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Abstract

Avian communication has been traditionally believed to be mainly mediated by visual and

auditory channels. However, an increasing number of studies are disclosing the role of

olfaction in the interaction of birds with their social environment and with other species, as

well as in other behaviors such as nest recognition, food location and navigation. Olfaction

has also been suggested to play a role in parent-offspring communication not only in the

post- but also in the pre-hatching period. Volatile compounds produced during embryogen-

esis and passively released through the eggshell pores may indeed represent the only cue

at parents’ disposal to assess offspring quality, including the sex composition of their clutch

before hatching. In turn, sex identification before hatching may mediate adaptive strategies

of allocation to either sex. In the present study, we analyzed odour composition of barn

swallow eggs incubated in their nest in order to identify any sex-related differences in vola-

tile compounds emitted. For the first time in any bird species, we also investigated whether

odour composition is associated with relatedness. The evidence of differences in odour

composition among eggs containing embryos of either sex indicates that parents have a

cue to identify their brood sex composition even before hatching which can be used to mod-

ulate their behavior accordingly. Moreover, odour similarity within nests may represent the

prerequisite for kin recognition in this species.

Introduction

Acoustic and visual channels are known to play a major role in avian communication, as wit-
nessed by the independent evolution of elaborated songs and bright colours in many bird phyla
[1–3]. Following the pioneering work of Bang [4] and Wenzel [5], increasing evidence has
been gathered that olfaction also plays an important, though largely neglected, role in bird
communication. Birds have been historically believed to be anosomic or microsmatic (i.e.
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having no or little sense of smell) [6], but anatomical evidence strongly supports their func-
tional olfaction [7,8]. Empirical studies of the role of olfaction in birds have initially been
focused on species with large olfactory bulbs [9,10], but the interest has then been expanded to
species with a smaller ratio between the size of the olfactory bulbs and the rest of the brain,
such as passerines [11].

Odours are relevant to the way in which birds interact with their social environment and
with other species, by mediating individual and kin recognition [12,13] and interactions with
their brood parasites [14]. In addition, olfaction can mediate major behavioural functions such
as navigation [15], location of food [16] and identification of the own nest [17].

Discrimination between age classes and sex of conspecifics has also been shown to occur via
olfactory cues in birds [18]. The main odour source associated with sex recognition is the uro-
pygial gland secretion, which is composed of a mixture of volatile and non-volatile monoester
and diester waxes, tryglicerides, fatty acids and hydrocarbons, that are rubbed on body feathers
during the preening behaviour [19]. In both the dark-eyed junko Junco hyemalis [20] and the
spotless starling Sturnus unicolor [18], for example, individuals of either sex do not differ in
odour composition of the uropygial secretion but in the relative concentration of the individual
compounds, suggesting a potential role of odour in sexual selection [21,22].

Increasing evidence on olfactory discrimination ability of birds discloses the possibility that
odour also plays a role in parent-offspring communication, including interactions in both the
pre- and the post- hatching periods [14,23–25]. For example, odour may represent one of the
very few cues at parents’ disposal in order to identify offspring sex before hatching [26]. Offspring
of either sex can differ in their need of care and parents should modulate their investment
towards offspring of the sex that will guarantee the largest fitness rewards [27–30]. Differential
allocation of parental investment to offspring of either sex requires that offspring sex can be iden-
tified since very early life stages, especially in species with a short period of parental care, such as
many small passerine birds. Differences in phenotype between male and female offspring have
been found for body size [31–33], plumage colouration [34,35], begging vocalizations [36,37]
and mouth conspicuousness [38]. However, all these sex-related differences always emerge dur-
ing offspring rearing, thus reducing the scope for an early identification of the progeny sex.

Because bird eggshell porosity allows the passive diffusion of metabolic gases (such as carbon
dioxide, oxygen and water vapour) [39,40] and odorous volatile compounds produced during
the development of the embryo [41], sex identification before hatching could be mediated by vol-
atile gas emissions of the eggs. In an extensive literature search, however, we could find only a
single study that investigated variation in egg odour, as determined by a mixture of volatile com-
pounds, according to the sex of the embryo. In a study conducted on a captive population of japa-
nese quail (Coturnix japonica), Webster and co-workers [26] reported changes in egg volatile
compound composition along the incubation period, as well as odour differences between fertile
and infertile eggs and between egg carrying a male as compared to a female embryo.

The present study thus aimed at quantifying odour composition of barn swallow (Hirundo
rustica) eggs incubated in their nest in order to identify any sex-related differences in the vola-
tile compounds released. Moreover, we investigated for the first time in any species whether
odour patterns were associated with the nest of origin, potentially reflecting the effect of genetic
or micro-habitat effects on odour composition.

Methods

Model organism

The barn swallow is a colonial, socially monogamous passerine bird with Holarctic distribution
[42]. Breeding occurs between April and August. During the breeding season, each pair
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produce 1–3 clutches of 2–7 eggs. One egg is laid per day and incubation, by the female only,
starts on the penultimate day of laying of the last egg, and lasts 14 days [43,44].

Field procedures

Nests were visited every third day to ascertain date of clutch completion. To our aim, five entire
clutches including a total of 24 eggs were collected on day 10–11 of incubation. Only nests with
at least four eggs were considered, in order to increase the chances that embryos of both sex
were represented in each clutch.

Since no study has ever investigated egg odour in the wild, the possibility existed that envi-
ronmental substances deposited on the eggshell confounded sex-related variation in odour
composition while enhancing among-nest variation. In order to test for this possibility, we
designed an experiment whereby five eggs were collected from another nest and eggshells were
divided longitudinally into two halves. One of the two halves was then sealed inside a small
plastic bag (Balmar 2000) and kept in the lab while the other half was placed in a nest as close
as possible (less than 3 m) to the nest under scrutiny, on the day following that of clutch com-
pletion in the focal nest. The control eggshells and the focal eggs were then collected and ana-
lysed at the same time. For ethical and conservation reasons, we kept the number of clutches
due to be collected at a minimum.

