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Abstract

Objective

We hypothesized that compared to healthy controls, long-term abstinent substance depen-

dent individuals (SDI) will differ in their effective connectivity between large-scale brain net-

works and demonstrate increased directional information from executive control to

interoception-, reward-, and habit-related networks. In addition, using graph theory to compare

network efficiencies we predicted decreased small-worldness in SDI compared to controls.

Methods

50 SDI and 50 controls of similar sex and age completed psychological surveys and resting

state fMRI. fMRI results were analyzed using group independent component analysis; 14

networks-of-interest (NOI) were selected using template matching to a canonical set of

resting state networks. The number, direction, and strength of connections between NOI

were analyzed with Granger Causality. Within-group thresholds were p<0.005 using a boot-

strap permutation. Between group thresholds were p<0.05, FDR-corrected for multiple

comparisons. NOI were correlated with behavioral measures, and group-level graph theory

measures were compared.

Results

Compared to controls, SDI showed significantly greater Granger causal connectivity from

right executive control network (RECN) to dorsal default mode network (dDMN) and from

dDMN to basal ganglia network (BGN). RECN was negatively correlated with impulsivity,

behavioral approach, and negative affect; dDMN was positively correlated with impulsivity.

Among the 14 NOI, SDI showed greater bidirectional connectivity; controls showed more uni-

directional connectivity. SDI demonstrated greater global efficiency and lower local efficiency.

Conclusions

Increased effective connectivity in long-term abstinent drug users may reflect improved

cognitive control over habit and reward processes. Higher global and lower local efficiency
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across all networks in SDI compared to controls may reflect connectivity changes associ-

ated with drug dependence or remission and requires future, longitudinal studies to

confirm.

Introduction

Substance dependence is a significant public health problem with an estimated 10.3% lifetime
prevalence in the United States [1]. Across substances of abuse, a generalizable pattern devel-
ops beginningwith an initial stage of rewarding effects from occasional use and developing
into a pathologic stage of loss of control, escalated use, compulsive drug seeking, and significant
negative consequences [2]. Individuals with substance dependence have been shown to exhibit
higher levels of impulsivity, behavioral approach, and negative affect [3], and these differences
have been associated with structural [4] and functional [5–8] brain differences compared to
healthy controls. While task-based studies using fMRI and PET have contributed significantly
to our understanding of functional brain changes in specific neuroanatomical areas [9], rest-
ing-state fMRI (rsfMRI) provides opportunity to explore large-scale networks and network
interactions independent of task-specific neuropsychological constructs [10]. Advantages of
rsfMRI include less confounding by differences in task paradigms, correlation of resting state
networks (RSN) to specific tasks and neuropsychiatric constructs [11], and reproducibility due
to simplified experimental design and data acquisition [12].

Stimulant dependence is characterized by complex behaviors and, like other neuropsychiat-
ric diseases, is thought to reflect pathology at the circuit-level rather than a single brain struc-
ture [13]. Moreover, activity and connectivity differences in stimulant dependence have been
demonstrated using rsfMRI across disease stages and may explain the progressive behavioral
phenotype changes across the natural history of the disorder [14]. For example, active drug
addiction stages include (I) binge/intoxication, (II) withdrawal/negative affect, and (III) preoc-
cupation/anticipation [13]; involved circuits at these stages include (I) ventral tegmental area
and striatum; (II) amygdala, bed nucleus of the stria terminalis, and ventral striatum; and (III)
prefrontal cortex, hippocampus, basolateral amygdala, cingulate, and insula. Sequential cycling
through these active disease stages is hypothesized to result in the neuroadaptive changes that
give rise to compulsive drug-seekingand drug-taking (Fig 1).

Brain activity and connectivity at different disease stages have been correlated with individ-
ual differences in executive function, interoception, reward, and habit formation. For example,
Gu et al. [15] observeddecreased rsfMRI connectivity between nodes within the mesocortico-
limbic reward pathway in active cocaine users compared to healthy controls. These findings
are consistent with animal models, in which rats dependent upon and self-administering
cocaine demonstrated decreased connectivity compared to control rats [16]; affected pathways
in this sample of rats included connections between the dorsolateral prefrontal cortex (PFC)
and ventral striatum, as well as between the prelimbic cortex (homologous to anterior cingulate
gyrus in humans) and entopeduncular nucleus (homologous to globus pallidus interna in
humans) [16]. These active disease findings stand in contrast to findings in disease remission.
In short-term abstinent cocaine dependence (�3 days), Wilcox et al. [17] observed increased
rsfMRI connectivity between the ventral striatum and ventromedial PFC. Camchong and col-
leagues [18] measured resting state functional connectivity amongst reward processing regions
in a cohort of stimulant dependent individuals at two time points, 5 weeks abstinence and 13
weeks abstinence, with comparison to a matched healthy control group. Abstinent stimulant
dependent patients demonstrated increased functional connectivity compared to controls,
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consistent with prior studies in patients of 1.4 years of abstinence [5] and 5.7 years of absti-
nence [19]. Although Camchong et al. [18] found abstinent stimulant dependent patients dem-
onstrated increased functional connectivity compared to controls, patients who relapsed
between time points demonstrated decreased connectivity compared to patients whomain-
tained abstinence. The authors speculated that this reduction in functional connectivity from 5
to 13 weeks in relapsers compared to abstinent patients may be associated with these patients’
inability to maintain abstinence. These studies suggest that group differences in connectivity
may be related to different stages of dependence/remission,possibly representing a transition
from hypoconnectivity in limbic and subcortical regions during active dependence to increased
top-down executive control in sustained abstinence.

