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Abstract

By definition, the domestication process leads to an overall reduction of crop genetic diver-

sity. This lead to the current search of genomic regions in wild crop relatives (CWR), an

important task for modern carrot breeding. Nowadays massive sequencing possibilities can

allow for discovery of novel genetic resources in wild populations, but this quest could be

aided by the use of a surrogate gene (to first identify and prioritize novel wild populations for

increased sequencing effort). Alternative oxidase (AOX) gene family seems to be linked to

all kinds of abiotic and biotic stress reactions in various organisms and thus have the poten-

tial to be used in the identification of CWR hotspots of environment-adapted diversity. High

variability of DcAOX1 was found in populations of wild carrot sampled across a West-Euro-

pean environmental gradient. Even though no direct relation was found with the analyzed

climatic conditions or with physical distance, population differentiation exists and results

mainly from the polymorphisms associated with DcAOX1 exon 1 and intron 1. The relatively

high number of amino acid changes and the identification of several unusually variable

positions (through a likelihood ratio test), suggests that DcAOX1 gene might be under posi-

tive selection. However, if positive selection is considered, it only acts on some specific

populations (i.e. is in the form of adaptive differences in different population locations)

given the observed high genetic diversity. We were able to identify two populations with

higher levels of differentiation which are promising as hot spots of specific functional

diversity.

Introduction

Crop plants typically include only a portion of the genetic diversity of their wild relatives. Since
genetic variation is the raw material of evolution, low genetic diversity has as direct conse-
quence a reduction on the ability of the species to evolve in response to changes in its environ-
ment. If until recently we have perceived plant breeding as overall reducing crop genetic
diversity, recent assessments have shown spatial and temporal patterns of genetic diversity
losses (e.g. [1,2]). Particularly, breeding objectives have changed across time, from just yield
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improvement to also accommodate adaptation capacity and stress resistance under different
agricultural systems and climatic conditions. This, in turn, has as consequence different selec-
tive pressures within breeding populations, and thus variable genetic diversity in released culti-
vars of a given crop [2]. Also, the extent of this loss of diversity depends on the population size
during the domestication period, the mating system and the duration of that period, and it is
not experiencedequally by all genes in the genome [3]. Genetic diversity is lowered by intraspe-
cific hybridization as well as by the selection process, which enhances genetic differentiation
[4].

For many crops, like maize and cauliflower, this diversity loss due to domestication has
made the plant totally dependent on humans in such a way that plant crop is no longer capable
of propagating itself in nature [5]. In others however, such as in carrot (Daucus carota L.), the
domestication process rendered more modest changes when compared to their progenitors—
and they can even revert to the wild or become self-propagating weeds [5]. Even though there
is clear evidence for diversification betweenwild and cultivated D. carota (e.g. [6,7]) and for
the separation of the cultivated germplasm into two distinct groups (the Eastern–Asian and
Western–European and American- gene pools [8]), widespread hybridization and introgres-
sion events have been reported (e.g. [9,10]). The outcrossing nature of carrot without any
clonal propagation, associated with the fact that open-pollinated seed production was (likely)
used to propagate carrot during domestication, lead to a small reduction in the genetic diversity
of cultivated vs. wild carrot [6]. Nonetheless, Grzebelus and co-workers [11] encountered an
overall higher gene diversity of wild accessions. They found private markers not present in any
gene pool of cultivated carrot, which encourages the search of genomic regions potentially
important for modern carrot breeding.

