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Abstract

Gene coexpression network analysis is a powerful “data-driven” approach essential for

understanding cancer biology and mechanisms of tumor development. Yet, despite the com-

pletion of thousands of studies on cancer gene expression, there have been few attempts to

normalize and integrate co-expression data from scattered sources in a concise “meta-analy-

sis” framework. We generated such a resource by exploring gene coexpression networks in

82 microarray datasets from 9 major human cancer types. The analysis was conducted using

an elaborate weighted gene coexpression network (WGCNA) methodology and identified

over 3,000 robust gene coexpression modules. The modules covered a range of known

tumor features, such as proliferation, extracellular matrix remodeling, hypoxia, inflammation,

angiogenesis, tumor differentiation programs, specific signaling pathways, genomic alter-

ations, and biomarkers of individual tumor subtypes. To prioritize genes with respect to those

tumor features, we ranked genes within each module by connectivity, leading to identification

of module-specific functionally prominent hub genes. To showcase the utility of this network

information, we positioned known cancer drug targets within the coexpression networks and

predicted that Anakinra, an anti-rheumatoid therapeutic agent, may be promising for develop-

ment in colorectal cancer. We offer a comprehensive, normalized and well documented col-

lection of >3000 gene coexpression modules in a variety of cancers as a rich data resource

to facilitate further progress in cancer research.

Introduction

Cancer is a multifactorial disease driven by “hallmarks”, such as proliferation, invasion, angio-
genesis, metastasis development and other contributing factors [1]. Understanding the molecu-
lar basis for these oncogenic hallmarks is crucial for the development of cancer therapies. With
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the advent of high-throughput expression profiling technologies, these mechanisms are being
increasingly dissected through analysis of cancer transcriptome, with applications in patient
stratification, drug resistance and therapy development.
An established strategy in cancer transcriptomics is meta-analysis of gene expression data-

sets [2,3]. Unlike the approach focused on a single study, meta-analysis considers multiple
independent datasets jointly. This increases robustness of results and allows uncovering biolog-
ical connections that may not be evident from the individual datasets [2,4]. Meta-analysis has
long beenwidely used in oncology. For example, in a large expression compendium, Rhodes
et al identified the angiotensin receptor to be consistently overexpressed in a specific breast
cancer patient subpopulation [5]. This suggested a possibility to treat these cancers using
angiotensin receptor antagonists such as losartan–a non-obvious antihypertensive medication
[5]. As gene expression data continue accumulating in public repositories, meta-analysis
becomes increasingly powerful as a strategy to address key problems in cancer research [6,7].
In both single and meta-analyzed studies, a question widely asked by researchers is which

genes are differentially expressed between experimental conditions. While powerful, differen-
tial expression analysis focuses on how transcriptome is connected to external sample charac-
teristics but ignores the intrinsic biological structure of a dataset. It also assumes that genes
change expression levels independently of each other, which is clearly not the case in many bio-
logical systems, since biological complexity originates from functional interactions between
genes and proteins.
A complementary approach–gene coexpression networks–aims to explore such gene-gene

relationships [8,9]. It does so by assessing gene-gene correlations within a transcriptomic data-
set. As has been shown in a number of studies, genes co-expressed in a cell or a tissue typically
do not exhibit such an organized, coordinated behavior by coincidence but are rather driven by
shared higher-level processes that functionally connect them [10,11]. A transcriptome with
thousands of genes is thereby delineated into a handful of distinct coexpressionmodules corre-
sponding to meaningful processes and pathways. This highlights gene involvement in critical
functions within cancer cells.
Weighted Gene CoexpressionNetwork Analysis (WGCNA) is an advanced and thoroughly

corroboratedmethodology for reconstructing coexpression networks [12,13]. Unlike basic
coexpression approaches that examine each gene pair separately from the rest of the transcrip-
tome, WGCNA employs a more integrative measure of gene coexpression, known as topologi-
cal overlap. Topological overlap defines gene relatedness by considering not only the
correlation of two genes with each other, but also whether these genes are correlated with simi-
lar sets of genes across the entire transcriptome [13]. This more holistic coexpressionmeasure
downplays spurious correlations and leads to robust gene modules–eventually resulting in a
clearer view of the examined transcriptome [14,15].
Previous studies applied WGCNA to patient stratification, gene function prediction and