Understanding differences in large-scale brain connectivity depends upon characterizing
the relative activity within networks as well as between them. Two modes of functional interac-
tions between brain regions include functional connectivity and effective connectivity. Func-
tional connectivity is the simultaneous and temporally coherent activation of separate brain
regions. Effective connectivity characterizes the directional flow of information. One method
of characterizing effective connectivity is Granger causality [20], which is methodologically
straightforward but requires careful application and interpretation.

To date, no study has investigated the effective connectivity differences in stimulant depen-
dence. This is important because understanding the direction of information flow in large-

Fig 1. Simplified illustration of the natural history of substance use disorders. Active substance dependence is characterized by sequential stages of

binge/intoxication, withdrawal/negative affect, and craving/preoccupation [13] that repeat a variable number of cycles, represented by m. Active disease

episodes may be interrupted by periods of short- or long-term abstinence, represented by n.

doi:10.1371/journal.pone.0164818.g001
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scale brain networks may further elucidate mechanisms of abstinence and explain previously
reported changes. To improve substance dependence treatments, a better understanding of the
connectivity characteristics associated with long term remission are needed and may help to
predict successful abstinence, evaluate treatment efficacy, and develop novel treatments. This
study investigated the effective connectivity and graph theory characteristics of large scale net-
works in the resting brain in long-term abstinent SDI compared to healthy controls to provide
holistic, organ-level measures of brain connectivity and organization for comparisons between
groups. We hypothesized that compared to healthy controls, long-term abstinent SDI will
demonstrate altered effective connectivity between large-scale brain networks and increased
directional information from executive control to interoception-, reward-, and habit-related
networks.

Materials and Methods

Sample Population

Fifty substance dependent individuals (SDI) and 50 healthy controls matched in age and sex
were prospectively recruited betweenOctober 2010 and June 2013. Demographic information
is reported in Table 1. SDI were recruited from a residential treatment program at the Univer-
sity of ColoradoDenver Addiction Research Treatment Services. Inclusion criteria for SDI
were lifetimeDSM-IV psychostimulant dependence (methamphetamine, cocaine, or amphet-
amine-class substances) and abstinence from all drugs of abuse for a minimum 60 days, veri-
fied through close supervision and random urine screens. Participants were permitted to have
previously met dependence criteria for substances other than psychostimulants due to the high
prevalence of polysubstance use in people dependent upon psychostimulants. Average absti-
nence duration was 12.8 ± 12.4 months. Healthy controls were recruited from the community
and excluded if dependent on alcohol or other drugs of abuse except tobacco. Exclusion criteria
for all participants includedmajor depression within the last two months, psychosis, neurologi-
cal illness, prior head trauma with loss of consciousness exceeding 15 minutes, prior neurosur-
gery, HIV, bipolar disorder, other major medical illness, inability to tolerate MRI, positive
urine or saliva screen (AccuTestTM, AlcoScreenTM), and IQ< 80. All participants provided
written informed consent approved by the ColoradoMultiple Institutional ReviewBoard.

Structured Interviews and Questionnaires

ScreeningAssessment. All participants received structured interviews and behavioral
measures. Drug dependencewas assessed using the computerized Composite International
Diagnostic Interview-SubstanceAbuse Module (CIDI-SAM) [21]. IQ was estimated with
matrix and verbal reasoningWechsler Abbreviated Scale of Intelligence subtests (WASI, Psy-
chological Corporation, 1999) and was recorded to exclude subjects with low scores (IQ< 80).
The Diagnostic Interview Schedule version IV is a computerized structured interviewused to
screen for psychiatric disorders. Participants completed this interview to exclude those with a
history of psychiatric disorders as described above. Substance dependence severity was opera-
tionalized as the number of total substance dependence and abuse symptoms, quantified by the
Diagnostic Interview Schedule version IV [22,23].
Behavioral Inhibition Scale (BIS) / BehavioralActivation Scale (BAS). The Behavioral