Close relatives of domesticated plants -crop wild relatives (CWRs)- represent a practical
gene pool that can be exploited by plant breeders in the quest to address modern agricultural
needs: higher productivity, climate resilience and nutritional security (reviewed in [12]). In the
case of carrot, and because primary CWR are inter-fertile with the crop species, this genetic
variability is easily accessible for plant improvement. To access this genetic pool, there is a need
to screen wild populations. This screen can be done randomly, but can potentially be made
more efficient by making use of climatic information, to help in selecting the most appropriate
populations for further testing. This assumes that CWRs are adapted to their environment and
thus present a set of traits involved in adaptation. Usually this means that a few genes of large
effect should account for a relatively large proportion of the genetic differentiation between
adapted populations together with many loci of smaller effect [13,14]. Nowadays massive
sequencing possibilities can allow for discovery of novel genetic resources in wild populations,
and comparison of genome variation in contrasting environments may bring new options for
use of genetic variability in plant breeding for climate resilience [15]. An alternative option to
massive sequencing would be the use of a surrogate gene(s) to first identify and prioritize novel
wild populations for increased sequencing effort. In this case, a surrogate gene would be a
proxy for the broader genome (as this is too big to allow to be considered individually for a
greater number of populations) given a certain trait, for example, specificities of the environ-
ment of the adapted population. Such a surrogate gene would have to show a set of polymor-
phisms whose presence would link to particular environmental conditions, and indicate the
presence of wider genetic variability associated with evolution of adaptation.

The adaptation to different environments involves adaptation to biotic and abiotic stresses,
and the concomitant variation in CWR genes could be explored as a way to increase tolerance
and hence improve long term crop productivity. Alternative oxidase (AOX) gene family seems
to be linked to all kinds of abiotic and biotic stress reactions in various organisms (e.g. [16–18])
and have the potential to be used in a model towards identification of CWR hotspots of
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environment-adapted diversity. The choice of this gene relates to the fact that AOX is not only
part of the stress response in plants, but it also plays a central role in defining the stress
response [19]. By this reason, AOX was previously proposed as a source for functionalmarkers
for breeding [20]. The rendering proteins are active in mitochondria, organelles of crucial
importance for environmental stress perception and stress signal transduction. This gene fam-
ily is present in the respiratory chains of all plants, as well as in certain fungi, protists, animals
and bacteria, and it is crucially involved in the adaptive regulation of metabolism.Within the
same species, individual genotypes and/or groups of genotypes can be distinguished by poly-
morphic AOX gene family sequences (e.g. [20–23]) and this is also true for carrot (e.g. [24–
27]). In carrot, this multigene family is encoded by three genes distributed in two discrete gene
subfamilies–DcAOX1 and DcAOX2 (a and b). Generally, and while AOX1 is induced by stress
stimuli, AOX2 is referred as constitutive or developmental. Even though this paradigm begins
to be challenged [28–30] the current view is still that the subfamilies have different physiologi-
cal roles. They are thus expected to have evolved under different selection pressures, being
AOX1 gene subfamily likely most responsive to environmental stimuli. Campos and co-work-
ers [31] showed that DcAOX1 gene expression respond to different growth temperature condi-
tions, and that this response was genotype dependent. In carrot, the complete gene shows
different lengths and the less typical AOX structure of three exons interrupted by two introns,
with the highest sequence variability found on intron 1 (including a hyper- variable region) fol-
lowed far by exon 1 [27].

In this study we look into the variability of DcAOX1 in populations of carrot CWR in
Europe, subjected to different climatic stress and thus putatively adapted to different environ-
ments. By scanning wild crop relatives with a stress related gene, we expect to highlight hot
spots of specific functional diversity.

Material and Methods

Plant material

Sampling was performed following an environmental gradient across Europe. This gradient
accommodated sampling points with deviating climatic conditions, such as in Sierra de Gua-
darrama (considerable temperature changes between summer and winter and a very dry sum-
mer; wild carrots could not be found above 1100 m) or in central Pyrenees and the French
Massif Central (with a cold continental climate at equivalent height). In general, the sampling
was made on easily accessible non-cultivated fields (thus close to a road), with altitudes ranging
from the referred 1100 m to sea level. In total, 13 sites were sampled (Table 1) by collecting
wild carrot roots at each location. The samples were dried in silica gel and stored at -80°C. Due
to the hard and woody characteristics of the wild carrot roots, an adaptation of the DNeasy
Plant Mini Kit (Qiagen, Hilden, Germany) standard extraction protocol was used to extract the
DNA: 1) extra initial grinding step (with liquid nitrogen and using a tissue grinder) to further
pulverize the hard root tissues; 2) addition of polyvinylpyrrolidone (PVP, 10 000 mol wt at 3%)
to the extraction buffer to remove phenolic and other compounds that can inhibit PCR and 3)
lysis was performed overnight at 60 rpm. DNA concentration of all samples was determined
with the NanoDrop-2000C spectrophotometer.

