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Abstract

Purpose

To identify the impact of reconstruction algorithms on CT radiomic features of pulmonary

tumors and to reveal and compare the intra- and inter-reader and inter-reconstruction algo-

rithm variability of each feature.

Methods

Forty-two patients (M:F = 19:23; mean age, 60.43±10.56 years) with 42 pulmonary tumors

(22.56±8.51mm) underwent contrast-enhanced CT scans, which were reconstructed with

filtered back projection and commercial iterative reconstruction algorithm (level 3 and 5).

Two readers independently segmented the whole tumor volume. Fifteen radiomic features

were extracted and compared among reconstruction algorithms. Intra- and inter-reader var-

iability and inter-reconstruction algorithm variability were calculated using coefficients of

variation (CVs) and then compared.

Results

Among the 15 features, 5 first-order tumor intensity features and 4 gray level co-occurrence

matrix (GLCM)-based features showed significant differences (p<0.05) among reconstruc-

tion algorithms. As for the variability, effective diameter, sphericity, entropy, and GLCM

entropy were the most robust features (CV�5%). Inter-reader variability was larger than

intra-reader or inter-reconstruction algorithm variability in 9 features. However, for entropy,

homogeneity, and 4 GLCM-based features, inter-reconstruction algorithm variability was

significantly greater than inter-reader variability (p<0.013).
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Conclusions

Most of the radiomic features were significantly affected by the reconstruction algorithms.

Inter-reconstruction algorithm variability was greater than inter-reader variability for

entropy, homogeneity, and GLCM-based features.

Introduction

Radiomics is the process of extracting quantitative imaging features, including the intra-
tumoral heterogeneity, with spatial distribution of pixel values [1]. This method has been inves-
tigated in the field of radiology and radiation oncology in various tumors, such as lung cancer,
breast cancer, and colorectal cancer. In lung cancer patients, it has been reported that the radio-
mic features are useful for predicting treatment response [2, 3] and patient survival [4–7].

Assessing the measurement variability is an essential issue for the quantitative data (includ-
ing radiomic features) as diagnosis and treatment are often guided on the assumption that
computed tomographic (CT) measurements are essentially precise and that any measured
change reflects a true change in size [8]. However, measured values may vary substantially
according to patient factors, image acquisition factors, and radiologist factors [8]. Therefore,
identification of the range of variability and the affecting factors are of utmost importance.

Recently, a number of studies investigated the inter-reader and inter-scan variability of
radiomic features for the feature selection to reduce dimensionality [4, 9] and focused on the
influence of scanning factors (reconstruction kernel and slice thickness) and CT scanners on
the measurement variability [10, 11]. In addition, Solomon et al. [12] reported the impact of
radiation dose settings and reconstruction algorithms on radiomic feature values with lung
nodules of unknown pathology from four patients. However, to the best of our knowledge,
analysis of the impact of reconstruction algorithms on radiomic features for oncology patients,
and the comparison of inter-reconstruction algorithm variability with the inter-reader variabil-
ity, have not been performed to date.

Therefore, the aim of the present study was to identify the impact of reconstruction algo-
rithms on CT radiomic features of pulmonary tumors and to reveal the intra- and inter-reader
and inter-reconstruction algorithm variability of each feature. We also compared the variability
degree, pairwise, to demonstrate the most influential variability factor for the radiomic features.

Materials and Methods

This retrospective study was approved by the Institutional ReviewBoard of Seoul National
University Hospital (IRB No. 1512-016-726) with waivers of informed consent from involved
patients as the data were analyzed retrospectively and anonymously.

Study population

We retrospectively identified 47 oncology patients with pulmonary nodules or masses who
underwent contrast-enhanced chest CT on a single CT system (Somatom Definition; Siemens
Medical Solutions, Forchheim, Germany) for their clinical indications (i.e., routine follow-up)
from September 2013 to October 2013. Among the 47 patients, five were excluded due to the
following reasons: (a) patients without a measurable lesion (n = 4) and (b) a patient with
ground-glass nodule (n = 1). For the patients with multiple lesions, we chose a dominant mea-
surable lung lesion per patient. Therefore, 42 patients (M:F = 19:23; mean age, 60.43±10.56
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years; range, 33–81 years) with 42 lesions (mean size, 22.6±8.5 mm; range, 10.0–41.7 mm)
were included in our study.