The eggs and the control eggshells were removed from the nests using powder-free nitrile
gloves in order to prevent possible contamination, and immediately placed in small plastic
bags that were stored in a refrigerated bag until the eggs were analysed, within three hours of
collection. The analyses were not confounded by volatile compounds released by the plastic
bags, because these did not match with the volatiles released by the eggs. In fact, Headspace
Solid-Phase Microextraction (HS-SPME) and Gas Chromatography-Mass Spectrometry (GC/
MS) analyses (see below) of the empty plastic bags that were used to store the eggs lead to the
detection of just seven volatile hydrocarbons (o,m and p-kylenes; hexane, styrene, caprolactam,
triacetin), which were not detected in the eggs.

Egg mass was measured to an accuracy of ±0.1 mg upon start of the analysis of volatile com-
pounds. After the analyses of volatiles were completed, the eggs were dissected to sex the
embryos by molecular tools [45].

Analyses of egg volatile compounds

All analyses were performed according to Manzo and co-workers [46]. For Headspace Solid-
Phase Microextraction (HS-SPME), the eggs were placed in a 20 mL headspace glass vial fitted
with a cap equipped with a silicone/polytetrafluoroethylene septum (Supelco). At the end of
the sample equilibration period (1 h), a conditioned (1.5 h; 280°C) 50/30 μm Divinylbenzene/
Carboxen/Polydimethylsiloxane StableFlex™ fiber (Supelco) was exposed to the headspace of
the sample for extraction (3 h), using a CombiPAL system injector autosampler (CTC Analyt-
ics). An extraction temperature of 20°C was selected in order to prevent alterations of the sam-
ple (oxidation of some compounds, particularly aldehydes [47]). The vials were placed on a
heater plate (CTC Analytics) to maintain constant temperature (20°C) during analysis. Injec-
tions were performed in splitless mode (5 min) for solid-phase microextraction (SPME). All
analyses were performed using a Trace GC Ultra (Thermo-Fisher Scientific) Gas Chromato-
graph coupled with a quadrupole Mass Spectrometer (GC/MS) Trace DSQ (Thermo-Fisher
Scientific) and equipped with an Rtx-Wax column (30 m; 0.25 mm i.d.; 0.25 μm film thickness,
Restek). The oven temperature program was: from 35°C, hold 8 min, to 60°C at 4°C/min, then
from 60°C to 160°C at 6°C/min and finally from 160°C to 200°C at 20°C /min. Carry over and
peaks originating from the fiber were regularly assessed by running blank samples. After each
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analysis, fibers were immediately thermally desorbed in the GC injector for 5 min at 250°C to
prevent contamination. The transfer line to the mass spectrometer was maintained at 230°C,
and the ion source temperature was set at 250°C. The mass spectra were obtained by using a
mass selective detector with the electronic impact at 70 eV, a multiplier voltage of 1456 V, and
by collecting the data at a rate of 1 scan�s−1 over the m/z range of 30–350. The carrier gas was
helium at a constant flow of 1 mL�min−1. An n-alkane mixture (C8–C22, R 8769, Sigma) was
run under the same chromatographic conditions as the samples to calculate the Kovats reten-
tion indices of the detected compounds. The compounds were identified by comparing reten-
tion times of the chromatographic peaks with those of authentic compounds analysed under
the same conditions, when available, or by comparing the Kovats retention indices with litera-
ture data. The identification of MS fragmentation patterns was performed either by compari-
son with those of pure compounds or using the NIST MS spectral data base. Quantification of
volatile compounds from eggs headspaces samples was carried out by peak area normalization
(expressed in %). The analyses were done in duplicate.

Statistical analyses

Because the concentration of some of the compounds in some samples was below detection
limit, we did not include in the statistical analyses those compounds for which, in more than
30% of the samples, the concentration was undetectable for either sex. Fourteen out of the 45
compounds were thus excluded from the analyses (2,3-hexandione, 5-methyl-2-hexanone, dec-
ane, non-2-enal, propan-2-ol, ethanol, 2-methylpropan-1-ol, pent-1-en-3-ol, hexan-2-ol, pro-
panoic acid, 1-methyl-4-prop-1-en-2-ylcyclohexene, 2,2,4-trimethyl-3-oxabicyclo[2.2.2]
octane, 4-methyl-1-propan-2-ylcyclohex-3-en-1-ol, 1-methyl-4-prop-1-en-2-ylcyclohexan-
1-ol). Furthermore, when the estimated concentration of any specific compound in a sample
was identified as an outlier, the sample was excluded from all the analyses of that compound.

To test for sex differences in the composition of the volatile compounds we performed linear
mixed models on individual compounds separately, where the effect of sex (factor. male: 1;
female: 2) and mass (covariate) of the embryo were included as fixed effects and nest identity
was included as a random effect. To test if nest identity significantly contributed to the varia-
tion in concentration of individual compounds we ran a likelihood ratio test comparing the
log-likelihood values of the models including or, respectively, excluding the effect of nest iden-
tity. The models were then simplified by removing embryo mass when its effect was statistically
non-significant. Comparisons between eggshell halves that were either kept in the lab or in a
nest close to the focal nests in order to test for accumulation of environmental compounds
were done by t-tests for paired data.