understanding biology of drug targets [16–18]. Here, we aimed to systematically explore func-
tional transcriptome organization at high resolution in common cancers usingWGCNA and
make this information available to the scientific community. For biologists, high-resolution
coexpression information would offer insights into key disease processes in cancer cells. For
computationally advanced bioiformaticians, such data would be valuable as a resource for data
mining and for integrating into broader multi-omics computational workflows.
Towards that end, we reconstruct gene coexpression networks in 82 datasets from 9 major

human cancer types. In these networks, we identify numerous gene coexpressionmodules and
associate them with pathological processes in cancer cells. We further identify central (“hub”)
genes in each module that potentially play key roles in respective cancer cell functions. To
showcase the utility of this information, we apply these data to predict a potential novel
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indication for Anakinra–an antirheumatoid drug with prior evidence of anti-cancer effects.
The compendium of high-resolution cancer gene coexpressionmodules is available at http://
wgcna-modules.appspot.com/.

Materials and Methods

Data Preprocessing

Before data preprocessing, we first searched GEO for Affymetrix-basedmicroarray gene
expression datasets as described in the Results section. After identifying and downloading the
datasets, we removed normal samples (if any) from the datasets. All datasets were next normal-
ized using a common procedure for consistency (one dataset at a time). The normalization was
performed using custom gene-level Chip Definition Files, where non-specific and mis-targeted
probes are masked (http://masker.nci.nih.gov/ev/). Since the custom CDFs are already defined
at the level of Entrez IDs, we did not need to perform any probeset-to-gene summarization.
Each dataset was normalized using MAS5 algorithm followed by quantile normalization, simi-
lar to the previous studies [11,16]. To remove outlier samples, Pearson correlations were com-
puted for each sample against every other sample within a dataset, and samples with unusually
low average correlations were removed (4 square deviations below the overall mean in the data-
set) [11,19]. The pre-processing resulted in datasets with 18,835 and 12,287 genes for the
U133Plus 2.0 and U133Amicroarray platforms, respectively.

Weighted Gene Coexpression Network Analysis

Coexpression networks were constructed independently in each dataset. In line with the
WGCNA workflow, we first calculated Pearson correlations between all genes present in a
given dataset, resulting in an all-against-all gene correlations matrix. The correlations were
next raised to a power β to penalize weak correlations while preserving stronger ones. The pro-
cedure is known as “soft thresholding” of a network–in contrast to “hard thresholding” where
a network is filtered using an abrupt cutoff [12,13]. The β value for the soft thresholding was
chosen in each dataset independently from the 7–15 range using the “scale free topology crite-
rion” proposed by Zhang and Horvath [12]. We used the “signed” version of soft thresholding.
The procedure resulted in a weighted network also known as an adjacencymatrix, where
adjacency = correlationβ.
As a next step, the adjacencymatrix was transformed into a network of Topological Over-

laps (TO). TO quantifies coexpression relationships considering each pair of genes in relation
to all the other genes in the network. For a pair of genes i and j, TOwas computed as originally
described:

X

u
aiuaju þ aij

minf
X

u
aiu;
X

u
ajug � aij þ 1

where a denotes adjacency between two genes defined by the subscripts [12,13]. TO eliminates
spurious correlations and reinforces consistent patterns of network connections to allow for
more robust transcriptome exploration [12,13].
After constructing the TO network, we hierarchically clustered genes using 1 –TO as a dis-

tance measure. This resulted in a cluster dendrogram, with branches corresponding to gene
coexpressionmodules [20]. The module definition in the dendrograms was performed using
the dynamicTreeCut algorithmwith the following parameters: mode–“tree”, deep split–“false”,
maximum cut height– 0.995, minimal module size– 15 genes [20].
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The resulting modules are groups of genes with consistently correlated expression profiles
across samples within a given dataset. Each module can be characterized by a dominating
expression trend, also known as a module eigengene (ME). An eigengene summarizes the
expression profiles of all genes in a givenmodule as a single meta-profile, which serves as a
condensed representation of the module. Eigengenes were calculated as a first principal com-
ponent of the expression profiles of all genes in a module–a standard approach inWGCNA
[13]. In each dataset, we mergedmodules with highly correlated eigengenes (Pearson
correlation> 0.8) [11]. We also removed genes weakly correlated with the module eigengene
(Pearson correlation< 0.3).