Inhibition and Activation Scale is a 20-item self-reported questionnaire used to measure
responsiveness of motivational systems [24,25]. Behavioral approach and inhibition were oper-
ationalized as the total Behavioral Activation and Inhibition Scales, respectively.
Barratt Impulsiveness Scale (BIS-11). This is a 30-item self-reported questionnaire used

to measure impulsivity; participants rated whether phrases and words describing aspects of
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impulsivity were self-descriptive [26]. Impulsiveness was operationalized as the total Barratt
score.
Positive and Negative Affect Scales. Positive and Negative Affect Schedule–Expanded

Form (PANAS-X) quantifies a participant’s positive and negative affect using a series of 60
words and phrases that are rated on a scale of self-description [27]. Positive and negative affect
were operationalized as the total PANAS-X score for positive and negative attributes.

MRI Examination and Image Analysis

MRI Acquisition. Brain MRI was performed using a 3T MR scanner (General Electric,
Milwaukee,Wisconsin) and standard quadrature head coil. Head motion was minimized using
a VacFix head-conforming vacuum cushion (Par ScientificA/S, Odense, Denmark). Any sub-
jects with�2 mm of head motion were excluded. High resolution T1-weighted SPGR-IR
sequences (TR = 45ms, TE = 20ms, flip angle = 70°, 256 × 256 matrix, 240 × 240mm2 field-of-
view (0.9 × 0.9mm2 in plane), 1.7mm slice thickness, and coronal plane acquisition) and rest-
ing-state functional scans (TR = 2000ms, TE = 30ms, flip angle = 30°, axial acquisition, 64 × 64

Table 1. Demographic, drug use, and behavioral characteristics of the sample population.

SDI Control t-value p-value

Demographics

N 50 (22F/28M) 50 (25F/25M) 0.869

Age 34.18±7.63 31.6±8.57 1.589 0.115

Education 12.48±1.42 14.66±1.47 -7.560 <0.001

Abstinence (mo) 12.8 ± 12.4

Drug Dependence

Stimulants 50

Nicotine 35 8

Alcohol 35

Opioids 16

Cannabis 20

Other 9

Drug Use Characteristics

Stimulant Use Onset Age (yrs) 17.3 ± 4.7

Stimulant Use Duration (yrs) 15.7 ± 7.4

Behavioral Metrics

BIS 20.64±3.26 20.10±3.56 0.792 0.430

BAS 76.74±6.54 69.40±9.27 4.575 <0.001

Drive 12.80±2.17 10.34±2.26 5.551 <0.001

Fun Seeking 13.16±1.85 11.38±2.18 4.414 <0.001

Reward 17.40±1.94 17.10±1.75 0.812 0.419

BIS-11 72.16±11.54 57.30±6.71 7.871 <0.001

Motor 27.30±4.72 22.78±3.02 5.707 <0.001

Non-Planning 27.08±4.96 20.48±3.33 7.809 <0.001

Attentional 17.78±3.81 14.04±3.14 5.361 <0.001

PANAS-X

Positive Affect 35.32±6.09 35.92±6.09 -0.488 0.626

Negative Affect 21.54±7.98 14.72±3.48 5.540 <0.001

Acronyms: BAS, Behavioral activation scale; BIS, Behavioral inhibition scale; BIS-11, Barratt impulsiveness scale version 11; PANAS-X, Positive and

Negative Affect Schedule–Expanded Form.

doi:10.1371/journal.pone.0164818.t001
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matrix, 3.4 mm × 3.4 mm in-plane voxel size, 3mm slice thickness, 1mm gap, 150 volumes)
were acquired. During fMRI acquisition, participants were instructed to close their eyes, not
think of anything in particular, and not fall asleep.
Image Preprocessing. Resting fMRI images were processed using the SPM8 toolbox in