Among the 42 tumors, there were 8 lung cancers, 5 colon cancers, 5 breast cancers, 4 renal
cell carcinomas, 3 rectal cancers, 2 ampulla of Vater cancers, 2 nasopharyngeal cancers, 2 ovar-
ian cancers, and 2 salivary gland cancers. The rest were adenoid cystic carcinoma, cholangio-
carcinoma, epithelioid hemangioendothelioma, floor of mouth cancer, gallbladder cancer,
hepatocellular carcinoma, melanoma, pancreatic cancer, and retroperitoneal liposarcoma. All
patients underwent, or were undergoing, chemotherapy.

CT acquisition

All CT examinations were performed using a 64-detector row Definition scanner at full inspi-
ration state. Detailed scanning parameters were as follows: 0.6×64 mm detector collimation,
120 kVp, 150 quality-reference mAs, 0.5 sec gantry rotation time, pitch of 1, 512 x 512 matrix,
1.0 mm reconstruction increment and section thickness of 1.0 mm. The image element size
(voxel dimension) was 0.68×0.68×1.00 mm. A total of 70–90 mL of 370 mgI/mL of the non-
ionic contrast material, iopromide (Ultravist 370; Schering, Berlin, Germany), was injected at a
rate of 2.3–3.0 mL/sec using a power injector (Stellent Dual; MEDRAD Inc., Warrendale, PA,
USA). The CT scans were initiated 60 seconds after the start of the contrast administration.
Half-dose images were created using projection data from a single tube of the dual source scans
to simulate a situation that requires noise-reducing iterative reconstruction algorithm [13].
Then, the images were reconstructedwith filtered back projection (FBP; B50f kernel) and Sino-
gram Affirmed Iterative Reconstruction (SAFIRE; Siemens Healthcare, Forchheim, Germany;
corresponding I50f kernel) at noise reduction strength of level 3 (S3) and 5 (S5), respectively.

For radiation dose assessment, the volume CT dose index (CTDIvol) and dose-length prod-
uct (DLP) for half-dose images were obtained. Estimated effective dose was also calculated
from the DLP with conversion factor of 0.0145 from the International Commission on Radio-
logical Protection (ICRP) publication 103 recommendations [14].

Radiomic feature extraction

Nodule segmentation and analysis were performed by one radiologist (H.K. with 6 years of
experience in chest CT) and one CT technician (M.L. with 5 years of research experience in
chest CT), independently. One of the readers (H.K.) conducted the overall image analysis twice
at an interval of 4 weeks to calculate the intra-reader variability.

Digital imaging and communications in medicine (DICOM) files were transferred from the
picture archiving and communication system (PACS) to a personal computer and then loaded
to an in-house software program (Medical Imaging Solution for Segmentation and Texture
Analysis) [5, 15–17] (Fig 1). This in-house software program was implemented using dedicated
C++ language with Microsoft Foundation Classes (Microsoft, Redmond, WA) [5, 15–17]. The
tumor boundarywas segmented manually on every slice of FBP images to include the entire
tumor volume and was saved as a region-of-interest (ROI) file. The ROI file for each case was
then copied-and-pasted to the other images reconstructedwith S3 and S5. Potential influence
of iterative reconstruction algorithm on manual nodule margin delineation was not considered
as the contrast between solid lung nodule and background lung parenchyma is intrinsically
very high on CT. Further manual editing of ROIs on the images with S3 and S5 was not per-
formed. First-order tumor intensity-based features (mean, standard deviation [SD], skewness,
kurtosis, entropy, and homogeneity), size/shape features (volume, effective diameter [ED], sur-
face area [SA], sphericity, and discrete compactness [DC]) and second-order features calcu-
lated from the gray level co-occurrencematrix (GLCM) (moments, inverse difference moment
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[IDM], contrast, and entropy) were automatically obtained at each reconstruction algorithm.
In total, we acquired nine datasets of radiomic feature values from three reconstruction algo-
rithms and two readers.