Robustness Analysis

A subset of modules may correspond to rare biological events which are less interesting for fur-
ther analysis. A typical example is a genomic alteration found in a single patient or a small
patient subpopulation in a cancer type [21]. To filter out such modules that only correspond to
rare biological events, we assessed the robustness of the modules using the module density
measure.
We definedmodule density as average correlation between expression profiles of all genes

in a given module [11,13]. An abrupt decrease in density of a module upon removal of only
few samples from a dataset indicates that the module is highly dependent on the removed sam-
ples and largely disintegrates once these samples are removed from the dataset. This suggests
the module to be driven by a rare event, e.g. a highly uncommon genomic deletion or amplifi-
cation found only in those samples.
To perform the filtering, we calculated two density values per coexpressionmodule: 1) den-

sity across all samples in the dataset; 2) density after excluding the 1% of the samples with high-
est value of the module eigengene.Modules with an over two-fold decrease in density upon the
removal of these samples were excluded from further analysis.

Gene Connectivity within Modules

Genes in a module can be prioritized by their connectivity with the rest of the genes in the
module. Highly connected genes represent central (“hub”) genes in the module, while lowly
connected ones can be interpreted as peripheral genes.We used two measures to quantify this
gene quality. The first measure, intramodular connectivity, was defined as average topological
overlap between a gene of interest and all the other genes in its module of residence[12]. For
convenience of representation, we scaled these connectivity values to the [0;1] interval.We also
calculatedmodulemembership (kME)–a complementary measure of gene association strength
with coexpressionmodules. In contrast to intramodular connectivity, kME can be calculated
for a gene with respect to any module–not only it’s module of residence. The measures is
defined as Pearson correlation between the gene expression profile and the eigengene of a mod-
ule [13].

Module Functional Annotation

After identifying the modules, we annotated them functionally. This was done by testing each
module for enrichment in 3 types of gene sets: (1) Gene Ontology biological processes (3,941
GO terms ranging from 10 to 1,000 genes in size); (2) chromosomal cytobands (1q1, 1q11,
1q12, etc.); and (3) tissue-specific gene sets corresponding to 36 normal human tissues [22].
The enrichments were calculated using hypergeometric test with a Benjamini-Hochbergmulti-
ple testing correction.
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Drug Repositioning Analysis

In the analysis of the modules in the context of extracellularmatrix therapies, we first searched
our compendium for the modules associated with cell adhesion to extracellularmatrix. To that
end, in each dataset, we tested each module for an enrichment in the “cell adhesion” GO term
and selected a module that was enriched stronger than any other module in that dataset (pro-
vided also that P< 10−5). The module (further referred to as extracellularmatrix module–
ECMmodule) was then tested for presence of therapeutic targets of cancer drugs and other
drugs from DrugBank (http://www.drugbank.ca/, v. 4.0). In this analysis, we first explored tar-
get occurrence in the ECMmodule across all datasets, taking into account only targets found
within the ECMmodule (S1 Table, spreadsheet #1). Second, a more comprehensive analysis
was performed for the IL1R1 target, where we tested this target’s strength of association with
the ECMmodule regardless of whether IL1R1was found within this module or outside of it
(S1 Table, spreadsheet #2). The association was measured as Pearson correlation between the
expression profile of IL1R1 and eigengene of the ECMmodule (the kMEmeasure). The differ-
ent cancer types were finally compared in terms of the IL1R1-ECM association strength to
identify cancers where IL1R1 is promising as a target and may impact extracellularmatrix biol-
ogy that facilitates tumor growth.

