART assigned at P1060 baseline; LPV-rtv ART duration in months; or majority of

time on LPV-rtv ART

Reported p-values are not corrected for the number of analyses conducted. Statistical analy-

sis was performed with R software, version 3.1.3.

Results

From Kamuzu Central Hospital, Lilongwe, Malawi, 31 children were enrolled between Sep-

tember 2009 and December 2011, and demographic information for these patients is summa-

rized in Table 1. Eight patients who were randomized to start on NVP ART switched to LPV-

rtv ART due to HIV treatment failure based on criteria for virologic failure as defined by the

parent study P1060, with two subjects switching before enrollment into P1068s (Fig 1). One

patient withdrew due to moving too far from the study site to be able to attend regular visits.

There were no significant differences between the cohorts at P1060 initial randomization to

LPV-rtv ART compared with NVP ART with regard to age at entry, sex or time from P1060

enrollment to P1068s enrollment, and baseline CD4% (all p-values >0.15). Adverse events

were not analyzed separately for P1068s as they have been previously reported for P1060

Antiretrovirals and Malaria in Children
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[10, 11]. Kaplan Meier curves for time to 1st positive BS and CCM are presented in Supporting

Information, S1A and S1B Fig. For concurrent smear and PCR samples, the phi coefficient (or

measure of association for our two binary variables) was 0.85.

In the as-treated recurrent event analysis, time on LPV-rtv ART prior to positive BS or

CCM was not significantly different from NVP ART (Tables 2 and 3 Ignoring Malaria Treat-

ment), although the Hazard Ratio (HR) of 0.71, 95%CI (0.37,1.37); p = 0.31 suggested a trend

towards increased time to recurrent positive BS episodes in children taking LPV-rtv ART com-

pared to NVP ART. Including an indicator for malaria treatment yes/no (Tables 2 and 3

Adjustment for Malaria Treatment) did not change this finding. However, when including an

indicator for malaria treatment and an interaction for malaria treatment and current LPV-rtv

ART (Tables 2 and 3 Malaria Treatment with Interaction), there was a significant association

between malaria treatment with LPV-rtv ART use and reduced hazard of positive BS as com-

pared to malaria treatment and current NVP ART, or even current LPV-rtv ART use without

malaria treatment. The estimated HR for a positive BS for the concurrent malaria and HIV

treatment group from the fully adjusted model was 0.39, 95% CI (0.17,0.89); p = 0.03. A similar

interaction model for the CCM outcome did not yield significant results (HR 0.53, 95% CI

Fig 1. Graphic representation of patients enrolled in our substudy, P1068s, by sample date. Lopinavir-ritonavir based antiretroviral therapy

(LPV-rtv ART) or NNRTI nevirapine-based ART (NVP ART) treatment regimen and outcomes of Positive Blood Smear (BS) and Confirmed Clinical

Malaria (CCM) or are sorted youngest to oldest enrollment age on the x-axis. Asterisks (*) indicate subjects whose regimens went from NVP to

LPV-rtv ART on study due to virologic failure as dictated by the parent study, P1060.

doi:10.1371/journal.pone.0165140.g001
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(0.17,1.61); p = 0.26). The model also suggested malaria treatment was significantly associated

with increased hazard of positive BS (HR 2.48, 95%CI (1.13,5.43); p = 0.02).

The results for the as-treated negative binomial fits of the count of positive BS and CCM

using all the data and accounting for observed LPV-rtv ART use suggested that there were no

significant differences in incident positive BS and CCM. However, when including an addi-

tional covariate which described changing from NVP ART to LPV-rtv ART during P1068s, we

found a borderline significant association of LPV-rtv ART compared to NVP-ART with posi-

tive BS (RR 0.49 95% CI (0.25,0.98); p-value 0.05 (Table 4). The other two approaches for

accounting for observed LPV-rtv ART use, duration (months) and majority LPV-rtv ART use

over follow-up did not provide evidence for an association with malaria measures BS or CCM

(data not shown). None of the models for CCM rate suggested that there was evidence of a dif-

ference between those subjects that were observed to use LPV-rtv ART and those that were not

(All p-values > 0.1, data shown for including LPV-rtv ART assigned at P1060 baseline).