Data collection

The available climatic data of the last 15 years was collected for the closest by station of the
sampling points (http://globalweather.tamu.edu/). Month averages were obtained to have a
workable characterization of the long-term climatic conditions at the sampling locations. A
Principal Component Analysis (PCA) was used to define patterns of climatic conditions of the
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sampling locations. Data was grouped into clusters for data summarization, through an
Agglomerative Hierarchical Clustering (Ward agglomerationmethod, on Euclidian distances
for five classes). These analyses were performed using XLSTAT-ecology, an add-on to MS
Excel1.

For the isolation of AOX1 amplicon in wild carrots, specific primers were designed based
on the already available cDNA sequence at the NCBI GenBank (EU286573.2). A nested PCR
approach was selected. For the first reaction, the primers used were located at the beginning of
exon 1 (DcAOX1 _24Fw or DcAOX1 _94Fw) as forward and at the end of exon 3 as reverse
(DcAOX1 _1032Rev;more details in [27]). A standard 25 ul reaction, at 2.5 mM of magnesium
and BSA at 0.4 ug/ul, was run with an annealing temperature of 55°C. The PCR product was
then diluted in 1:50 and used as template for the second reaction. The second reaction was per-
formed with the same forward primer and the degenerated primer P2 [32], in a 25 ul reaction
at 1.5 mM of magnesium. Annealing temperature was 60°C. Amplicons were purified from the
agarose gel with GFX PCR DNA and Gel Band PurificationKit, directly cloned into pGEM1-
T Easy vector (Promega, Madison,WI, USA), transformed into bacterial strainJM109 (Pro-
mega, USA) and bacterial colonies were tested using T7 and SP6 primers. Sequencewas done
from the PCR product, in sense and antisense strands. Because carrot is an outcrossing species,
a minimum of four plants per population and two clones per plant were sequenced (S1 Table).
For the amplification of D28n marker (for taxonomic certainty), we followed the procedure
describedby Spooner and co-workers [33], in a standard 25 ul reaction at 1.5 mM of magne-
sium and an annealing temperature of 55°C. Sequencewas done directly from the PCR prod-
uct, in sense and antisense strands.

Phylogenetic analyses

Sequence visualization was performed in CLCMain Workbench vs 6.8.1 software and, for
AOX1 amplicon, exons and intron regions were identified on the sequences and aligned sepa-
rately. The alignment of segments of the exon regions was relatively straightforward, with
few insertions/deletionsneeding to be inferred. For the intron region an iterative refinement
method, which accounts for larger gaps in the sequences (E-INS-i) as implemented in the
programMAFFT [34], was used to align the segment. Alignment of D28n amplicon was
made under the option L-INS-I (iterative refinement method incorporating local pairwise

Table 1. Sampling locations and geographic coordinates of collection sites.

Population code Name of closest location Country code Coordinates

Longitude Latitude Altitude

1 Guadalupe PT 38.5825 -7.9980 310

3 Sant Carles de la Rapita SP 40.6267 0.6529 0

4 Rostock DE 54.0779 12.1126 24

5 Romangordo SP 39.7795 -5.6966 327

6 Rascafria SP 40.8840 -3.8867 1190

7 Torla-Huerdesa SP 42.6511 -0.1380 1279

8 Gruissan FR 43.1010 3.1201 84

9 Saint-Privat-d’Allier FR 45.0012 3.6850 1009

10 Agencourt FR 47.1324 4.9836 281

11 Kapellen LU 49.6401 6.0184 362

12 Nijkerk NL 52.2154 5.4779 2

13 Capbreton FR 43.6307 -1.4322 64

14 Torquemada SP 42.0364 -4.2824 785

doi:10.1371/journal.pone.0164872.t001
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alignments; gap opening penalty: 1.5 and gap extension penalty 0.14; 1PAM/k ¼ 2 scoring
matrix for nucleotide sequences). The alignment of D28n fragment was straightforward, as no
insertions/deletionshad to be inferred. The optimal models of evolution were tested indepen-
dently of the sequence region in MrModeltest 2.2 [35] and selection took place on the basis of
the BIC scores (Bayesian Information Criterion; the lowest the value the better the substitution
pattern).