MATLAB. The first four volumes of each examination were excluded to avoid saturation
effects (Fig 2). Standard pre-processing steps included slice timing correction, rigid realign-
ment and motion correction (motion>1 voxel/TR was censored), spatial normalization, and
de-noising.Motion parameters (three rotation and three translation parameters) for censor-
ship were calculated for each time-point using corresponding SPM realignment pre-processing
values. Anatomical volumes were segmented into gray matter, white matter, and CSF tissue
maps, and the resulting binarymasks were eroded (1 isotropic voxel) to mitigate partial volume
effects. CSF and white matter time series were obtained using the mean signals from voxels
based on erodedCSF and white matter SPM template masks. Mask erosion and time series
extractionwere performed using functions contained in the CONN toolbox [28]. After linear
trends were removed, time series of the motion parameters, WM signal, and CSF signal were
removed from the resting-state BOLD data using linear regression, and the resultant residual
BOLD time series were band-pass filtered (0.008 Hz< f< 0.15 Hz) [29]. The resultant filtered
time series were spatially smoothed with a 6mm full width at half maximumGaussian kernel.
Networks-of-interest (NOI) definition and behavioral correlations. Group independent

component analysis (ICA) was performed using the GIFT toolbox as previously reported in the
literature [5,30–34] in order to define the networks-of-interest (NOI). For the purposes of this
study, the term resting state networks (RSN) refers to the canonical spatial maps used to define
the NOI. The termNOI refers to the independent components identified in our sample popula-
tion and labeled by their corresponding RSN. The dimensionality of the data from each subject
was first reduced to 100 components using principal component analysis. Subsequent group-
level ICA yielded 34 components, the number of which was determined using the minimum
description length (MDL) algorithm [35]. Fourteen canonical RSN templates (Table 2) were
provided by Stanford's Functional Imaging in Neuropsychiatric Disorders (FIND) Laboratory

Fig 2. Diagram of the fMRI BOLD preprocessing, network-of-interest definition, and effective connectivity analysis pipelines.

doi:10.1371/journal.pone.0164818.g002
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[36]. At the group level, the 34 identified components were spatially correlated with the canoni-
cal RSN templates. Components with the highest spatial correlation to the canonical template
were labeledwith the corresponding standard RSN label. These labelled components formed the
set of NOI for subsequent graph analysis. All components were visually inspected by a neuroradi-
ology fellow (N.S.) and radiology resident (M.R.) independently to confirm accuracywith the
canonical RSN templates. Concordance between inspectors was 100%. Subject-specific spatial
maps and time courses were estimated using the GICA back-reconstruction function in GIFT.

For each subject, the strength (or coherence) of each NOI was operationalized as the mean
beta value across spatial dimensions for that component in the mixingmatrix. These values
were regressed against impulsivity, approach, inhibition, and negative affect. Regressions
between the NOI strength and subjects’ behavioral metrics were used to interpret the neuroim-
aging findings within the context of measurable behavioral characteristics.
EffectiveConnectivityAnalysis. For each individual, the time courses corresponding to

the NOI were obtained from the back-reconstruction function in group ICA. These NOI signals
were linear trend removed, normalized to zero mean and unit variance, and band-pass filtered at
0.008–0.15Hz. The resultant NOI time courses were temporally concatenated across individuals
into SDI and control groups [37,38]. Effective connectivity between all 14 NOI time courses in
the SDI and control graphs were calculated using Granger causality (GC) analysis implemented
in the Granger Causal ConnectivityAnalysis (GCCA)MATLAB toolbox [20]. Significancewas
estimated by comparing observedgroup difference to a randomized null hypothesis distribution,
and the test statistic was determinedby the percentile position of the observeddifference (i.e., the
proportion of randomizations with values greater than or equal to the observedvalue). To deter-
mine null hypothesis distributions, subjects’ group labels were randomized and GC connectivity
differences estimated for each randomization permutation until the aggregate randomization dis-
tribution achieved statistical stability. Significance level was α = 0.05 using false discovery rate
(FDR) q< 0.05 to correct for multiple comparisons.
Global Network Measures. To provide global networkmeasures, graph theorymeasures

were used to describe the topology of the graphs of NOI. The purposewas to provide holistic,
organ-level measures of brain connectivity for comparisons between groups. Thesemeasures
included total weighted network density, local efficiency (derived from clustering coefficients), and

Table 2. Canonical RSN included in the analysis and their corresponding symbol abbreviations.

Spatial maps were provided by Stanford’s Functional Imaging in Neuropsychiatric Disorders (FIND) Labora-

tory [36].

Resting State Network Symbol

Auditory Network AN

Anterior Salience Network aSN

Basal Ganglia Network BGN

Dorsal Default Mode Network dDMN

High Visual Network HVN

Left Executive Control Network LECN

Language Network LN

Precuneus Network PCN

Posterior Salience Network pSN

Primary Visual Network PVN

Right Executive Control Network RECN

Sensorimotor Network SMN

Ventral Default Mode Network vDMN

Visuospatial Network VSN

doi:10.1371/journal.pone.0164818.t002
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global efficiency(derived from path lengths). Thesemeasures’ derivations and their justification
have been previously described in detail [39]. Computational details are provided in S1 Appendix.