Statistical analysis

To compare the radiomic feature values among reconstruction algorithms (FBP, S3, and S5),
we conducted an analysis of variance (ANOVA) or the Friedman test, as appropriate, after the
Shapiro-Wilk test to determine the normality of variables. Subsequent pairwise post-hoc
Tukey test or Wilcoxon signed rank test was performed. Analysis was carried out separately

Fig 1. A pulmonary mass (nasopharyngeal carcinoma metastasis) in a 59-year-old male. CT images were

reconstructed with (A) filtered back projection and Sinogram Affirmed Iterative Reconstruction (B) level 3 and (C) level 5. (D)

Tumor was segmented manually and radiomic features were automatically calculated using in-house software.

doi:10.1371/journal.pone.0164924.g001
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with reader 1 and 2 data as there were no significant interactions between the reconstruction
algorithm and the reader.

The degree of intra- and inter-reader variability and inter-reconstruction algorithm variabil-
ity was analyzed using coefficients of variation (CVs). CV was calculated as SD divided by the
mean. CVs of intra- and inter-reader variability were calculated based on FBP images. CVs of
inter-reconstruction algorithm variability were calculated pairwise (FBP and S3; FBP and S5;
S3 and S5) using the data of reader 1. As the exact same ROIs containing the entire tumor vol-
ume were applied to the three reconstruction algorithms, the inter-reconstruction algorithm
variability consisted solely of the variation due to the change in reconstruction algorithms
without the interference of intra- or inter-reader variability. Thereafter, CVs were categorized
into four groups; very small (CV�5%), small (5%<CV�10%), intermediate (10%<CV�20%),
and large (CV>20%) range of variation [18]. Then, CVs were compared between intra-reader
variability and inter-reader variability and between inter-reader variability and inter-recon-
struction algorithm variability. CV comparisons were also performed between each pair of
inter-reconstruction algorithm variability (FBP and S3 vs. FBP and S5; FBP and S3 vs. S3 and
S5; FBP and S5 vs. S3 and S5) to investigate the most influential reconstruction algorithm
switch for radiomic feature extraction.

All statistical analyses were performedusing SPSS 19.0 (IBM SPSS Statistics, Armonk, NY). A
P value of less than 0.05 was indicative of a significant difference and a Bonferroni correctionwas
applied to the multiple comparisons. All data of radiomic features are available in S1 Dataset.

Results

Effect of reconstruction algorithm on radiomic features

Radiomic feature values were compared among FBP, S3 and S5 with subsequent post-hoc anal-
ysis. Among the 15 features, nine features showed significant differences (p<0.05) among
reconstruction algorithms. However, homogeneity and size/shape-based features (volume, ED,
SA, sphericity, and DC) did not show significant differences (p>0.05) among reconstruction
algorithms. On post-hoc analysis, seven out of nine features demonstrated significant differ-
ences according to the level of SAFIRE algorithm (level 3 vs. level 5; p<0.001). The results were
concordant between the two readers (Tables 1 and 2).

Comparison of variability using CV

As for the variability of radiomic features (which is attributable to either inter-reader or inter-
reconstruction algorithm variation), ED, sphericity, entropy, and GLCM entropy exhibited a
very small variation (CV�5%). SA, volume, and DC showed a small variation (5%<CV�10%)
and homogeneity and SD showed intermediate variability (10%<CV�20%). Other features of
GLCM moments, GLCM contrast, GLCM IDM, kurtosis, skewness, and mean demonstrated a
wide range of variation (CV>20%). Detailed data are displayed in Table 3.

Inter-reader variability of radiomic features was larger than intra-reader variability except
for that of GLCM IDM, although the statistical significance between inter- and intra-reader
variability was found only for skewness and kurtosis (p<0.001) (S1 Table). Inter-reader vari-
ability was also larger than inter-reconstruction algorithm variability for nine out of 15 fea-
tures. However, for entropy, homogeneity, GLCM moments, GLCM IDM, GLCM contrast,
and GLCM entropy, inter-reconstruction algorithm variability was significantly greater than
inter-reader variability (p<0.013). Inter-reconstruction algorithm variability for the first-order
tumor intensity features and GLCM-based features was largest between FBP and S5 (p<0.017),
except for the mean (FBP and S3) (S2 Table).
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Radiation dose

Mean CTDIvol and DLP of the CT scans were 5.21±1.69 mGy (range, 1.06–10.14 mGy) and
194.68±63.84 mGy�cm (range, 46.00–351.50 mGy�cm), respectively. Mean effective dose was
2.82±0.93 mSv (range, 0.67–5.10 mSv).