Bayesian inference was conducted using MrBayes version 3.0 [36,37]. The default settings of
MrBayes were used and with MCMC (considering 100 000 generations) runs being repeated
three times as a safeguard against spurious results. The first 1 000 trees were discarded as burn-
in, and the remaining trees were used to calculate a majority rule consensus tree. Stationarity
was confirmed by analysis of the log-likelihoodsand the consistency between runs. For AOX1,
the same analysis was also done considering the full fragment, the exons alone and also consid-
ering the full fragment excluding the intron insertions suspected to be the result of introgres-
sion events (S1, S2 and S3 Figs).

AOX1 variability

The AOX1 sequences alignment was used to locate polymorphic positions and ambiguities
encountered were, whenever possible, resolved by resequencing. Summary statistics and tests
of neutrality were calculated with DnaSPv.4.0 [38] on the basis of the number of segregating
sites (since we observed three different bases per site in some populations, we also performed
the analyses on the basis of the total number of mutations (h) and obtained qualitatively similar
results; data not shown). Tajima’s D statistics compares the average number of pairwise differ-
ences with the number of segregating sites [39]. Over the all sequencedAOX1 fragment,
linkage disequilibriumwas measured using the ZnS statistic (the squared allele frequency cor-
relation r2, [40]) on the basis of the parsimony informative sites. Statistical significance for ZnS
and Tajima’s D was assessed by coalescent simulations with 10 000 replicates as implemented
in DnaSP v. 4.0, conducted considering all segregating sites and an intermediate level of recom-
bination [38]. In addition, for the coding regions of DcAOX1, tests for positive selectionwere
performed using the maximum likelihoodmethods implemented in the CODEML program of
PAML [41]. The dN/dS ratio (ω) was calculated using modelsM0 (one-ratio) and M3 (dis-
crete), and M1a (nearly neutral) and M2a (positive selection). The relevant likelihood ratio
tests were performed to access significance:M0-M3 tests for variable ω among sites and M1a-
M2a tests positive selection.

We determined pairwise FST values among wild D. carota populations using Arlequin3.5.22
[42]; levels of significancewere assessed on the basis of 10 000 permutations. The significance
of isolation-by-distance was tested with a Mantel test.

Results

Based on the D28n phylogeny, all plants were confirmed belonging to Daucus carota. Within
D. carota the phylogeny is highly unresolved (Fig 1), with the exception of a cluster comprising
the four most western Iberian populations (Fig 1, red box). The reconstructedAOX1 phylog-
eny (Fig 2) however, does not show any obvious population clade or relates to a clear geograph-
ical origin. Through the use of a PCA (Fig 3a and 3b), the set of climatic observations of
possible correlated variables were converted into a set of values of uncorrelated variables (the
principal components). The percentage of the variance explained by the two first components
is of 86.8% (70,4.% for PC1 and 16,4% for PC2). The PCA representation permits distinguish-
ing temperatures (max and min) and also solar radiation, from the variables precipitation,
humidity and wind. In the components space, population 7 sampling site is differentiated from
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Fig 1. Reconstructed phylogeny based on de conserved orthologue marker D28n [33]. The phylogeny

corresponds to the majority rule consensus tree of trees sampled in a Bayesian analysis (K2P+G as substitution

model). Torilis leptophylla was used as outgroup. The numbers above the branches refer to the Bayesian posterior

probability of the nodes (more than 50%) derived from 19500 Markov chain Monte Carlo-sampled trees. The red

box encompasses a clade of western Iberian populations.

doi:10.1371/journal.pone.0164872.g001
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Fig 2. Reconstructed phylogeny based on the AOX1 fragment (2353 bp in the alignment). DNA models of evolution

were tested independently of the sequence region, and selection took place on the basis of the BIC scores (Bayesian

Information Criterion; the lowest the value the better the substitution pattern): Exon1—K2+G+I; Intron 1—GTR+G and Exon

2—GTR+G. The phylogeny corresponds to the majority rule consensus tree of trees sampled in a Bayesian analysis.