Results

Mining Gene Coexpression Modules across Multiple Cancer Types

As a starting point for gene coexpression network analysis, we selected datasets in Gene
Expression Omnibus (GEO) using the following criteria: (1) dataset contains at least 30 sam-
ples corresponding to tumors with a shared anatomical location (breast, lung, gastric cancer,
etc); (2) microarray platform–AffymetrixU133A or U133 Plus 2.0; (3) raw data available. We
focused on cancer types with at least 3 available datasets. For cancer types with over 20 suitable
datasets, we took the 20 largest studies. We also ensured that datasets have no sample overlap.
The search resulted in 82 datasets corresponding to 9 major cancer types: breast, colon, lung,
ovarian, kidney, gastric and prostate cancers, as well as glioma and melanoma.While GEO
includes all datasets in pre-processed formats, the preprocessing methodologies are heteroge-
neous, potentially leading to excessive technical variation. We therefore downloaded the data-
sets as raw CEL files and preprocessed them independently using a consistent procedure
identical for all the datasets (seeMethods for details and S1 Table for a datasets description).
The data collection is briefly characterized in Table 1. Columns in this table include cancer

type names, numbers of available datasets and dataset sizes. The table also shows how many
modules were ultimately identified in the datasets. Each cancer type was represented by 3 to 20
datasets, with lowest for gastric and highest for breast, colon and lung cancer types (Table 1).
The variation is related to data availability in the GEO repository, potentially reflecting cancer
epidemiology or activity of scientific research. By total sample counts, data were most abun-
dant for breast, colon and brain cancers, with over 1,000 samples for each of these cancer types
(Table 1).
To systematically explore the transcriptome organization in each of these 9 cancer types, we

reconstructed gene coexpression networks independently in the 82 datasets using theWGCNA
algorithm (see Fig 1 for an overview). In a given dataset, the analysis started out by calculating
gene-gene Pearson correlations. The Pearson correlations were next weighted and transformed
into Topological Overlap (seeMethods for details). Based on the Topological Overlap net-
works, genes were finally clustered hierarchically, resulting in a dendrogramwith branches cor-
responding to modules of coexpressed genes in a particular dataset. The analysis identified
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3,398 gene coexpressionmodules in total across the datasets (Table 1). To the best of our
knowledge, these data represent the most comprehensive collection of gene coexpressionmod-
ules generated in oncology to date.

Gene Coexpression Modules Overview

As follows from Table 1, each dataset included a number of gene coexpressionmodules. The
modules ranged from 13 to over 2,000 genes in size (with a median of ~100 genes per module).
Names of the individual genes residing in each module are listed in S2 Table. This table also
shows gene connectivity values that characterize how strongly each gene is associated with its
module of residence (see below). Similar data with further details are also provided dynamically
at http://wgcna-modules.appspot.com/.
Which questions are being addressed by these data? For a gene of interest, this information

uncovers transcriptional modules that implicate this gene in the various cancer types. Taking
into account module associations with biological processes (S3 Table), genes can be further
connected to critical functions in cancer cells. From a complementary process-centric perspec-
tive, this also characterizes the biological processes, suggesting gene players involved in these
functions and potentially contributing to cancer growth.

Module Biological Functions

As previously discussed, gene modules are typically associated with biological processes under-
lying the coexpression in them. To associate the modules with biological processes and func-
tions, we therefore used functional enrichment analysis–a widely used bioinformatics
technique [23]. Functions significantly overrepresented in a module are likely to drive the coex-
pression of the genes [9,23]. We separately annotated modules through this approach with
respect to (1) biological processes, (2) chromosomal locations and (3) tissue specificitymarkers
(S3 Table; seeMethods for details).
Fig 2 illustrates module functions for a specific cancer dataset. This dataset (the largest in

our study) included approximately 300 breast cancer patients and resulted in 50 modules at the
network analysis step. According to the enrichment analysis, the modules were associated with
various biological themes (S3 Table, dataset #1): 1) classical cancer-related processes, e.g.
immunity (M1), proliferation (M2) and extracellularmatrix remodeling (M4); 2) signaling

Table 1. Overview of datasets and transcriptional modules.