Discussion

In this study, we have identified that the impact of a reconstruction algorithm was significant
on most of the first-order tumor intensity features (5/6) and second-order GLCM-based fea-
tures (4/4). Homogeneity and size/shape features were not influenced by the reconstruction
algorithm in both readers. With regard to the measurement variability, ED, sphericity, entropy,
and GLCM entropy were the most robust features (CV�5%). Inter-reader variability was the
largest contributing variation for first-order features (9/11). However, for entropy, homogene-
ity and four other GLCM-based features, inter-reconstruction algorithm variability was signifi-
cantly larger than inter-reader variability. For the pairwise inter-reconstruction algorithm

Table 1. Comparison of radiomic feature values between FBP and iterative reconstruction algorithm (Reader 1).

Median ± SD (range) Pairwise comparisona

Feature FBP S3 S5 Comparison among

FBP, S3 and S5a
FBP vs.

S3

FBP vs.

S5

S3 vs.

S5

Mean (HU) 28.26 ± 45.34 (-168.48,

102.33)

29.85 ± 45.52 (-169.06,

103.33)

28.55 ± 45.80 (-171.17,

102.74)

<0.001 <0.001 0.621 <0.001

SD (HU) 110.36 ± 41.90

(54.80 ± 229.67)

97.35 ± 44.06 (42.97,

229.42)

90.42 ± 46.55 (32.40,

227.00)

<0.001 <0.001 <0.001 <0.001

Skewness -1.52 ± 0.80 (-2.75, 0.13) -2.11 ± 0.94 (-3.46, 0.13) -2.55 ± 1.05 (-4.15, 0.15) <0.001 0.069 0.000 0.055

Kurtosis 4.67 ± 4.11 (0.17, 14.42) 7.10 ± 5.75 (0.26, 21.37) 12.25 ± 7.79 (0.80, 29.06 <0.001 <0.001 <0.001 <0.001

Entropy 5.81 ± 0.25 (5.41, 6.58) 5.63 ± 0.27 (5.17, 6.53) 5.44 ± 0.31 (4.88, 6.48) <0.001 <0.001 <0.001 <0.001

Homogeneity 0.033 ± 0.005 (0.024,

0.042)

0.035 ± 0.007 (0.020,

0.048)

0.037 ± 0.011 (0.014,

0.060)

0.113

Volume

(mm3)

2990.02 ± 5244.62

(208.88, 23351.47)

2990.02 ± 5244.62

(208.88, 23351.47)

2990.02 ± 5244.62

(208.88, 23351.47)

N/Ab

ED (mm) 30.84 ± 18.32 (8.15,

86.22)

30.84 ± 18.32 (8.15,

86.22)

30.84 ± 18.32 (8.15,

86.22)

N/Ab

SA (mm2) 1418.49 ± 2276. 32

(164.02, 12611.04)

1418.49 ± 2276. 32

(164.02, 12611.04)

1418.49 ± 2276. 32

(164.02, 12611.04)

N/Ab

Sphericity 0.84 ± 0.13 (0.33, 0.97) 0.84 ± 0.13 (0.33, 0.97) 0.84 ± 0.13 (0.33, 0.97) N/Ab

DC 0.80 ± 0.17 (0.23, 1.00) 0.80 ± 0.17 (0.23, 1.00) 0.80 ± 0.17 (0.23, 1.00) N/Ab

GLCM

moments

1.74 ± 0.25 (1.20, 2.10) 1.50 ± 0.31 (0.97, 2.06) 1.20 ± 0.34 (0.72, 2.11) <0.001 0.005 <0.001 <0.001

GLCM IDM 0.015 ± 0.004 (0.007,

0.024)

0.021 ± 0.005 (0.008,

0.033)

0.033 ± 0.009 (0.014,

0.051)

<0.001 <0.001 <0.001 <0.001

GLCM

contrast

15062.98 ± 8327.51

(4452.02, 40548.48)