To reduce the risk of incurring in Type I statistical errors due to multiple testing we used the
false discovery rate approach [48]. We will therefore qualify as statistically significant only those
tests that were such after false discovery rate correction. However, we emphasize that due to ethi-
cal and conservation reasons we kept our destructive sample of eggs at a minimum. Small sample
size and large reduction of the statistical power of the tests following false discovery rate adjust-
ment of significant values could thus considerably increase the risk of Type II statistical errors.
As recommended by Garamszegi [49], and Nakagawa and Cuthill [50], in interpreting the results
of the statistical tests of sex-dependent differences in odour composition we also relied on the
inspection of effect sizes. For individual analysis from linear mixed models, according to Naka-

gawa and Cuthill [50], these were computed as d ¼
tMEM 1þ

n1
n0
ð ÞR½ �

ffiffiffiffiffiffi
1� R
p

ðn01þn02Þ
ffiffiffiffiffiffiffiffiffiffiffi
n01þn02

p ffiffiffiffiffiffiffi
n0 � k
p , where tMEM is t value

from mixed-effects model, n01 and n02 are the numbers of observations in each treatment, n0 is
the total number of observations, ni is the number of individuals (or groups), k is the number of

Egg Odour and Embryo Sex in Swallows

PLOS ONE | DOI:10.1371/journal.pone.0165055 November 16, 2016 4 / 17



parameters (including the intercept) and R is the repeatability or intraclass correlation coefficient.
These values has been subsequently converted into Pearson correlation coefficient r according to
Cohen [53], as r ¼ dffiffiffiffiffiffiffi

d2þ4

p . Effect sizes were also computed for the paired t-tests comparing the

concentration of volatile compounds between control eggshells that were kept in the lab or,

respectively, in an empty nest nearby our focal nests. Here, effect sizes were computed as r ¼
ffiffiffiffiffiffiffiffi
t2

t2þdf

q
following Rosenberg et al. [51]. Mean effect sizes (Zr) and their 95% confidence intervals

were computed according to Viechtbauer [52], after the conversion of the r values in Zr by using
the Fisher Z-transformation. Following Cohen [53], effect sizes (r) larger than 0.5 were consid-
ered as diagnostic of “large” effect of sex, those ranging between 0.3–0.5 as “intermediate” while
those< 0.3 as “small”. All the analyses were carried out in SPSS statistics (version 21.0) and the
degree of freedom were computed by using the Satterthwaite's approximation. The false discov-
ery rate and the mean effect sizes (Zr) were calculated in R (version 3.1.0).

Ethics statement

The study was authorized by Regione Lombardia (Decreto n° 2959, issued on April 5, 2012). The
study was conducted in private lands, and land owners gave us the permission to access their
farms. The eggs were collected and immediately placed in a plastic bag in a cool bag while in the
field. No approval by Animal Ethics Committee was required for the present experimental proto-
col. No specific review or approval was required for obtaining the permit of collecting the eggs.

Results

The sample consisted of a total of 24 eggs, from 5 nests belonging to 3 colonies. Three eggs
were infertile, 13 contained a male and 8 a female embryo. Egg mass was significantly larger in
eggs containing a female as compared to a male embryo (t = 2.28, df = 17, p = 0.036), while the
difference in body mass between embryos of either sex was marginally non-significant
(t = 2.10, df = 17, p = 0.051), with male embryos being heavier than females. Two eggs, one for
each sex and belonging to two nests, were excluded from all the analyses because their volatile
composition was inconsistent with the general pattern of composition of the eggs, perhaps due
to the embryo being dead at the time of collection. The 19 remaining eggs included in the anal-
yses were still representative of all the 5 sampled nests. We identified a total of 45 volatile com-
pounds (Fig 1), belonging to 7 classes, including: ketones (5 compounds: propan-2-one;

Fig 1. Representative chromatogram of volatile compounds emitted by the eggs. Numbers above peaks

indicate volatile compounds significantly different between sexes before false discovery rate adjustment (1:

pentadecane; 2: tetradecane; 3: (1R,3R,4S)-2,2,4-trimethyl bicyclo[2.2.1]heptan-3-ol; 4: formamide; 5: 5-methyl-

3-hexanol; 6: decanal; 7: formic acid; 8: 2-methylpropanoic acid; 9: 5-(dithiolan-3-yl)pentanoic acid; 10:

2-ethylhexanoic acid). Asterisk above peak indicates the volatile compound significantly different between sexes

after false discovery rate adjustment.

doi:10.1371/journal.pone.0165055.g001
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6-methyl-5-heptan-2-one; 2,3-hexandione; 5-methyl-2-hexanone; 1-phenylethanone); hydro-
carbons (3 compounds: decane; pentadecane; tetradecane); terpenes (7 compounds: 1-methyl-
4-prop-1-en-2-ylcyclohexene; 2,2,4-trimethyl-3-oxabicyclo[2.2.2]octane; 4,7,7-trimethylbicy-
clo[2.2.1]heptan-3-one; (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl)acetate; 4-methyl-1-propan-
2-ylcyclohex-3-en-1-ol; 1-methyl-4-prop-1-en-2-ylcyclohexan-1-ol; (1R,3R,4S)-2,2,4-tri-
methylbicyclo[2.2.1]heptan-3-ol); ammides (2 compounds: acetamide; formamide); alcohols
(12 compounds: propan-2-ol; ethanol; 2-methylpropan-1-ol; pent-1-en-3-ol; methanethiol;
hexan-3-ol; 3-methyl-1-butanol; butane-1,3-diol; hexan-2-ol; 6-ethyl-3-octanol; 5-methyl-
3-hexanol; phenol); aldehydes (6 compounds: hexanal; non-2-enal; heptanal; octanal; nonanal;
decanal); free fatty acids (10 compounds: 2-methylpropanoic acid; acetic acid; formic acid; pro-
panoic acid; 2-methylbutanoic acid; 2,2-dimethylpropanoic acid; butanoic acid; 5-(dithiolan-
3-yl) pentanoic acid; 2-ethylhexanoic acid; octanoic acid).

For 10 out of the 31 compounds included in the statistical analyses (see Methods), the effect
of sex from linear mixed models with nest as a random effect was found to be associated with
p < 0.05 to concentration of volatile compounds (Table 1). However, after false discovery rate
correction, only (1R,3R,4S)-2,2,4-trimethylbicyclo[2.2.1]heptan-3-ol was found to differ
between eggs carrying embryos of either sex (Table 1). In general, eggs with a female embryo
were found to release larger amounts of volatiles (Fig 2). Importantly, the effect size associated
to sex in these models was “large” [53] for as many as 8 compounds, while it was “intermedi-
ate” for 7 compounds. Hence, the effect of sex on odour composition was at least intermediate
for approximately 50% of the 31 compounds (Table 1). The mean effect size (Zr) was -0.3163
(95% confidence interval: -0.4066−-0.2260), implying that across all compounds the effect size
of sex was “intermediate” and that females released on average more volatiles than males as
shown by the fact that the 95% confidence interval did not encompass 0. For two compounds,
hexanal and butanoic acid, the effect of embryo mass on the concentration of volatiles was
associated to p < 0.05. However, none of these effects were significant after false discovery rate
adjustment. The effect sizes associated to body mass for these compounds were 0.644 and
0.547 respectively.