Cancer

type

Number of

datasets

Total number of

samples

Total number of

modules1
Median number of samples (per

dataset)

Median number of modules (per

dataset)1

All types 82 8422 3,398 80 38

Breast 20 2899 726 118 32

Colon 14 1441 686 90 52

Gastric 3 281 149 43 57

Glioma 11 1018 425 74 39

Kidney 6 443 239 65 37

Lung 12 946 539 66 44

Melanoma 5 271 227 63 47

Ovarian 7 845 282 99 32

Prostate 4 278 125 65 29

1 –after exclusion of modules associated with rare biological events (Methods)

doi:10.1371/journal.pone.0165059.t001
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Fig 1. Workflow overview. In each dataset, the following workflow was applied. 1. The dataset was used as a starting point to

construct a gene coexpression network based on Topological Overlap between genes. TO determines similarity between gene
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pathways, e.g. interferon signaling (M7) and steroid hormones (M33); 3) breast cancer sub-
types, e.g. basal (M2), normal-like (M21) and possibly neuroendocrine (M13) subtypes; 4)
genomic alterations: 1q42, 8q24, 11q13, 17q25, 19p13, 22q13, etc (approximately 30 modules
in this category). Finally, some modules demonstrated no functional enrichments.
From a broader perspective–at a bird’s eye view across all datasets–frequent functions

included cell cycle, immunity, angiogenesis, mitochondrial respiration/glycolysis (the alterna-
tive tumor metabolismmodes), hypoxia response, fatty acid oxidation, steroid biosynthesis,
protein glycosylation and others (Fig 3). In this heatmap, rows correspond to biological pro-
cesses, whereas columns–to associatedmodules of coexpressed genes. Large colored areas
reveal module assemblies associated with process sets. For example, “cell cycle” (a coherent
process group consisting of “S phase”, “mitosis”, etc) is a prevalent function that, unsurpris-
ingly, has a matching module in all the cancer datasets. Interestingly, “cell cycle” was also
closely related to (but distinct from) “DNA synthesis” and “DNA damage response” (Fig 3).
This suggests that respective processes are highly correlated but distinct in cancer cells. Overall,
the functional landscape describedhere (Fig 3) confirms that the modular transcriptome orga-
nization captures diverse aspects of cancer as a disease.
Besides biological processes, the modules were also enrichedwith tissue-specific gene mark-

ers and chromosomal locations (S3 Table, columns E and F). Indeed, over 800 of the 3,398
modules were strongly enriched in chromosomal locations at P< 10−15 (see Fig 4 for an over-
view). This potentially reflects DNA copy number alterations (CNAs), consistent with genomic
instability representing a key feature of cancer cells [24]. In terms of tissue-specific gene mark-
ers, the tissue enrichments tended to be associated with modules from “correct” cancer types.
For example, brain marker enrichments were strongest in glioma, whereas kidneymarkers–in
kidney cancer datasets, etc (S3 Table column F). The tissue-marker modules may correspond
to normal cells embedded in the tumors–but also, more intriguingly, to genetic programs of
differentiation in cancer cells themselves [25,26].
As a final observation, the enrichment analysis revealedmodules that were not enriched

with any function, tissue or chromosomal location. This suggests that some of the cancer tran-
scriptional variation may relate to yet unknown cancer functionality. While it remains to be
determinedwhich of these modules are related to cancer pathology, some of themmight repre-
sent an interesting subject for further research.

Identification of Hub Genes within Coexpression Modules

Highly connected (hub) genes in molecular networks are thought to play prominent roles in
various biological systems [27,28]. Highly connected genes within modulesmay be critical for
module-specificbiologicalmechanisms [28,29]. Previous studies also reported hub genes from
both coexpression and protein interaction networks as more essential for organism survival
and more evolutionarily conserved than average genes in respective organisms [27,28]. In light
of these findings, “hubs” are of interest from a practical perspective, such as drug target identi-
fication [18] and understanding of diseasemechanisms [11,14]
In connectionwith this, we identified highly connected genes in each coexpressionmodule.

The connectivity was measured as a sum of connection strengths between a gene of interest

expression profiles taking into account a systems level context. The network was next hierarchically clustered, resulting in a

cluster dendrogram. 2. Using DynamicTreeCut algorithm, branches were identified in the dendrogram, leading to identification of

gene coexpression modules. 3. Genes in each module were further prioritized by intramodular connectivity, providing a distinction

between lowly and highly connected genes. The entire workflow was repeated independently for 82 datasets, resulting in a set of

gene coexpression modules in each of them.