12432.71 ± 8286.55

(2528.05, 38082.93)

10550.86 ± 8051.43

(1360.77, 35679.29)

<0.001 <0.001 <0.001 <0.001

GLCM

entropy

4.41 ± 0.34 (3.40, 5.06) 4.32 ± 0.30 (3.40, 4.88) 4.18 ± 0.26 (3.39, 4.64) 0.009 0.454 0.006 0.140

DC, discrete compactness; ED, effective diameter; FBP, filtered back projection; GLCM, gray level co-occurrence matrix; HU, Hounsfield unit; IDM, inverse

difference moment; N/A, not available; SA, surface area; SD, standard deviation; S3, Sinogram Affirmed Iterative Reconstruction level 3; S5, Sinogram

Affirmed Iterative Reconstruction level 5
a Data are p values for each comparison.
b P value was not available from the Friedman test as the feature values were exactly same in all three groups.

doi:10.1371/journal.pone.0164924.t001
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variability comparisons, variation between FBP and S5 was largest for the first-order tumor
intensity features (5/6) and GLCM-based features (4/4).

Recently, Solomon et al. [12] reported similar results about the radiation dose settings and
reconstruction algorithms significantly affecting the radiomic feature values of liver lesions,
lung nodules, and kidney stones in 20 patients. In that study, adaptive statistical iterative recon-
struction (ASIR) had a significant effect on one of the features (SD) and model-based iterative
reconstruction (MBIR) had a significant effect on 11 quantitative features (volume, sphericity,
attenuation, background noise, contrast-to-noise ratio, in-plane blur, axial blur, SD, skewness,
GLCM contrast, and GLCM IDM) for lung nodules. Excluding the image quality metrics, five
first-order based features and two GLCM-based features were affected by MBIR. However, Sol-
omon et al. [12] dealt with only nine lung nodules from four patients for whom the final diag-
noses were not disclosed and the intra- and inter-reader variability in their measurements were
not analyzed. Comprehensive investigation into the inherent variability of measurement
(including the radiologist factor) is critical given that the major contributing factor, which
might be either the radiologist factor or image acquisition factor, determines the total variation
(regardless of other minor factors).

Table 2. Comparison of radiomic feature values between FBP and iterative reconstruction algorithm (Reader 2).

Median ± SD (range) Pairwise comparisona

Feature FBP S3 S5 Comparison among

FBP, S3, and S5a
FBP vs.

S3

FBP vs.

S5

S3 vs.

S5

Mean (HU) 35.05 ± 38.55 (-137.85,

104.72)

37.58 ± 38.67 (-137.77,

105.38)

36.05 ± 38.88 (-139.66,

104.53)

<0.001 <0.001 0.420 <0.001

SD (HU) 91.71 ± 32.94 (56.73,

224.60)

80.52 ± 34.57 (45.57,

224.31)

72.10 ± 36.53 (35.55,

220.94)

<0.001 <0.001 <0.001 <0.001

Skewness -1.28 ± 1.01 (-4.34, 1.04) -1.48 ± 1.11 (-4.82, 0.19) -2.08 ± 1.37 (-5.32, 1.22) 0.004 0.193 0.003 0.228

Kurtosis 3.12 ± 6.13 (-0.24, 27.35) 5.20 ± 7.68 (-0.27, 31.92) 8.23 ± 9.79 (-0.31, 37.48) <0.001 <0.001 <0.001 <0.001

Entropy 5.74 ± 0.24 (5.43, 6.47) 5.57 ± 0.25 (5.20, 6.41) 5.36 ± 0.29 (4.92, 6.35) <0.001 <0.001 <0.001 <0.001

Homogeneity 0.033 ± 0.005 (0.023,

0.042)

0.035 ± 0.007 (0.019,

0.048)

0.038 ± 0.012 (0.014,

0.059)

0.089

Volume

(mm3)

3223.20 ± 5262.79

(207.01, 25082.82)

3223.20 ± 5262.79

(207.01, 25082.82)

3223.20 ± 5262.79

(207.01, 25082.82)

N/Ab

ED (mm) 32.03 ± 18.40 (8.12,

89.35)