Arabidopsis thaliana was used as outgroup. The numbers above the branches refer to the Bayesian posterior probability of

the nodes (more than 50%) derived from 19500 Markov chain Monte Carlo-sampled trees.

doi:10.1371/journal.pone.0164872.g002
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the rest and the sampling sites of populations 4, 12 and 11 are similar for the analyzed variables
(grouped basedmainly on winter conditions, Fig 3b). The cluster analysis into five groups (Fig
3c and 3d) conforms with the PCA, dividing the locations into two highly differentiated clus-
ters: a) high temperatures and solar radiation -Class 2 and Class 3 (grouping populations 1, 3,
5, 6, 8 and 14 summer characteristics); b) stronger winds and higher moisture -Class 1 and
Class 4 (comprising populations 4, 11 and 12 winter conditions). Even though it is clear that
the sampling locations show diversified climatic conditions of temperature, precipitation,
humidity, solar radiation and even wind, no relation is apparent of any of these variables to the
clades formed in the phylogenetic analysis of AOX1 gene fragment.

DcAOX1 variability in the CWR

The obtained 122 sequences were annotated for exonic regions and those were analyzed sepa-
rately from the intron. Overall, the data show much higher gene diversity than initially
expected: the amplicon size varies considerably due to intron 1 size, which ranged from 325 bp
to 951 bp. In the current dataset, comprising a large West-European sampling of wild carrots,
we found 9 haplotypes with an insertion ranging 200 bp to 252 bp in the beginning of the

Fig 3. Sampling locations analysis based on average monthly weather data. A plot on the two main components

of a Principal Component Analysis (86.9%): a) variables yearly averaged per population as additional category data; b)

variables grouped by meteorological season. Agglomerative Hierarchical Clustering analysis: c) euclidian distance

dendogram for 5 classes; d) profile of the classses. tmin, minimum temperature (˚C); tmax, maximum temperature

(˚C); precipitation (mm); relative humidity (%); wind (m/s); solar (MJ/m2).

doi:10.1371/journal.pone.0164872.g003
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intron 1 (479 bp relative to KJ669723.1 start codon; Fig 4). This insertionwas only present in
individuals from three Iberian populations:

1. population 1–5 of the 8 haplotypes show here an insertion (I1a) which shows levels of simi-
larity between themselves higher than 90%;

2. population 3–3 of the 8 haplotypes have here an insertion, being one of them equivalent to
I1a (average similarity higher than 90%) whereas the two other haplotypes present a differ-
ent insertion (I1b) but similar between themselves (99%);

3. population 14—only 1 of the 8 haplotypes present an insertionwith 96% similarity with I1a.

I1a blasts primarily with Rhizophagus intraradices clone JGIBTPH-93C11 (AC237375, S2
Table). The deposited sequence is originated from a genome sequencing project of this

Fig 4. Diagram showing the long intron insertions relative to a known full DcAOX1 gene sequence (KJ669723.1).

doi:10.1371/journal.pone.0164872.g004
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arbuscularmycorrhiza fungus, where the fungus culture was root culture of carrot [43]. This
means that the database hits to R. intraradices are most likely an artifact of contamination of
the fungus DNA with co-cultured carrot cell DNA. All subsequent homologies found were
with carrot samples (S2 Table) albeit not annotated as belonging to the AOX gene family. In
only one individual, from population 8, a second insertionwas found towards the end of the
intron (1095 bp relative to KJ669723.1 start codon; Fig 4). This insertion of 308 bp shows high
homology with genomic sequence of either Daucus sahariensis (KJ519787.1, KJ519789.1 and
KJ519806.1) or Daucus syrticus (KJ519808.1 and KJ519807.1).

From exon1 the dataset is not complete and from the expected fragment of 432 sites, only
205 sites have no alignment gaps or missing data (analyzed only for 119 sequences due to
absence of data on 302c, 402c and 807b). Data on the exons (number of haplotypes, polymor-
phic sites and diversity estimates) is summarized in Table 2. Both exon 1 and 2 exhibit high
level of nucleotide diversity, showing also almost equivalent numbers of non-synonymous and
synonymous sites. For haplotype and nucleotide diversity estimates (Hd and Pi), we chose to
analyze synonymous and nonsynonymous sites jointly because the amount of coding sequence
was limited and treating them separately would have led to estimates based on even a smaller
number of sites [44].