doi:10.1371/journal.pone.0165059.g001
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and all other genes in a given module (Methods). This resulted in a prioritization of genes
within each coexpressionmodule (S2 Table).
High connectivity sheds light on gene functions in a module of interest [18]. To test this

hypothesis, we examinedmodule #2 (the “cell cycle” module) from the already describedFig 2.
Module enrichedwith the same function has recently gained attention as a predictor of patient
survival in multiple independent breast cancer cohorts [3,30]. In our study, a gene’s probability
of being related to cell cycle is strikingly correlated with intramodular connectivity of the gene
in this module. Indeed, the proportion of genes involved in cell cycle grew steadily from 10–
15% among the lowly connected genes, up to 80–90% among the highly connected genes in the
module (Fig 5A). Separately, we tested how gene connectivity in the same module was related
to patient survival time. The connectivity was found to significantly correlate with gene’s
power to predict survival (Fig 5B). Both findings suggest that connectivity is important as a bio-
logical characteristic and can be useful for cancer research. This is consistent with previous
findings of highly connected genes as relevant to target [18] and biomarker identification [16].

Drug Repositioning using Gene Coexpression Modules

One of the applications from our molecular networks is the identification of therapeutic targets
and drugs [31,32]. As a showcase, we performed an analysis known as drug repositioning. The
analysis generates hypotheses on whether a drug can be used outside of its existing approved
indications. Drug repositioning is quicker and less risky in clinical trials compared with
completely de novo drug development [33]. Here, we sought to predict drugs approved outside
of oncology but tentatively promising in cancer, with a focus on extracellularmatrix biology–a
mechanism actively pursued in cancer drug industry in recent years [34,35].
To that end, we searched and examined an extracellularmatrix module (further “ECM”

module) that was broadly represented in our datasets. The module was present in 76 out of the
82 datasets and was enriched in extracellularmatrix and cell adhesion functions (P< 10−5, S4
Table, tab 1, row 4). These functions play major roles in tumor growth and invasion [34,35],
making it unsurprising that the module was found in a high proportion of the datasets.
To analyze this module from the drug development perspective, we tested whether it har-

bors targets of known anti-cancer drugs (S4 Table). As an initial observation, the ECMmod-
ule did frequently include well-known oncology targets, supporting its relevance to cancer
therapy research. As an example, metalloproteinase proteins targeted by marimastat (MMP1,
MMP2,MMP3 and others) were present in the ECMmodule in multiple datasets. Other
established oncology targets included: PDGFR (modulated by Regorafenib and Sunitinib),
FLT1 (Axitinib),MAP1 andMAP2 (Estramustine),ABL1 (Bosutinib),TEK (Regorafenib),
and several others.
We further searched the module for targets of drugs that are currently not approved for can-

cer treatment. Such targets in the module included: endothelin receptor ENDRA (modulated
by Bosentan), integrin ITGA4 (Natalizumab), integrin ITGB3 (Eptifibatide), immunoglobulin
receptorMS4A2 (Omalizumab),AGTR1 (Azilsartan) and several others (S4 Table). The targets’
presence in the module of interest suggests these drugs to potentially impact extracellular
matrix biology and serve as possible candidates for further research in this respect.

Fig 2. Modules in a GSE20865 breast cancer dataset. GSE20865 was the largest breast cancer dataset

analyzed here and includes 327 patients. The coexpression network identified 50 modules in this dataset.

This heatmap displays expression patterns of genes in each module: with genes in rows and patients in

columns. The modules larger than 250 genes (M1—M4) are represented by only the top 250 highly

connected genes (to facilitate compact visualization). For selected modules, key biological functions are

specified, with corresponding enrichment P-values.

doi:10.1371/journal.pone.0165059.g002
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We further noted an interesting pattern of membership exhibited in the ECMmodule by
interleukin 1 receptor (IL1R1). This target is known to be modulated by a therapeutic agent
Anakinra currently used to treat rheumatoid arthritis. IL1R1was notable for its seemingly
strong association with the ECMmodule in colorectal cancer but not in the other cancer types
(S4 Table). To confirm this observation,we examined the correlation between IL1R1 expres-
sion level and eigengene of the entire ECMmodule in each of the different datasets (Methods).
Such gene-to-module correlation determines how strongly a gene is associated with a module
of interest, without requiring this gene to be present in the module in every dataset (seeMeth-
ods, “Gene connectivity” section).We found the IL1R1-ECM correlation to be specifically
increased in colorectal cancer (Pearson coefficient 0.74 on average) compared with non-colo-
rectal datasets (0.3 on average, P< 10−6 in Mann-Whitney test, Table 2). This suggests that
Anakinra’s target IL1R1 is stronger associated with extracellularmatrix biology in colorectal
cancer compared with the other cancer types.While further research will be necessary, these
results indicate Anakinra as a potential agent to modulate extracellularmatrix biology in solid
tumors–with a focus of further research on the colorectal cancer type.