Discussion

In our P1068s substudy, which was the first of its kind conducted in an area of low to moderate

malaria transmission intensity, LPV-rtv in combination with malaria treatment is associated

with lower risk of recurrent events of BS, but not CCM, in HIV-infected children.

Table 2. As Treated Recurrent Events of Positive Blood Smears (BS) (Cox Model).

Ignoring Malaria Treatment Adjustment for Malaria

Treatment

Malaria Treatment with

Interaction*

HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value

LPV-rtv ART** 0.71 0.37,1.37 0.31 0.74 0.38,1.42 0.36 1.53 0.63,3.71 0.35

Malaria Treatment 1.31 0.84,2.06 0.23 2.48 1.13,5.43 0.02

Malnutrition (yes/no) 0.98 0.59,1.63 0.95 1.02 0.57,1.84 0.94 1.09 0.61,1.94 0.77

Mean CD4% 1.04 1,1.08 0.03 1.04 1.01,1.08 <0.001 1.04 1.01,1.08 <0.001

Enrollment Age (months) 1.26 0.87,1.84 0.22 1.28 0.9,1.83 0.17 1.23 0.87,1.75 0.24

Months on P1060 before P1068s enrollment 0.95 0.91,1 0.06 0.95 0.91,1 0.04 0.96 0.91,1 0.05

LPV-rtv/malaria treatment (interaction) 0.39 0.17,0.89 0.03

*Interaction term taken into account in analysis for LPV-rtv and malaria treatment

**LPV-rtv ART versus NVP periods of no treatment removed

doi:10.1371/journal.pone.0165140.t002

Table 3. As Treated Recurrent Events of Confirmed Clinical Malaria (CCM) (Cox Model).

Ignoring Malaria Treatment Adjustment for Malaria

Treatment

Malaria Treatment with

Interaction*

HR 95% CI p-value HR 95% CI p-value HR 95% CI p-value

LPV-rtv ART** 0.81 0.43,1.53 0.52 0.86 0.44,1.68 0.66 1.46 0.43,5.02 0.55

Malaria Treatment 1.23 0.71,2.14 0.47 2 0.63,6.34 0.24

Malnutrition (yes/no) 1.04 0.59,1.83 0.89 1.07 0.54,2.1 0.85 1.13 0.58,2.18 0.72

Mean CD4% 1.04 1,1.07 0.03 1.05 1.01,1.08 <0.001 1.04 1.01,1.08 0.01

Enrollment Age (months) 1.26 0.85,1.85 0.25 1.3 0.89,1.91 0.18 1.28 0.87,1.88 0.21

Months on P1060 before P1068s enrollment 0.96 0.91,1.01 0.08 0.95 0.91,1 0.05 0.95 0.91,1 0.05

LPV-rtv/malaria treatment (interaction) 0.53 0.17,1.61 0.26

*Interaction term taken into account in analysis for LPV-rtv and malaria treatment

**LPV-rtv ART versus NVP periods of no treatment removed

doi:10.1371/journal.pone.0165140.t003
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HIV protease inhibitors are aspartyl protease inhibitors, and have been hypothesized to

exhibit the killing activity for Plasmodium species in the laboratory because of inhibition of

these enzymes, of which there are 10 in Plasmodium falciparum, although further investigation

is required to clarify the target [6, 27, 28]. The reduced frequency of positive BS when account-

ing for malaria treatment, and the trend in reduced episodes of CCM and overall trend of

reduced BS and CCM, could be because of direct drug killing or pharmacokinetic interactions

[8, 29], the latter especially since our strongest trends were observed in recurrent events analy-

sis which took antimalarial treatment interaction into account. Indeed, it is possible that we

saw a modification in blood smear (BS), but not confirmed clinical malaria (CCM) outcome,

because there were more positive BS, increasing our power to detect a difference. It is also pos-

sible that there is a modification of immune responses to malaria, either through better control

of HIV or from LPV-rtv ART-mediated killing of malaria parasites, that accounts for these

findings.