Population genetics inferences are primarily based on two sources of information: the site
frequency spectrumof mutations (SFS) -being Tajima’s D one of the most popular summary
statistics- and the statistical association among those, that is, linkage disequilibrium (LD). Con-
sidering an intermediate level of recombination (gene recombination parameter R determined
to be 18.60) the observedTajima´s D value (-1.32) was significant (p = 0.01; [-1.19, 1.01] 95%
confidence interval). The observedZnS value (0.08) was not significant (p = 0.87; [0.04, 0.10]
95% confidence interval).

Likelihood ratio tests (LRTs) revealed that PAML models that allowed for adaptive positive
selection fitted the exon 1 sequence data better than those which did not; this was, however,
not true for exon 2 (Table 3) althoughmodelsM3 fit the data significantly better than the
null models M0. A total of 12 sites were identified as being under positive selection (ω> 1 for
α = 0.05).

Population differentiation based on AOX1

Fig 5 shows population relationships as describedby FST computed betweenpairs of populations
(measure of population differentiation due to genetic structure, ranging from 0 to 1; with zero

Table 2. Sequence variability analyses of a DcAOX1 fragment covering part of gene exon 1 and exon

2 in 122 wild carrot haplotypes.

Exon 1 Exon 2

Number of sequences 119 122

Number of sites (bp) 207 479

Total number of sites (excl. missing data) 205 474

Number of haplotypes 71 94

Polymorphic sites (S) 46 55

Parsimony informative 23 34

Total number of mutations 49 56

Synonymous changes 25 31

Non-Synonymous 24 25

Haplotype diversity (Hd) 0.979 0.995

Nucleotide diversity (Pi) 0.029 0.015

doi:10.1371/journal.pone.0164872.t002
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value indicating no population structuring or subdivision and one indicating that all genetic var-
iation at the analyzedmarkers can be explained by population structure). It shows that variabil-
ity at exon 1 (Fig 5c) is the main responsible for differentiation, except for the case of population
1 where the indel at intron 1 (presented above; Fig 5b) characterizes the population. No isolation

Table 3. Parameter estimates and likelihood scores under models of variableω ratios among sites for exon1 and exon2 of the DcAOX1 gene.

Nested model

pairs

Parameter estimates -lnL LRT PSS

Exon1 M0: one ratio ω = 0.125 3432.757 438.092

(p = 0.000)

na

M3: discrete ω0 = 0.037; ω1 = 1.014; ω2 = 5.925;Ƥ0 = 0.885; Ƥ1 =

0.100; Ƥ2 = 0.015

3213.711 15, 16, 30, 51, 54, 60, 63, 64, 66,

67, 68, 74

M1a: nearly neutral ω0 = 0.034; ω1 = 1.000 Ƥ0 = 0.886; Ƥ1 = 0.114 3236.036 44.644

(p = 0.000)

na

M2a: positive

selection

ω0 = 0.0346; ω1 = 1.000; ω2 = 5.907 Ƥ0 = 0.884; Ƥ1 =

0.101; Ƥ2 = 0.015;

3213.714 54, 66

Exon2 M0: one ratio ω = 0.053 2444.668 11.115

(p = 0.029)

na

M3: discrete ω0 = 0.020; ω1 = 0.020; ω2 = 0.306; Ƥ0 = 0.239; Ƥ1 =

0.632; Ƥ2 = 0.128

2439.110

M1a: nearly neutral ω0 = 0.036; ω1 = 1.000 Ƥ0 = 0.968; Ƥ1 = 0.032 2441.611 0.000 (p = 1.000) na

M2a: positive

selection

ω0 = 0.036; ω1 = 1.000; ω2 = 1.000 Ƥ0 = 0.968; Ƥ1 =

0.018; Ƥ2 = 0.014;

2441.611 na

doi:10.1371/journal.pone.0164872.t003

Fig 5. Representation of pairwise FST values among wild D. carota populations AOX1 fragment, with significance at

0.05 being highlighted with a *; a) complete fragment; b) intron1 only; c) exon1; and d) exon 2. Graphs present

different y scale to highlight differences within data.

doi:10.1371/journal.pone.0164872.g005
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by distance was observed (Mantel test considering the entire sequenced fragment, p = 0.31; only
intron 1, p = 0.12; only exon 1, p = 0.65; only exon 2, p = 0.77).