Discussion

Cancer transcriptome is a complex system, reflecting tumor heterogeneity and various molecu-
lar mechanisms of the disease. This complexity poses a challenge and requires systematic
approaches for transforming data into knowledge and actionable hypotheses for clinical
research. To improve current understanding of the cancer transcriptome, we explored gene
networks in 9 major human cancer types using a compendium of publicly available data. The
analysis resulted in a large collection of high-resolution robust gene coexpressionmodules
which offer insight in cancer biology.
Our approach differs from previous gene expression meta-analyses in oncology in several

respects. First, we useWGCNA methodologywhich enables robust and sensitive detection of
gene coexpressionmodules even in complex transcriptomes, such as cancer and human brain
[11,12,36]. Second, our strategy is purely data-driven–in contrast to knowledge-basedand
hybrid approaches utilized in some of the previous research [37,38]. As an example, Segal et al
created an assembly of cancer-related gene modules using a hybrid approach that used a collec-
tion of predefined gene sets as a starting point [37]. While knowledge reinforces data interpre-
tation, it also limits one’s ability to discover entirely novel molecular changes–a pitfall
circumvented by our approach. Third (and last), our approach is independent of healthy sam-
ples. Several previous studies focused on coexpression patterns in cancer as opposed to normal
transcriptome [39,40]. While intuitive, such strategy is prone to exclusion of disease-related
modules that only superficially resemble normal ones. One such example is modules enriched
in normal neuron- and astrocyte-specificgenes in brain tumors. These modules (despite the
mentioned enrichments) in fact correspond to proneural and proastrocytic patterns of tumor
cell differentiation (important diagnostic criteria) rather than to normal neurons or astrocytes

Fig 3. Cross-dataset high level functional landscape. This heatmap displays associations between gene

coexpression modules and biological processes across all the datasets. Color denotes enrichment of a given

module with a biological process: hypergeometric log p-value after Benjamini-Hochberg adjustment. Cluster

height reflects how many interrelated processes are associated with the given module set: the higher a

cluster–the broader is the module-associated functional theme. Cluster width reflects how many modules are

sharing this function: the wider a cluster–the more frequently this function is found in the GEO datasets. For

major clusters, key biological themes are subscribed. The heatmap includes 1,240 biological processes and

668 modules, which were selected as follows. A GO process was included if it’s associated 3 or more

coexpression modules (P < 0.001). A module was included if it’s enriched with 3 or more biological process

terms (P < 0.001).

doi:10.1371/journal.pone.0165059.g003
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themselves [16,41,42]. Taken together, the unbiasedWGCNA strategy in the present study cir-
cumvents some of the limitations from prior research.

Fig 4. Module enrichments with chromosomal cytobands. Numbers on the outer side of the circle are chromosomes. Coordinates within each

chromosome are genomic coordinates. Bar height on the inner side of the circle is proportional to number of modules from a given cancer type enriched

with a respective cytoband at P < 10−3. Dark red: breast cancer; red: colon cancer; magenta: glioma; pink: lung cancer; orange: ovarian cancer; yellow:

prostate cancer; brown: kidney cancer; dark green: gastric cancer; light green: melanoma. Visualization was produced using Circos software [50].

doi:10.1371/journal.pone.0165059.g004
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From a computational perspective, it should also be noted that coexpression studies often
focus on only a subset of genes from the entire transcriptome. This is due to the fact that mem-
ory requirements grow quadratically with the number of genes, making large networks techni-
cally challenging to analyze. Here, we analyze gene coexpression networks at the entire
transcriptome scale–without pre-filtering–to avoid any loss of useful information.