32.03 ± 18.40 (8.12,

89.35)

32.03 ± 18.40 (8.12,

89.35)

N/Ab

SA (mm2) 1245.36 ± 1968.70

(149.54, 10062.38)

1245.36 ± 1968.70

(149.54, 10062.38)

1245.36 ± 1968.70

(149.54, 10062.38)

N/Ab

Sphericity 0.87 ± 0.13 (0.38, 1.00) 0.87 ± 0.13 (0.38, 1.00) 0.87 ± 0.13 (0.38, 1.00) N/Ab

DC 0.86 ± 0.15 (0.33, 1.12) 0.86 ± 0.15 (0.33, 1.12) 0.86 ± 0.15 (0.33, 1.12) N/Ab

GLCM

moments

1.72 ± 0.25 (1.23, 2.14) 1.50 ± 0.30 (1.05, 2.08) 1.17 ± 0.34 (0.71, 2.10) <0.001 <0.001 <0.001 <0.001

GLCM IDM 0.015 ± 0.004 (0.007,

0.023)

0.022 ± 0.005 (0.009,

0.032)

0.034 ± 0.009 (0.014,

0.048)

<0.001 <0.001 <0.001 <0.001

GLCM

contrast

13984.14 ± 7300.42

(5561.31, 39429.17)

11332.52 ± 7034.59

(3691.25, 36268.55)

9761.97 ± 6746.66

(1820.66, 33914.11)

<0.001 <0.001 <0.001 <0.001

GLCM

entropy

4.41 ± 0.35 (3.39, 5.05) 4.32 ± 0.30 (3.39, 4.86) 4.17 ± 0.25 (3.38, 4.58) 0.008 0.446 0.006 0.134

DC, discrete compactness; ED, effective diameter; FBP, filtered back projection; GLCM, gray level co-occurrence matrix; HU, Hounsfield unit; IDM, inverse

difference moment; N/A, not available; SA, surface area; SD, standard deviation; S3, Sinogram Affirmed Iterative Reconstruction level 3; S5, Sinogram

Affirmed Iterative Reconstruction level 5
a Data are p values for each comparison.
b P value was not available from the Friedman test as the feature values were exactly same in all three groups.

doi:10.1371/journal.pone.0164924.t002
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In the present study, most of the radiomic features (excluding size/shape features) were
influenced by the reconstruction algorithms in contrast to the study by Solomon et al. [12],
which reported that less than half of the pixel value distribution features and GLCM-based fea-
tures were affected. The discrepancy in results for the size/shape features is due to different seg-
mentation methods. We performednodule segmentation manually on FBP images and the
segmentation profile, which were saved as ROI files, were then pasted to the other reconstruc-
tion images without further correction. This approach was adopted to analyze the effect of the
reconstruction algorithm without any interference from the variability related to the nodule
segmentation. In contrast, Solomon et al. [12] conducted semi-automated segmentation at
each algorithm setting, which induced intra-reader variability of semi-automatic segmentation
plus inter-reconstruction algorithm variation. In addition, entropy and GLCM entropy were
not influenced by the reconstruction algorithms in that study [12], whereas both of them
showed significant decreases on the iterative reconstruction in our results. Entropy is one of
the most representative metrics of tumor heterogeneity and has been reported to have signifi-
cant association with patient survival in non-small cell lung cancer patients [5, 7]. Given that
entropy is a measure of image irregularity [5] and iterative reconstruction algorithm directly
reduces noise and artifacts resulting from irregularities (such as photon starvation, beam hard-
ening, and nonlinearity of individual detector elements) [19], it is plausible that entropy
decreases when the iterative reconstruction algorithm is applied. Therefore, it has to be noted
that different entropy cutoff levels should be used when analyzing CT images of cancer patients
with various reconstruction algorithms and that the change of entropy value in patients should
be carefully evaluated if different reconstruction algorithms were used. The discordant results
between this study and the one by Solomon et al. [12] might be explained by the different study
population (e.g., nodule size or enhancement), study sample size, and iterative reconstruction
algorithms (SAFIRE vs. ASIR and MBIR) used. Variation of radiomic features according to the
different iterative reconstruction algorithms warrants further investigation.