Results

Sample Population Demographics

There were no significant differences in age (p = 0.12) or sex (p = 0.87) between groups
(Table 1). Years of education (p<0.01) and IQ (p<0.01) differed between groups. Controls had
higher IQ and more years of education than SDI. All SDI met DSM-IV dependence criteria for
stimulants. Drug use characteristics are also summarized in Table 1. Eight controls met depen-
dence criteria for tobacco. No controls met dependence criteria for drugs or alcohol.

Behavioral Metrics

Behavioral characteristics are summarized in Table 1. No group difference in BIS inhibition
was observed (p = 0.43). A significant group difference in behavioral approach was observed,
with SDI exhibiting higher total BAS scores than controls (p<0.001). Further analysis of BAS
subscales showed that SDI had higher scores on “drive” (p<0.001) and “fun-seeking”
(p<0.001), but not “reward-responsiveness” (p = 0.42). As expected, SDI reported higher
impulsivity than controls (p<0.001) as well as significant differences in the motor, non-plan-
ning, and attentional subscales (p<0.001). No significant difference in positive affect was
observed (p = 0.626); however, a large difference in negative affect was observed (p<0.001),
with SDI demonstrating greater negative affect scores than controls.

Network Analysis

DirectedConnectivityAnalysis. SDI network density was significantly greater compared
to controls (p<0.001, Fig 3). This measure reflects increased overall mean GC causal connec-
tivity strength between all 14 NOI compared to controls. Specifically, GC analysis results show
that among 182 possible between-networkpairs (Fig 4), only three pairs differed significantly
across group in the FDR corrected data (Fig 5). Compared to controls, SDI showed stronger
effective connectivity from the RECN to the dDMN and from the dDMN to the BGN (Fig 6).
In addition, SDI showed stronger effective connectivity from the SMN to the VSN. SDI showed
greater bidirectional connectivity (reciprocal GC connections) whereas controls showed more
unidirectional connectivity among the 14 network components.
Network-BehavioralCorrelations. The strength of the RECN correlated negatively with

impulsivity (p<0.001), behavioral approach (p<0.001), and negative affect across the popula-
tion (p = 0.006) (Fig 7). In contrast, the strength of the dDMN correlated positively with
impulsivity (p<0.001), but not behavioral approach (p = 0.034) or negative affect (p = 0.030)
after correcting for multiple comparisons (Fig 7). No NOI correlated with positive affect or
educational attainment in years.
Global GraphMeasures. Group comparison results for local and global efficiency across

the domain of cost functions are illustrated in Fig 8. Global efficiencywas significantly higher
in SDI than in controls (p<0.01), suggesting greater global integration. Local efficiencywas
higher in controls (p<0.05), suggesting greater local specialization. These findings in conjunc-
tion suggest reduced small-worldness in SDI compared to healthy controls.

Discussion

This study revealed greater effective connectivity network patterns in abstinent substance
dependent individuals compared to healthy controls. Specifically, in drug users who have been
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abstinent for on average over one year, effective connectivity analysis revealed increased infor-
mation flow from the RECN to dDMN and dDMN to BGN compared to controls. The areas of
increased effective connectivity observed in our study correspond to regions involved in

Fig 3. Effective connectivity network density graphs of SDI and controls. Thickness of each line corresponds to the Granger causal strength and color

corresponds to the efferent network. SDI network density was significantly greater than healthy controls (p<0.001).

doi:10.1371/journal.pone.0164818.g003

Fig 4. Directed GC matrices for SDI (left) and controls (right). Colorbar corresponds to logarithm of F values.

doi:10.1371/journal.pone.0164818.g004
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executive control (RECN), interoception (dDMN), reward (BGN), and habit (BGN). The mean
strength of the RECN component correlated negatively with impulsivity, behavioral approach,
and negative affect. In contrast, the mean strength of the dDMN component correlated posi-
tively with impulsivity and trended towards positive correlations with behavioral approach and
negative affect. Given the prolonged abstinence of our SDI sample population, these findings
are consistent with the hypothesis that successful long-term abstinence is associated with
increased top-down cognitive control.

Fig 5. Effective connectivity matrix illustrating the FDR-corrected group differences between SDI and healthy controls. Colorbar corresponds to p-

values (white represents non-significance). Arrows indicate Granger causal direction.

doi:10.1371/journal.pone.0164818.g005
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Increased Effective Connectivity from RECN to dDMN