Fig 5. Gene connectivity in the proliferation module: highly connected genes are associated with relevant biology and poor

survival prognosis. Figures A and B correspond to the GSE20685 dataset (the largest breast cancer dataset in our study); C and D–to

GSE21653 (the second largest dataset). A and C: proportion of genes related to the cell cycle GO process in a 50-gene window sliding

from lowly to highly connected genes. B and D: scatter plots for gene connectivity against the power of a gene to predictive survival. The

gene predictive power was defined as–log(P) from Cox univariate survival regression. Spearman correlations and statistical significance

values are shown.

doi:10.1371/journal.pone.0165059.g005
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In this study, we used Affymetrixmicroarrays as a basis for the analysis. In recent years,
RNA-seq becamewidely used as a tool for expression profiling. RNA-seq offers advantages
over microarrays in accurate quantification of low abundance genes and novel transcript dis-
covery. Meanwhile, the two technologies are in a reasonably good agreement with respect to
the rest of the genes and often lead to common biological conclusions [43,44]. Given the wealth
of data accumulated using microarrays over the past decade, these data will remain of value for
research, while being complemented by the growing amount of RNA-seq data.
The data generated here may serve various applications in oncology. The modules predict

gene functions by linking genes to their coexpression partners with the already known oncol-
ogy roles [9]. At a level of biological processes, the modules also provide molecular portraits of
key cancer functions in terms of the transcriptome. Gene connectivity provides further resolu-
tion and allows for comparing genes by strength of their association with key processes in the
disease.
For convenience, the data are provided in two formats: a user friendly interface (http://

wgcna-modules.appspot.com/) and a bulk download gene connectivity data matrix (same loca-
tion). The second option is more efficient for computational use such as, for instance, predict-
ing drug targets or cancer drivers throughmachine learning analysis [45].
One of the possible uses of network information relates to various forms of drug research.

The analysis performed in our study suggests that a multi-dataset design offers advantages over
the traditional single-dataset setting. Thus, a target of Anakinra (IL1R1) was associated with
the module of extracellularmatrix biology distinctly in the different cancer types. This observa-
tion would not be evident in case the study included only a single cancer dataset or multiple
datasets from a single type of cancer. Anakinra is an anti-rheumatoid agent which acts by bind-
ing the receptor of interleukin-1 in the plasma membrane and prevents interleukin-1 from ful-
filling its normal physiological functions [46]. Besides its use in rheumatoid arthritis, recent
data suggest Anakinra to offer promising anticancer effects. Anakinra influences tumor micro-
environment and extracellularmatrix processes in experimentalmodels of melanoma [47],
lung cancer [48] and several other cancers [49]. Our analysis suggests that Anakinra may have
unique effects in colorectal cancer where its target is associated with the extracellularmatrix
module stronger than in the other examined cancer types.While therapeutic potential of this

Table 2. Association of IL1R1 gene with the extracellular matrix module.

Cancer Type ECM module count1 IL1R1-positive ECM module count2 Ratio3 Correlation4

Colon cancer 14 11 0.79 0.74

Gastric cancer 3 1 0.33 0.58

Glioma 8 2 0.25 0.54

Melanoma 4 1 0.25 0.28

Breast cancer 20 3 0.15 0.40

Lung cancer 11 1 0.09 0.30

Kidney cancer 5 0 0.00 0.09

Ovarian cancer 7 0 0.00 0.02

Prostate cancer 4 0 0.00 -0.14

1 –number of datasets from a given cancer type containing the ECM module

2 –number of datasets from a given cancer type containing IL1R1 within the ECM module

3 –ratio between the second and the first columns

4 –Pearson correlation between IL1R1 expression profile and the eigengene of the ECM module. Each value represents an average of the correlations

across all ECM module-containing datasets of a given cancer type.

doi:10.1371/journal.pone.0165059.t002

Drug Repositioning through Network Analysis in Cancer

PLOS ONE | DOI:10.1371/journal.pone.0165059 November 8, 2016 15 / 19

http://wgcna-modules.appspot.com/
http://wgcna-modules.appspot.com/


agent requires further investigation, this hypothesis illustrates an advantage of meta-analysis
compared with smaller-scale approaches focused on a particular cancer type.
In conclusion, gene coexpression networks in this study provide insight in cancer biology as

a complex and multifaceted disease. These data facilitate hypothesis generation and will serve
as a useful resource for the community to further support oncology research.
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