For 11 out of the 31 compounds analysed, the effect of nest was associated with p < 0.05 at
likely ratio test. Six of these tests were still significant after false discovery rate adjustment,
implying significant among-nests variation in emission of volatiles from the eggs.

The comparisons between eggshell halves where we tested for accumulation of environmen-
tal compounds showed that in no case the concentration of the focal compounds in the eggshell
halves that were placed in a nest in the cowsheds where barn swallows nest was significantly
larger than that recorded for eggshells that were kept in the lab (p� 0.05 in all paired t-tests)
(Table 2). The unsigned effect size were “large” in 11 cases, “intermediate” in 12 cases and
“small” in the remaining 6 cases. It should be noted, however, that the sign of the difference in
volatile concentration between the two conditions was inconsistent across compounds. In addi-
tion, the concentration of volatiles was found to be larger, on average, in the lab-stored as com-
pared to cowshed-stored eggshells (mean effect size (Zr): 0.2779; 95% confidence interval:
0.0967−0.4590). Moreover, the compounds for which a significant effect of nest on volatiles
concentration was detected were invariably found to be more concentrated in the lab-stored
compared to the cowshed-stored eggshells. These findings suggest that environment per se did
not markedly affect the analyses of among-nests variation in odour. In addition, we emphasize
that environmental effect on odour, if any, could not affect the outcome of the analyses of the
effect of sex, because nest was included as random effect in the models, and all clutches con-
tained both male and female embryos.
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Table 1. Linear mixed models of variation in the concentration of volatile compounds between barn swallow eggs containing embryos of either

sex.

Class Volatile Compound m f χ2 Effect F df p Effect size (r)

Ketones Propan-2-one 12 7 0.03 sex 0.27 1, 16.1 0.789 0.134

mass§ 3.31 1, 9 0.100

6-methyl-5-heptan-2-one 11 7 0 sex 0.02 1, 16 0.916 0.037

mass§ 0.61 1, 15 0.446

1-phenylethanone 11 7 0 sex 3.38 1, 16 0.164 -0.438

mass§ 0.01 1, 5.6 0.924

Hydrocarbons Pentadecane 11 7 3.02 sex 5.80 1, 13.3 0.119$ -0.533

mass§ 0.05 1, 14.7 0.832

Tetradecane 11 7 2.12 sex 5.37 1, 12.6 0.119$ -0.514

mass§ 0.15 1, 14.8 0.705

Terpenes 4,7,7-trimethylbicyclo[2.2.1] heptan-3-one 12 7 0.5 sex 0.02 1, 15.2 0.916 -0.038

mass§ 2.32 1, 15.7 0.148

(4,7,7-trimethyl-3-bicyclo [2.2.1]heptanyl) acetate 12 5 8.91$ sex 1.56 1, 11.2 0.369 -0.154

mass§ 0.12 1, 12.1 0.735

(1R,3R,4S)-2,2,4-trimethyl bicyclo [2.2.1]heptan-3-ol 11 7 9.68$ sex 18.12 1, 12.4 0.032$ -0.542

mass§ 0.07 1, 13.5 0.792

Ammides Acetamide 12 7 1.08 sex 3.88 1, 17 0.156 -0.455

mass§ 0.38 1, 16 0.546

Formamide 10 7 0 sex 8.78 1, 11.6 0.119$ -0.627

mass§ 0.04 1, 11.7 0.845

Alcohols Methanethiol 12 7 4.35$ sex 0.11 1, 13.9 0.895 -0.080

mass§ 0.45 1, 16 0.511

Hexan-3-ol 12 7 12.86$ sex 0.41 1, 13.2 0.721 0.063

mass§ 0.01 1, 14.1 0.920

3-methyl-1-butanol 11 7 3.42 sex 0.02 1, 12.7 0.916 -0.033

mass§ 1.42 1, 14.8 0.253

Butane-1,3-diol 12 7 0.06 sex 0.12 1, 15.2 0.895 -0.088

mass§ 0.28 1, 10.7 0.610

6-ethyl-3-octanol 12 6 3.39 sex 3.65 1, 12.5 0.164 -0.443

mass§ 4.49 1, 13.4 0.053

5-methyl-3-hexanol 12 7 14.31$ sex 5.67 1, 13.3 0.119$ -0.250

mass§ 0.00 1, 14.3 0.989

Phenol 11 7 5.05$ sex 2.18 1, 12.6 0.283 -0.320

mass§ 1.24 1, 15 0.283

Aldehydes Hexanal 11 6 2.65 sex 1.81 1, 10.9 0.336 0.353

mass 8.99 1, 13.5 0.010

Heptanal 11 6 4.76$ sex 1.46 1, 11.6 0.371 -0.274

mass§ 0.15 1, 13.9 0.707

Octanal 11 7 0.79 sex 0.01 1, 13.7 0.916 -0.028

mass§ 1.49 1, 14.5 0.242

Nonanal 10 7 2.99 sex 4.55 1, 11.5 0.150 -0.468

mass§ 2.38 1, 13.6 0.146

Decanal 11 7 12.12$ sex 6.13 1, 12.2 0.119$ -0.267

mass§ 1.29 1, 13.8 0.275

Free Fatty Acids 2-methylpropanoic acid 12 7 1.35 sex 0.03 1, 14.3 0.916 0.042

mass§ 0.11 1, 14.7 0.747

(Continued )
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Discussion

In the present study we showed, for the first time in any bird species in the wild, that odour
composition varies among sibling eggs depending on sex of the embryo, as well as among
clutches laid by different females. In fact, although only one out of the 31 volatile compounds
that we scrutinized was found to be significantly more concentrated in eggs carrying a female
after false discovery rate correction for multiple comparisons, a large proportion of the concen-
trations were found to be larger for female, the tests of sex differences were associated to “inter-
mediate” or “large” effect sizes [50] for ca. 50% of the compounds, and the mean effect size
significantly deviated from 0. This suggests that lack of statistical significance was due to Type
II statistical errors arising because, for ethical reasons, sample size was small, thereby reducing
the statistical power of the tests, and because of the false discovery rate adjustment of p-values.