Discussion

Daucus carota is a highly diverse group, which certainly contributes to the poorly developed (or
even lack of) barriers for interbreeding among either CWR or domesticated forms. The recon-
structed phylogeny of carrot CWR (based on the conservedorthologuemarker D28n) suggests
a Eurosiberian (Boreal)–Mediterraneandivision, with the exception of theMiranda del Ebro
population (population 3). This population, even though still in a Mediterranean climate (Csa,
according to Köppen-Geiger climate classification system), grows in an environment close to an
oceanic climate zone (Cfb) much more similar, in overall weather conditions, to other more
central European locations. The reconstructedphylogeny based on the analyzed DcAOX1 gene
fragment does not seem to identify any clear clade that could directly be linked to the population
origin. The observed structure in the reconstructed tree is mainly due to the intron region, as
the one obtained when using the exons only is generally unresolved (S2 Fig).

There is a lack of structure among the DcAOX1 genetic pool within the Iberian Peninsula
(Fig 4), and these populations seem to be differentiated from the ones of the rest of theWestern
Europe, consistent with the information obtained based on the D28n marker. The overall level
of population differentiation is relatively low, but population 9 (Saint-Privat-d’Allier, France)
and population 1 (Guadalupe, Portugal) are highlighted as potentially interesting in terms of
differentiation, which results mainly from the polymorphisms associated with exon 1 and
intron 1. On the contrary to what was observedwith CWR of lettuce in Europe for example
[45], no correlation between geographic and genetic distances was found for wild carrot based
on the studied DcAOX gene sequences. The outcrossing nature of carrot (contrasting with the
selfing habits of lettuce) increases the probability of long-distance gene flow, and hence the
absence of a distance effect. The level of genetic differentiation depends on gene flow and
genetic drift, so the lack of genetic differentiation among Iberian populations likely results
from high rates of historical gene flow between populations and/or large effective population
sizes. The intron 1 of DcAOX1 is a lengthy variable region, including even a hyper-variable
region of simple sequence repeats (SSRs) [27], and shows in the present study two large inser-
tions (> 200 bp).

A sole wild carrot specimen from population 8 (Port-la-Nouvelle, France) showed an inser-
tion of 308 bp at the end of intron 1 with high identity with clones of Daucus sahariensis and
Daucus syrticus. Arbizu and co-workers [10] found that, even with combined molecular and
morphological studies, there are particular problems in distinguishing these two species.Dau-
cus syrticus, and D. sahariensis together with D. gracilis, are probably the most closely related
plants to D. carota [46]. This insertion can either be vertically inherited from a common ances-
tor, or the result of a hybridization event betweenwild D. carota and D. sahariensis or D. syrti-
cus (that even though native in North Africa could have been locally introduced in France).
Remains to be tested whether the high variation at the intron, has an effect on gene expression
and on the functionality of the encoded alternative oxidase protein. Introns can have large
influence in the control of gene expression in plants (e.g. [47,48]). Particularly, introns at the
proximity of the 50 end of a gene are of relevance, as they can affect the binding of transcription
factors [49], the process of alternative splicing [50], the coding of intronic regulatory elements
[51] and also nonsense-mediatedmRNA decay [52].

Nucleotide diversity at the DcAOX1 fragment of carrot CWRwas high (higher at exon 1
than exon 2), no linkage disequilibriumwas found and the significant negative value of Tajima’s
D suggests either a recent selective sweep (or linkage to it) or a recent population expansion
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following a bottleneck (the current data, based on one gene only, does not allow to distinguish
between both events).