A previous study that was conducted in an area of high-intensity transmission has shown

similar trends in children: HIV PIs were associated with an overall reduction in malaria for

children on LPV-rtv ART [8]. This finding was at least partly attributed to an interaction

between the ritonavir of LPV-rtv and lumefantrine component of the artemisinin-combina-

tion regimen used to treat clinical malaria [8, 30], and other studies have shown interaction

between NNRTIs and antimalarial therapy [29]. Although our study is clearly distinguished by

transmission intensity, which itself affects the efficacy of interventions, given factors such as

differences in acquired immunity and parasite resistance [9], both studies found reduction in

malaria burden with LPV-rtv ART. This is highly significant because similar studies in adults

and pregnant women have not found such trends [31–33]. The trend to reduced malaria epi-

sodes in LPV-rtv ART-treated children in our study and in the work of others across varying

degrees of transmission intensity [8], compared with the lack of such findings in adults and

pregnant women [31–33] may suggest there are unique reasons why children may benefit

from such a regimen in a malaria-endemic area, such as differences in age-related anti-malaria

immunity or differential pharmacokinetics.

Of note, the as treated recurrent events model also showed that malaria treatment was sig-

nificantly associated with increased hazard of repeated positive BS and CCM in the presence

of NVP ART. This finding was likely due to the strong correlation between receiving a malaria

treatment in the current period and having a malaria event in the previous period. We investi-

gated this by including malaria treatment in the model only if there was not a malaria event in

the previous period for a subject. This modified version of the model suggested that malaria

treatment was associated with reduced hazard of malaria outcomes under all ART regimens,

albeit non-significantly due to the small number episodes observed (data not shown).

Table 4. As Treated Rates of Positive Blood Smears (BS) and Confirmed Clinical Malaria (CCM) (Negative Binomial Model).

Positive BS CCM

Variable RR 95% CI p-value RR 95% CI p-value

LPV-rtv ART at Baseline 0.49 0.25,0.98 0.05 0.53 0.25,1.13 0.1

Switched ART regimens while on study 0.59 0.27,1.32 0.2 0.54 0.22,1.31 0.17

CD4% at enrollment 1.05 1.02,1.08 <0.01 1.05 1.02,1.08 0

Enrollment Age (months) 1.01 0.98,1.05 0.45 1.02 0.98,1.06 0.38

Sex (female) 1.4 0.79,2.48 0.25 1.52 0.81,2.85 0.19

Enrollment time between P1060 and P1068s 0.94 0.88,0.99 0.03 0.94 0.88,1 0.05

doi:10.1371/journal.pone.0165140.t004
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Therefore, one might describe our malaria treatment measure as a mixture of previous illness

and malaria treatment.

A limitation of our study is our small sample size and the number of children who switched

ART regimens. However, because we detected significant findings in a small sample size, and

over a long period of time, we believe the effect of LPV-rtv ART may be considerable and as

such, a larger study is warranted to investigate and validate this finding.

WHO Guidelines now support the use of LPV-rtv ART in children less than 3 years of age

because of longer life-expectancy and cost-effectiveness compared to NNRTI ART [2]. Whether

LPV-rtv ART regimens should be recommended in all children in malaria endemic areas

because of additional benefits of reduced malaria remains to be clarified [34]. Further, larger,

randomized studies are needed to answer these questions, including assessment of whether

LPV-rtv has direct killing effects on the parasite, how this impacts acquired malaria-specific

immunity, and how drug interactions affect malaria burden in HIV-infected patients. Malaria

eradication will only likely be achieved by a combination of interventions (such as insecticide

treated bednets, intermittent preventive treatment, and hopefully, an effective vaccine). Opti-

mizing HIV ART to reduce malaria burden may ultimately contribute to eradication efforts.
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