The pattern of increased effective connectivity from RECN to dDMN is consistent with
increased top-down executive control in long-term abstinence. Previous work has demon-
strated both task-related and resting state hyperactivity within executive control and default
mode cortices in abstinent stimulant dependence associated with heightened behavioral moni-
toring [17,40,41]; however, this is the first study to suggest that these neural signals follow a
directional flow of information from RECN to dDMN. Connolly et al. [40] conducted a cogni-
tive control task-based fMRI study of short- (2.4 ± 1.34 weeks) and long-term (69 ± 17.49
weeks) abstinent cocaine addicts. Abstinent cocaine users demonstrated increased activity in
PFC, cingulate, and inferior frontal gyri compared to healthy controls. Moreover, short-term
abstinent individuals showed right dorsolateral PFC (corresponding to RECN in our study)
hyperactivity positively correlating with inhibitory control. Long-term abstinent individuals
showed the same finding as well as anterior and mid cingulate (corresponding to part of the
dDMN in our study) hyperactivity positively correlating with cognitive errors and heightened
behavioral monitoring in abstinence. The present study showed that the RECN strength was
negatively correlated with subjects’ impulsiveness, while dDMN strength was positively corre-
lated with impulsiveness. Our results advance our understanding of neural network changes
during substance use disorder remission: as abstinence progresses, cortices within the RECN
and dDMN may become hyperactive to exert top-down executive control in a directed fashion;
this neuroadaptive change may be associated with decreases in impulsivity and increases in
inhibitory control.

Fig 6. Left, NOI demonstrating significantly greater Granger causal relationships in SDI compared to controls. Illustrated are the NOI

relationships that differed between groups; colors correspond to NOI labels on right. Printed numbers in upper left corner of each slice correspond

to Z-axis coordinates in MNI space. Right, Granger causal relationships demonstrating greater directed information flow in SDI compared to

controls (FDR corrected). RECN, right executive control network; dDMN, dorsal default mode network; BGN, basal ganglia network. Values indicate

Granger causal p-values. Middle, whole brain illustrations of NOI identified. Arrows reflect Granger causal influence.

doi:10.1371/journal.pone.0164818.g006
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However, the top-down cognitive control hypothesis is not straightforward because in addi-
tion to executive function and cognitive control, affect plays an important role. Albein-Urios
et al. [42] showed that short-term abstinent (2.5 ± 5.5 months) cocaine dependent individuals
had increased right dorsolateral PFC and bilateral temporoparietal cortex activation during
negative emotion experienceswithout a concomitant increase in the subjective negative experi-
ence itself, suggesting an exaggerated neural response in these regions is required to produce
normal levels of emotional salience. The regions reported closely resemble by visual compari-
son the RECN identified by our analysis. Albein-Urios et al. posited that these areas demon-
strate increased sensitization toward negative emotions in SDI. If increased RECN top-down
control is a durable feature of long-term abstinence, the literature thus far suggests that its
manifestations in human behavior are complex and not reducible to a single neuropsychologi-
cal construct. Our finding that RECN strength is negatively correlated to negative affect while
dDMN strength trended towards positive correlation with negative affect provides further

Fig 7. Correlations between mean beta value within the RECN and dDMN with impulsivity, approach, and negative affect metrics. Solid black lines

indicate the linear regression, solid colored lines indicate the 95% confidence interval, and colored shaded regions indicate the prediction interval. Each

point reflects a single participant’s mean beta within a given network, and their score on the given behavioral metric. Bolded text indicates statistically

significant pairwise correlations using the Bonferroni method to correct for eight multiple comparisons. NS, not statistically significant.

doi:10.1371/journal.pone.0164818.g007
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evidence that the top-down control model may involve affective components as well, possibly
through reciprocal connectivity with limbic areas.

Right-sided lateralization of our ECN findings is not unexpected given the asymmetric func-
tional specialization of cerebral hemispheres in healthy humans. Cocaine dependent patients
exhibit reduced resting state interhemispheric connectivity compared to healthy controls in
prefrontal and parietal cortices [43], suggesting increased lateralization of function. Connolly
et al. [40] reported that hyperactivity in the inferior frontal gyrus correlated with inhibitory
control was greater in the left hemisphere in short-term abstinent individuals and greater in
the right hemisphere in long-term abstinent individuals. They hypothesized that a shift from
left to right inferior frontal gyrus for inhibitory control may reflect a transition from short-
term to long-term abstinence. Our results of increased RECN effective connectivity in long-
term abstinent stimulant dependence are consistent with this hypothesis, although future lon-
gitudinal studies are required for substantiation.

Increased Effective Connectivity from dDMN to BGN

Although the DMN is incompletely understood, growing evidence demonstrates its roles in
internally directed tasks such as spontaneous cognition [44], self-referential [45] and autobio-
graphical [46] thought, and social understanding of others [47]. We demonstrated increased
effective connectivity from the dDMN to BGN; however, this findingmust be interpreted in
the context of the structures within the NOI identified as BGN (Fig 5). This NOI included
basal ganglia, thalamus, amygdala, hippocampus, hypothalamus, midbrain, and pons. Thus,
BGN included several key regions of the bottom-up mesocorticolimbic circuit including the
ventral tegmental area, nucleus accumbens, amygdala, and striatum.