Table 3. Coefficient of variation (CV) of radiomic features.

Feature Intra-reader CV Inter-reader CV CV of FBP/S3 CV of FBP/S5 CV of S3/S5

Mean 50.3 131.3 25.4 8.3 13.1

SD 11.5 15.1 6.8 13.4 6.7

Skewness 26.2 94.5 23.3 42.1 22.9

Kurtosis 27.7 62.1 31.4 52.2 25.6

Entropy 1.1 1.3 2.1 4.6 2.5

Homogeneity 1.0 1.6 7.8 15.0 8.6

Volumea 5.1 5.4

EDa 2.5 2.7

SAa 4.1 5.3

Sphericitya 3.6 4.8

DCa 5.7 6.7

GLCM moments 1.2 1.4 9.9 24.5 14.9

GLCM IDM 3.6 3.3 25.0 53.3 30.4

GLCM contrast 11.3 12.7 15.5 30.0 15.5

GLCM entropy 0.6 0.6 1.3 3.3 2.1

Data are CV in percentage (%).

DC, discrete compactness; ED, effective diameter; FBP, filtered back projection; GLCM, gray level co-occurrence matrix; IDM, inverse difference moment;

SA, surface area; SD, standard deviation; S3, Sinogram Affirmed Iterative Reconstruction level 3; S5, Sinogram Affirmed Iterative Reconstruction level 5
a Inter-reconstruction algorithm variability of size/shape features were zero as the same ROI were copied-and-pasted from FBP images to S3 and S5.

doi:10.1371/journal.pone.0164924.t003
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In addition to the impact of reconstruction algorithm itself, SAFIRE noise reduction level
was also an influencing factor to the radiomic features. Values of four out of six first-order
tumor intensity features and three out of four GLCM-based features were significantly different
between S3 and S5. When the pairwiseCV comparisons of inter-reconstruction algorithm vari-
ability were performed, the variability between FBP and S5 was significantly higher than other
inter-reconstruction algorithm variabilities, except for the mean. In other words, the inter-
reconstruction algorithm variability became greater as the degree of noise reduction between
the two CT images increased.

Another notable finding in our study was that the inter-reconstruction algorithm variabil-
ity for entropy, homogeneity, and 4 GLCM-based features was significantly larger than the
inter-reader variability. This is an interesting result considering that conventional volumetric
variability studies revealed that nodule volumetry was robust to the reconstruction algorithm
and the measurement variability was primarily attributed to the inter-reader or inter-scan
variability [20–23]. Volume measurement itself is not comparable to the radiomic analysis.
However, radiologists should be aware of the fact that the alteration in the reconstruction
method can become a dominant source of measurement variability and its effect can be even
greater than the change among readers for certain radiomic features, particularly texture
features.

There were several limitations in our study other than the intrinsic limits of any retrospec-
tive study. First, the levels of SAFIRE noise reduction strength were chosen empirically. The
level refers to the amount of noise reduction that is desired in the image and is not related to
the number of iterations [24]. We selected level 3 and 5 to get the average, and highest, noise
reduction. Second, radiomic features obtained with gray level run length matrices, or Laplacian
of Gaussian filter methods, were not tested in the present study. Therefore, our study results
cannot be applied to the features obtained through those methods. Third, our study results
might be reconstruction-algorithmspecific. Investigations into the effects of various iterative
reconstruction algorithms on radiomic features are warranted in the future. Fourth, the biolog-
ical ranges of the radiomic features in patients with disease improvement, or progression, were
not investigated. Thus, the transition and range of radiomic feature values in various clinical
situations should be studied to reveal the clinical significance of the measurement variability.
Fifth, the study population comprised heterogeneous group of tumor histology. However, the
focus of our study was not on the absolute or true value of each feature, rather it was on the
change and variability of features according to the transition in reconstruction algorithm while
other scanning parameters were fixed. The effect of tumor histology on variability analysis of
the present study was considered to be minimal.

In conclusion, most of the radiomic features extracted from pulmonary oncology patients
were significantly affected by the reconstruction algorithms. Inter-reconstruction algorithm
variability was the major contributing variation for entropy, homogeneity, and GLCM-based
features, while inter-reader variability was more significant in many first-order features.
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