The difference in odour composition among eggs containing embryos of either sex can be
explained by several non-mutually exclusive mechanisms. As suggested by the only study that
characterized the odour composition of bird eggs [26], the main source of sex-related differ-
ences in egg odour could be the differential deposition of maternal resources to the eggs of
either sex [54–56]. This mechanism may apply to barn swallows, where the deposition of
maternal antibodies in the eggs has been found to be associated with the sex of the embryo
[54]. However, no sex-dependent variation has been found in the concentration of carotenoids
[54] or androgens [57] in barn swallow eggs. An alternative mechanism may consist of general
differences in physiology between males and females that cause, as a side effect, sex-related var-
iation in odour composition. Related to general sex-dependent variation in physiology,

Table 1. (Continued)

Class Volatile Compound m f χ2 Effect F df p Effect size (r)

Acetic acid 12 7 0.01 sex 0.86 1, 15.1 0.521 -0.233

mass§ 0.18 1, 8.3 0.681

Formic acid 9 7 2.33 sex 8.97 1, 10.2 0.119$ -0.610

mass§ 1.38 1, 10.4 0.267

2-methylbutanoic acid 10 7 3.92$ sex 5.77 1, 11.4 0.119$ -0.421

mass§ 1.23 1, 11.9 0.289

2,2-dimethylpropanoic acid 12 7 10.96$ sex 4.30 1, 13.4 0.150 -0.289

mass§ 0.48 1, 14.6 0.498

Butanoic acid 12 7 0 sex 3.16 1, 16 0.172 -0.430

mass 5.97 1, 16 0.027

5-(dithiolan-3-yl) pentanoic acid 12 7 4.03$ sex 7.59 1, 13.9 0.119$ -0.565

mass§ 0.26 1, 16 0.616

2-ethylhexanoic acid 12 7 3.22 sex 5.99 1, 14.2 0.119$ -0.533

mass§ 0.07 1, 15.6 0.798

Octanoic acid 12 7 0 sex 3.57 1, 17 0.164 -0.440

mass§ 0.07 1, 16 0.793

m: number of males; f: number of females.

Sample size varies because of the exclusion of outliers.

The effect of the nest identity, included in all the models as a random factor, was computed by using likelihood ratio tests (χ2 values).

Boldface indicates tests associated with p < 0.05 after false discovery rate correction.
$ indicates test that were significant (p < 0.05) before false discovery rate correction.
§ indicates that embryo mass was removed from the model because its effect was associated with p� 0.05.

A positive sign of effect size means that the volatile compound concentration is higher in male as compared to female embryos.

doi:10.1371/journal.pone.0165055.t001
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Fig 2. Mean (± SE) percentage on total volatile organic compounds (% on total VOCs) in the two sexes (male:

dark grey; female: light grey). Volatile compounds are grouped according to their classes (a. ketones; b.

hydrocarbons; c. terpenes; d. ammides; e. alcohols; f. aldehydes; g. free fatty acids). Asterisks indicate significant

differences in the concentration of the volatile compounds between sexes. Double asterisks indicate that the volatile

compound significantly differed between sexes after false discovery rate adjustment.

doi:10.1371/journal.pone.0165055.g002
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differences in odour between males and females may also arise as a consequence of differences
in growth rate of embryos of either sex, which has been shown to occur in several eutherian
mammals [58–60] and, recently, also in birds [61]. Considerable sex differences in the level of
gene expression have been detected in birds from the beginning of embryo development [62–
64], even before the development of the uropygial gland [65], which is a major source of vola-
tiles, and the differentiation of the gonads that, in a small passerine bird (the zebra finch, Tae-
niopygia guttata) with an incubation period comparable to that of the barn swallow, starts at
6.5–7 days of incubation [61]. Male zebra finches, for example, start to grow at a higher rate
than females already 36 hours after the start of incubation, due to an overexpression of genes
such as the growth hormone receptor gene [61], implied in anabolic processes like lipid

Table 2. Paired t-test of the difference in the concentration of volatile compounds between eggshell halves placed in nests in the cowshed and

eggshells kept in the lab.

Class Volatile Compound Mean lab Mean nest t df p Effect size (r)

Ketones Propan-2-one 65.57 69.65 -0.96 3 0.675 -0.485

6-methyl-5-heptan-2-one 1.16 0.97 0.44 4 0.812 0.215

1-phenylethanone 0.09 0.11 -0.71 4 0.692 -0.335

Hydrocarbons Pentadecane 0.03 0.01 0.77 3 0.675 0.406

Tetradecane 0.19 0.15 1.46 4 0.675 0.590

Terpenes 4,7,7-trimethylbicyclo[2.2.1]heptan-3-one 0.13 0.28 -1.10 4 0.675 -0.482

(4,7,7-trimethyl-3-bicyclo [2.2.1]heptanyl) acetate 0.71 0.22 1.20 4 0.675 0.514

(1R,3R,4S)-2,2,4-trimethylbicyclo [2.2.1]heptan-3-ol 3.02 1.77 1.01 4 0.675 0.451