Prior studies have demonstrated hypoactivity in stimulant users in the dDMN and in BGN
as well as decreased connectivity between these networks. In active cocaine users, Tomasi et al.

Fig 8. Global efficiency (left) and local efficiency (right) in SDI and controls as a function of network cost.

doi:10.1371/journal.pone.0164818.g008
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[48] showed that cocaine cues disengaged fMRI activity in the ventral striatum, hypothalamus,
and DMN in proportion to density of striatal dopamine receptors by PET. DMN activation has
been shown to predict performance errors, is diminished in active cocaine dependence, and the
extent of altered error-preceding activation has been reported to correlate with years of cocaine
use [49]. Gu et al. [15] used a seed-based fMRI paradigm in active cocaine users and found sig-
nificantly decreased functional connectivity betweenmultiple regions of the DMN and BGN.
McHugh et al. [50] showed that individuals successfully abstinent 30 days after detoxification
had stronger functional connectivity between the amygdala, ventromedial PFC, and anterior
cingulate cortex compared to those who had relapsed. By visual comparison, these regions cor-
respond to structures within the NOI identified as dDMN and BGN in our study. Connolly
et al. [40] demonstrated increased anterior and mid cingulate activity in long-term abstinent
compared to short-term abstinent individuals, activity which correlated with heightened
behavioral monitoring. Together, these prior studies suggest that DMN activity may change
during abstinence. Initial hypoactivation during early abstinencemay transition to hyperacti-
vation and increased connectivity with long-term abstinence. One interpretation is that find-
ings of increased effective connectivity from dDMN to BGN in long-term abstinencemay be a
compensatory mechanism related to behavioral monitoring not seen in active users. However,
longitudinal studies are needed to demonstrate this.

Increased Global and Decreased Local Integration

Our findings of increased bidirectional connectivity, increased global efficiency, and decreased
local efficiency in long-term abstinent SDI compared to healthy controls suggests patholog-
ically greater global integration and lower local integration in SDI; that is, a connectomic
decrease in small-worldness. Similar findings in humans have only been reported using EEG
data in 1–3 week abstinent methamphetamine dependent persons. Ahmadlou et al. [51]
showed that these patients demonstrated a deviation from small-worldness and increased
global hypersynchronization in the gamma frequency band, the EEG band most reactive to
cognitive information processing. In contrast, active cocaine users demonstrated less global
connectivity compared to healthy controls during a Stroop task; however, after adjusting for
individual connectivity, cocaine dependent individuals showed greater intrinsic connectivity in
the ventral striatum, putamen, inferior frontal gyrus, anterior insula, thalamus and substantia
nigra [52].

Several animal studies provide important context for the interpretation of our findings.
Schwarz et al. [53] used a pharmacological challenge design which revealed that rats under the
acute effects of amphetamine compared to a saline vehicle exhibited less clustering (small-
worldness) and increased connectedness within somatosensory, motor, cingulate, prefrontal,
and insular cortices. In the rhesus monkey model, active cocaine self-administrationwas asso-
ciated with decreased global functional connectivity that selectively affected top-down prefron-
tal circuits and control behavior while sparing limbic and striatal areas [54]. Interestingly,
impaired connectivity between prefrontal and striatal areas during abstinence predicted
cocaine intake when these monkeys were again provided access to cocaine (i.e., prediction of
relapse), consistent with the connectivity pattern associated with relapse in humans as reported
by Camchong et al. [18].

Together these findings suggest there is globally decreased connectivity in active users and
short-term abstinent with a transition to globally increased connectivity in long-term abstinent
users. These findingsmay improve clinical management if global connectivity patterns can be
used to predict abstinence success or trajectory in humans. Future longitudinal studies compar-
ing global connectivity in active, short-term, and long-term abstinent drug users must be
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performed to address this question. Another approach could involve correlating abstinence
duration with global connectivity across individuals, an approach we could not implement due
to the group-level nature of our statistical design.

Limitations

Controversy surrounding Granger Causality. While our study provides several impor-
tant novel findings, it has limitations. Influences between specializedneural systems exist on a
spectrumof temporal lag. Functional connectivity using temporal correlation reflect influences
with causal latencies that are below the temporal resolution of the repetition time. These influ-
ences are not truly contemporaneous in vivo, but appear so by fMRI as a result of low temporal
sampling and temporal blurring induced by the hemodynamic response function. Time-lag
basedmeasures such as Granger causality reflect slower influences with greater causal latencies
that occur on the order of hundreds of milliseconds,which may provide greater power in pre-
dicting cause-effect relationships at the timescale of conscious thought [55].