The likelihood ratio test identified several positions at exon 1 which are unusually variable
(indication of positive selection), and a relatively high number of amino acid changes is
observed, together indicating that DcAOX1 gene might be under positive selection.However,
the high genetic diversity, including several indels, suggests that, if there is positive selection, it
only acts on some specific populations (i.e. is in the form of adaptive differences in different
population locations). The hypothesis that balanced selection is driving the high genetic diver-
sity at DcAOX1 gene cannot be excluded.

Additionally, the observedhigh diversity suggests that the DcAOX1 gene is not present in a
single copy. The adaptive role of copy number variation (CNV) is suspected to be of high rele-
vance, and for specific genes has been linked to important traits such as flowering time, plant
height and resistance to biotic and abiotic stress (reviewed in [53]). Knowledge on the extent of
CNV of the DcAOX1 gene in natural populations will elucidate on its adaptive role.

Exon 1 in the DcAOX1 gene seems to result from a fusion of two exons (via loss of an intron;
[31]) and this intron loss might have been adaptive. It has been suggested the existence of high
selection force against introns in rapidly regulated genes, with the rationality that an intron-
less allele will produce its protein product more rapidly than a corresponding intron-contain-
ing allele because splicing is relatively slow compared with transcription [54]. Nonetheless,
intron loss-gain seems to be a dynamic process difficult to generalize, as the importance of sev-
eral introns for the functions of the respective gene might imply that, in some cases, intron
insertion is favored by natural selection so that evolutionary conserved genes may accumulate
introns [55].

It has been proposed that positive selection promotes the functional divergence of gene fam-
ily members encoding enzymes involved in secondarymetabolism as its products are thought
to be a response to challenges imposed by the environment ([e.g. [55,56,57]). In plants, the
AOX is present as a small multigene family in individual species with the overall proposed role
in regulation of growth rate homeostasis under various environmental conditions that a plant
undergoes. Umbach and co-workers [58] showed that alterations in the AOX pathway pro-
voked changes that were largely chloroplast and carbohydrate metabolism related, and not
only moderating ROS, thus contributing to the accumulation of secondarymetabolites [59].
Therefore, the signatures suggesting local positive selection, the indications of high CNV and
the a priori knowledge of the AOX1 gene involvement in homeostasis under stress conditions,
calls for further characterization.

If, with the present data, AOX does not seem to work as a surrogate for diversity directly
linked to the climatic conditions analyzed, we were able to clearly identify two populations with
higher levels of differentiation which are promising as hot spots of specific functional diversity.
These two populations are thus good targets for a wider approach, either considering several can-
didate genes or a genome-wide approach, towards the identification of novel genetic resources
relevant for modern carrot breeding. Enlarging this study to a wider geo-climatic region, includ-
ing the center of domestication of carrot, has the potential of identifying further genetic diversity
hotspots, particularly if combined with a more fine scale environmental analysis.

Supporting Information

S1 Fig. Reconstructedphylogeny based on a AOX1 fragment.The phylogeny corresponds to
the majority rule consensus tree of trees sampled in a Bayesian analysis. Two insertions at the
intron were removed. Arabidopsis thaliana was used as outgroup. The numbers above the
branches refer to the Bayesian posterior probability of the nodes (more than 50%) derived
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from 19500 Markov chain Monte Carlo-sampled trees.
(TIF)

S2 Fig. Reconstructedphylogeny based on a AOX1 fragment.The phylogeny corresponds to
the majority rule consensus tree of trees sampled in a Bayesian analysis. Only fragments in
exons were considered. Arabidopsis thaliana was used as outgroup. The numbers above the
branches refer to the Bayesian posterior probability of the nodes (more than 50%) derived
from 19500 Markov chain Monte Carlo-sampled trees.
(TIF)

S3 Fig. Reconstructedphylogeny based on a AOX1 fragment.The phylogeny corresponds to
the majority rule consensus tree of trees sampled in a Bayesian analysis. Only intron 1 was con-
sidered. Arabidopsis thaliana was used as outgroup. The numbers above the branches refer to
the Bayesian posterior probability of the nodes (more than 50%) derived from 19500 Markov
chain Monte Carlo-sampled trees.
(TIF)

S1 Table. Sample locations, geographic coordinates, populations and individual plants
codes.
(PDF)

S2 Table. Intron 1 insertions and homologies according to NCBI.
(PDF)
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