Ammides Acetamide 0.42 0.41 0.14 3 0.931 0.081

Formamide 0.26 0.17 1.46 3 0.675 0.645

Alcohols Methanethiol 0.04 0.09 -0.55 3 0.774 -0.303

Hexan-3-ol 0.52 0.13 1.07 3 0.675 0.526

3-methyl-1-butanol 0.00 0.02 -1.00 3 0.675 -0.500

Butane-1,3-diol 0.31 0.17 1.59 3 0.675 0.676

6-ethyl-3-octanol 0.89 0.87 0.03 3 0.971 0.017

5-methyl-3-hexanol 1.59 0.69 1.41 4 0.675 0.576

Phenol 1.11 0.15 1.75 3 0.675 0.711

Aldehydes Hexanal 0.51 0.28 0.96 3 0.675 0.485

Heptanal 0.20 0.52 -1.17 4 0.675 -0.505

Octanal 0.14 0.13 0.26 3 0.931 0.148

Nonanal 2.02 2.08 -0.13 4 0.931 -0.065

Decanal 0.11 0.08 0.73 3 0.692 0.388

Free Fatty Acids 2-methylpropanoic acid 1.06 1.00 0.18 4 0.931 0.090

Acetic acid 3.48 2.00 1.73 4 0.675 0.654

Formic acid 0.30 0.15 1.60 3 0.675 0.679

2-methylbutanoic acid 0.32 0.17 0.95 3 0.675 0.481

2,2-dimethylpropanoic acid 0.76 0.52 0.77 4 0.692 0.359

Butanoic acid 0.02 0.01 0.70 3 0.692 0.375

5-(dithiolan-3-yl)pentanoic acid 0.14 0.11 0.75 3 0.5692 0.397

2-ethylhexanoic acid 0.16 0.04 1.03 3 0.675 0.511

Octanoic acid 0.02 0.02 1.74 3 0.675 0.709

Degrees of freedom vary because of the exclusion of outliers.

A positive sign of effect size means that the volatile compound concentration was higher in the eggshell kept in the lab as compared to the eggshell placed

in the cowshed.

doi:10.1371/journal.pone.0165055.t002
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degradation, protein synthesis and muscle mass gaining [66], and the FBP1 gene, which is
responsible for the production of glucose or glycogen from non-carbohydrates [67]. It should
be noticed that, upon dissection, total egg mass was found to be larger for eggs carrying a
female. However, embryo mass (excluding yolk) showed a marginally non-significant trend in
the opposite direction, with males being heavier than females. This suggests that egg mass
reduction during incubation, which is commonly observed in birds, was larger in eggs carrying
a male embryo because male embryos have faster development compared to females, consis-
tently with previous observations on the zebra finch. In the context of the present study, this
finding suggests that, under the assumption that the volatile compounds that we measured
reflect embryonic production, the result of larger production of volatile compounds by female
eggs may be conservative because female embryos were smaller than males, on average.

Sex-differences in odour is a prerequisite condition for parental identification of embryo sex
via olfactory cues. Whether parents do in fact use such cues to discriminate between sexes
already before hatching, thereby modulating their behaviour, is matter of speculation. Indeed,
egg odour has been shown to potentially convey a broad spectrum of information, including
embryo growth rate and health [68]. Parents have also been shown to accrue information on
intra- and inter-specific brood parasitism via odours, suggesting that release of kin-dependent
or species-specific odours is a by-product of within- and among-species genetic differences
that parents exploit in order to reduce the costs of brood parasitism [14]. Here we showed that,
consistent with previous findings [26], parents can also acquire information on sex composi-
tion of their clutch in the pre-hatching period. Because in European barn swallow only females
incubate, they appear to have more opportunities to exploit any information on odour and
modulate their parental behaviour during the pre-hatching period in terms of, for example,
nest defence from predators and from egg ejection by other males [43,44], accordingly. How-
ever, males also spend considerable amount of time at the nest, for example during the night
(personal observation), and may therefore also have the opportunity to acquire and use infor-
mation on the embryo sex composition of their brood. Incubation behaviour has been demon-
strated to have a strong impact on parent reproductive success and future fitness [69,70].
During the incubation period parents have to balance the allocation of resources to self-main-
tenance against time and energy requirements of incubation [71,72]. Several recent studies
have demonstrated diverse effects of incubation on post-natal offspring phenotype. For exam-
ple, DuRant and co-workers [73] experimentally manipulated the incubation temperature of
wood ducks (Aix sponsa) and found that small differences in incubation temperature affect
nestling survival, growth rate, body condition and stress-induced corticosterone levels. In the
blue tit (Cyanistes caeruleus), it has also been demonstrated that incubation temperature
affects, besides nestling morphology, nestling metabolic rate [74]. Because embryos of either
sex may inherently differ in pre-natal growth trajectories ([61] and present study) and might
also differ in susceptibility to parental incubation behaviour, pre-natal identification of embryo
sex may allow parents to optimize incubation according to clutch sex composition and/or sex
of individual embryos.

There are good reasons to speculate that parents should use sex-specific chemical informa-
tion before hatching in order to tune their parental behaviour. Sex allocation theory predicts
differential parental investment in relation to the reproductive value of the offspring
[30,75,76]. The expected fitness returns from male and female offspring can vary according to
a number of factors that range from paternal/maternal genetic and/or phenotypic quality [77–
80], to ecological conditions [81–83] and population sex ratio [84,85]. In the barn swallow, pre-
vious studies have shown that differential parental allocation occurs depending on offspring
sex [86,87]. It has also been demonstrated that nestling vocalizations [37] and gape colouration
[38] varies between the sexes. Recent studies have also revealed significant differences in
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ventral colour between nestling of either sex [88,89] and differential variation in parental care
allocation in relation to offspring plumage colouration among males as compared to female
nestlings [90]. The existence of sex-related variation in offspring post-hatching phenotype and
of differential allocation to either sex by parents suggests that sex-dependent egg odour might
pave the way to pre-hatching differential allocation of care by parents. Admittedly, whether
parents do in fact use this information to adaptively modulate their behaviour remains to be
elucidated, because neither the present study nor the study by Webster et al. [26], that was car-
ried out in the lab on artificially incubated eggs, have tested for an effect of sex-dependent
odours on parental behaviour. We also suspect that any such experiment will be technically
hardly feasible, owing to the difficulty of manipulating the concentration of volatile com-
pounds within the natural range of variation in the wild. An alternative possibility could be to
experimentally produce unisexual clutches by swapping eggs between nests, though this
approach would likely require a posteriori identification of unisexual broods because non-inva-
sively sexing the embryo of developing eggs at present is not technically feasible, particularly at
early developmental stages.

In designing this study, we speculated that much variation in egg odour could be generated
by variation in nesting micro-habitat, an hypothesis that has not been tested in the past because
previous studies kept the eggs under artificial incubation conditions. The effects of environ-
mental odours are particularly likely to occur for barn swallows because they mostly breed in
cowsheds often with limited air circulation and presence of cows and manure. Comparison
between eggshells that were either kept in plastic bags or left in an unoccupied nest and
exposed to cowshed odours did not reveal any significant difference. Effect sizes of the differ-
ences between eggshells kept in the lab or in a cowshed were large but did not reveal a consis-
tent tendency towards cowshed eggshells releasing more volatiles. In addition, there was no
evidence that the compounds that differed the most among nests were those that were also
more abundantly released by cowshed as compared to lab-stored eggshells. These results sug-
gest that microhabitat was not a major confound, and that among-nests variation reflects the
genuine phenotypic and/or genetic influences of parentage on egg odour. Genetic variation in
odour profiles at family level has been consistently demonstrated in vertebrates and has been
attributed in some studies to polymorphism at the major histocompatibility complex (MHC)
[91,92]. The observed consistency in odour within nest may be part of mechanisms of kin rec-
ognition which are established early in life. Kin recognition, in turn, may function to reduce
the risk of inbreeding. However, we speculate that kin discrimination is unlikely to play a
major role in mate choice in our model species because natal dispersal is high and female
biased [44,93], whereas breeding dispersal is very low, implying that both mating between sib-
lings and between parents and offspring is unlikely. Indeed, siblings of different sex are very
seldom found breeding in the same colony and the few, mostly male, offspring that are
recruited in their natal colony tend to be reproductively isolated from their parents because
older individuals breed earlier than 1-year old recruits [43,44].

In conclusion, the present study is the first to show sex-related odour differences in the eggs
in any vertebrate species in the wild. While this observation implies that parents have a cue to
discriminate between eggs carrying embryos of either sex, whether parents do indeed use it and
modulate their behaviour accordingly remains to be elucidated. Finally, variation in odour
composition among nests, that apparently did not depend on nesting micro-habitat, indicates
that the prerequisite conditions for kin recognition based on olfactory cues exist in our model
species.
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25. Golüke S, Dörrenberg S, Krause ET, Caspers BA. Female Zebra Finches smell their eggs. PLoS One.

2016; 11: e0155513. doi: 10.1371/journal.pone.0155513 PMID: 27192061

26. Webster B, Hayes W, Pike TW. Avian egg odour encodes information on embryo sex, fertility and

development. PLoS One. 2015; 10: e0116345. doi: 10.1371/journal.pone.0116345 PMID: 25629413

27. Fisher RA. The genetical theory of natural selection. Oxford University Press; 1930.

28. Trivers R, Willard DE. Natural selection of parental ability to vary the sex ratio of offspring. Science.

1973; 179: 90–92. doi: 10.1126/science.179.4068.90 PMID: 4682135

29. Charnov EL. The theory of sex allocation. Princeton University Press; 1982

30. West SA. Sex Allocation. Princeton: Princeton University Press; 2009

31. Strehl CE, White J. Effects of superabundant food on breeding success and behavior of the red-winged

blackbird. Oecologia. 1986; 70: 178–186. doi: 10.1007/BF00379237

32. Dijkstra C, Daan S, Pen I. Fledgling sex ratios in relation to brood size in size-dimorphic altricial birds.

Behav Ecol. 1998; 9: 287–296. doi: 10.1093/beheco/9.3.287

33. Mainwaring MC, Dickens M, Hartley IR. Sexual dimorphism and offspring growth: smaller female Blue

Tit nestlings develop relatively larger gapes. J Ornithol. 2012; 153: 1011–1016. doi: 10.1007/s10336-

012-0828-0

34. Roulin A, Richner H, Ducrest AL. Genetic, environmental, and condition-dependent effects on female

and male ornamentation in the barn owl Tyto alba. Evolution. 1998; 52: 1451–1460. doi: 10.2307/

2411314

35. Johnsen A, Delhey K, Andersson S, Kempenaers B. Plumage colour in nestling blue tits: sexual dichro-

matism, condition dependence and genetic effects. Proc R Soc Lond B. 2003; 270: 1263–1270. doi:

10.1098/rspb.2003.2375

36. Monk DS, Koenig WD, Koenig WR. Individual, brood, and sex variation in begging calls of western

bluebirds. Wilson Bull. 1997; 109: 328–332.

37. Saino N, Galeotti P, Sacchi R, Boncoraglio G, Martinelli R, Møller AP. Sex differences in begging

vocalizations of nestling barn swallows, Hirundo rustica. Anim Behav. 2003; 66: 1003–1010. doi: 10.

1006/anbe.2003.2295

Egg Odour and Embryo Sex in Swallows

PLOS ONE | DOI:10.1371/journal.pone.0165055 November 16, 2016 14 / 17

http://dx.doi.org/10.1007/s00265-014-1791-y
http://dx.doi.org/10.1111/jeb.12377
http://www.ncbi.nlm.nih.gov/pubmed/24725170
http://dx.doi.org/10.1242/jeb.070250
http://dx.doi.org/10.1242/jeb.070250
http://www.ncbi.nlm.nih.gov/pubmed/23720797
http://dx.doi.org/10.1242/jeb.015412
http://www.ncbi.nlm.nih.gov/pubmed/18490385
http://dx.doi.org/10.1242/jeb.00610
http://www.ncbi.nlm.nih.gov/pubmed/12966063
http://dx.doi.org/10.1111/j.1365-2656.2011.01940.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01940.x
http://www.ncbi.nlm.nih.gov/pubmed/22220811
http://www.ncbi.nlm.nih.gov/pubmed/344824
http://dx.doi.org/10.1093/beheco/arr122
http://dx.doi.org/10.1093/beheco/arr122
http://dx.doi.org/10.1007/BF00369365
http://www.ncbi.nlm.nih.gov/pubmed/370614
http://dx.doi.org/10.1016/j.beproc.2008.10.006
http://www.ncbi.nlm.nih.gov/pubmed/19013507
http://dx.doi.org/10.1016/0305-1978(81)90022-3
http://dx.doi.org/10.1016/0305-1978(81)90022-3
http://dx.doi.org/10.1098/rsbl.2012.0124
http://www.ncbi.nlm.nih.gov/pubmed/22399785
http://dx.doi.org/10.1371/journal.pone.0155513
http://www.ncbi.nlm.nih.gov/pubmed/27192061
http://dx.doi.org/10.1371/journal.pone.0116345
http://www.ncbi.nlm.nih.gov/pubmed/25629413
http://dx.doi.org/10.1126/science.179.4068.90
http://www.ncbi.nlm.nih.gov/pubmed/4682135
http://dx.doi.org/10.1007/BF00379237
http://dx.doi.org/10.1093/beheco/9.3.287
http://dx.doi.org/10.1007/s10336-012-0828-0
http://dx.doi.org/10.1007/s10336-012-0828-0
http://dx.doi.org/10.2307/2411314
http://dx.doi.org/10.2307/2411314
http://dx.doi.org/10.1098/rspb.2003.2375
http://dx.doi.org/10.1006/anbe.2003.2295
http://dx.doi.org/10.1006/anbe.2003.2295


38. Saino N, De Ayala RM, Boncoraglio G, Martinelli R. Sex difference in mouth coloration and begging

calls of barn swallow nestlings. Anim Behav. 2008; 75: 1375–1382. doi: 10.1016/j.anbehav.2007.09.

011

39. Paganelli CV. The physics of gas exchange across the avian eggshell. Am Zool. 1980; 20: 329–338.

40. Vleck CM, Bucher TL. Energy metabolism, gas exchange, and ventilation. In: Stark JM, Ricklefs RE

editors. Avian growth and development. Evolution within the precocial-altricial spectrum. Oxford Uni-

versity Press; 1998. pp. 89–116

41. Spurr EB Developing a long-life toxic bait and lures for mustelids. Science for Conservation. 1999;

127A: 1–24.

42. Cramp S. The Complete Birds of the Western Palearctic on CD-ROM. Oxford University Press,

Oxford; 1998.

43. Møller AP. Sexual Selection and the Barn Swallow. Oxford University Press; 1994.

44. Turner A. The Barn Swallow. T & AD Poyser, London; 2006.

45. Saino N, Martinelli R, Romano M. Ecological and phenological covariates of offspring sex ratio in barn

swallows. Evol Ecol. 2008; 22: 659–674. doi: 10.1007/s10682-007-9189-1

46. Manzo A, Panseri S, Vagge I, Giorgi A. Volatile fingerprint of Italian populations of orchids using solid

phase microextraction and gas chromatography coupled with mass spectrometry. Molecules. 2014;

19: 7913–7936. doi: 10.3390/molecules19067913 PMID: 24962394

47. Panseri S, Soncin S, Chiesa LM, Biondi PA. A headspace solid-phase microextraction gas-chro-

matographic mass-spectrometric method (HS-SPMEGC/MS) to quantify hexanal in butter during stor-

age as marker of lipid oxidation. Food Chem. 2011; 127: 886–889. doi: 10.1016/j.foodchem.2010.12.

150 PMID: 23140750

48. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to

multiple testing. J R Statis Soc B. 1995; 57: 289–300

49. Garamszegi LZ. Comparing effect sizes across variables: generalization without the need for Bonfer-

roni correction. Behav Ecol. 2006; 17: 682–687. doi: 10.1093/beheco/ark005

50. Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical significance: a practical guide

for biologists. Biol Rev. 2007; 82: 591–605. doi: 10.1111/j.1469-185X.2007.00027.x PMID: 17944619

51. Rosenberg MS, Adams DC, Gurevitch J. MetaWin: statistical software for meta-analysis. Sunderland,

Massachusetts: Sinauer Associates, Inc; 2000.

52. Viechtbauer W. Conducting meta-analyses in R with the metafor Package. J Stat Softw. 2010; 36: 1–

48. doi: 10.18637/jss.v036.i03

53. Cohen J. Statistical power analysis for the behavioural sciences. NY: Academy Press: New York,

1988.

54. Saino N, Romano M, Ferrari RP, Martinelli R, Møller AP. Maternal antibodies but not carotenoids in

barn swallow eggs covary with embryo sex. J Evolution Biol. 2003; 16: 516–522. doi: 10.1046/j.1420-

9101.2003.00534.x

55. Gilbert L, Rutstein AN, Hazon N, Graves JA. Sex-biased investment in yolk androgens depends on

female quality and laying order in zebra finches (Taeniopygia guttata). Naturwissenschaften. 2005;

92: 178–181. doi: 10.1007/s00114-004-0603-z PMID: 15668780

56. Badyaev AV, Seaman DA, Navara KJ, Hill GE, Mendonca MT. Evolution of sex-biased maternal

effects in birds: III. Adjustment of ovulation order can enable sex-specific allocation of hormones, carot-

enoids, and vitamins. J Evol Biol. 2006; 19: 1044–1057. doi: 10.1111/j.1420-9101.2006.01106.x

PMID: 16780506

57. Gil D, Ninni P, Lacroix A, De Lope F, Tirard C, Marzal A, et al. Yolk androgens in the barn swallow (Hir-

undo rustica): a test of some adaptive hypotheses. J Evol Biol. 2006; 19: 123–131. doi: 10.1111/j.

1420-9101.2005.00981.x PMID: 16405584

58. Bernardi ML, Delouis C. Sex-related differences in the developmental rate of in-vitro matured/in-vitro

fertilized ovine embryos. Hum Reprod. 1996; 11: 621–626. doi: 10.1093/humrep/11.3.621 PMID:

8671280

59. Peippo J, Bredbacka P. Sex-related growth rate differences in mouse preimplantation embryos in vivo

and in vitro. Mol Reprod Dev. 1995; 40: 56–61. doi: 10.1002/mrd.1080400108 PMID: 7702870
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