Neural signals between two nodesmay have significantly different physiologic functions
depending upon the directionality. As a result, segregating neural influences according to their
directionality is necessary in order to properly examine brain function.Methods of examining
effective connectivity using fMRI data include structural equation modelling [56] and dynamic
causal modelling [57]. These methods require a priori hypotheses describing the theoretical
connectivity structure and are limited to models consisting of a small number of nodes.We
used an alternative method, Granger causality, which is based on time-lag regressions and is
more data-driven.

Granger causality is increasingly used in fMRI-based neuroscience [58–62] and has been
previously applied specifically to independent component analysis as in our study [37,63–70].
However, criticisms of the application of Granger causality to fMRI data have included [71]:
(1) lack of evidence that Granger causality in fMRI-level time series reflects causality in neuro-
nal-level time series, (2) insufficient temporal sampling relative to the timescale of neuronal
events, and (3) the possibility that spurious findingsmay result from systematic differences in
hemodynamic response functions. Several recent developments have provided evidence that
fMRI Granger causality reliably reflects neuronal causality [60,71–73]. Seth and colleagues [74]
demonstrated that Granger causality is reliably invariant to inter-regional differences in the
hemodynamic response function, including the time-to-peak.However, they reported signifi-
cant effects of temporal resolution on their results. Wen and colleagues [60] demonstrated that
fMRI-basedGranger causality is a monotonic function of neural Granger causality. Impor-
tantly, they showed that this relationship can be reliably detected using conventional fMRI
temporal resolution and noise levels as was used here. However, they cautioned that differences
in the hemodynamic response could lead to spurious results.

The impact of hemodynamic response variability is currently debated. Schippers and col-
leagues [72] demonstrated that hemodynamic response variability was minimized by multisub-
ject group inference. Statistically, this is intuitive because population averaging will augment
systematic differences (e.g., true neuronal differences) while suppressing random or pseudo-
random differences (e.g., hemodynamic response variability). Some authors speculate that
HRF variability could be systematic [75], and indeed this is a confound that by design exists in
the majority of between-group fMRI studies using independent samples [76–78]. Accordingly,
we cannot exclude that systematic differences in the neurovascular response to neural activity
between groups may have contributed to our findings.
Other Limitations. Network resolution was limited by the manner in which independent

component analysis identifies temporally coherent signals across the brain. For example, the
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network component identified as BGN included several non-basal ganglia structures, such as
the thalamus, amygdala, hippocampus, and midbrain. Additionally, concatenation across indi-
viduals precluded correlation of individual psychological measures to resting state network
Granger causality; as such, correlations between the strength of each NOI and behavioral met-
rics were used to provide psychological context for the findings. Lastly, polysubstance use and
low educational attainment among psychostimulant users may be viewed as potential con-
founds or representation of real world clinical features. There is significant literature describing
the correlation between drug use and low educational attainment; it is debated whether low
educational attainment is the cause or result of drug use disorders [79–81]. More recently,
however, authors have reported that this correlation is due in part to shared genetic factors
[82] while others report that it is due to shared environmental or non-genetic familial risk fac-
tors [83,84]. These studies suggest that low educational attainment is a behavioral component
of the pathology of substance use disorders.With regard to polysubstance use among SDI,
while this limitation prevents our findings from being attributed to a single drug, it strengthens
our results by providing biological and ecological validity. Epidemiologic studies have demon-
strated that psychostimulant dependence does not naturally occur in isolation; rather, most
patients meet dependence criteria for other drugs of abuse [85,86]. Our sample population
thus reflects the real-world, clinical population of patients with stimulant dependence.

Conclusion

Increased effective connectivity in long-term abstinent drug users may reflect improved cogni-
tive control and behavioral monitoring (ECN) over self-referential thought (DMN), habit
(BGN), and reward (BGN) processes in long-term abstinent drug users. Higher global and
lower local efficiencyacross all networks in SDI compared to healthy controls may reflect con-
nectivity changes associated with drug dependence or remission. Future, longitudinal studies
are necessary to definitively characterize connectomic changes across the natural history of
substance use disorders.
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56. Büchel C, Friston KJ. Modulation of connectivity in visual pathways by attention: cortical interactions

evaluated with structural equation modelling and fMRI. Cereb Cortex N Y N 1991. 1997; 7: 768–778.

57. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. NeuroImage. 2003; 19: 1273–1302.

PMID: 12948688

58. Feng C, Deshpande G, Liu C, Gu R, Luo Y-J, Krueger F. Diffusion of responsibility attenuates altruistic

punishment: A functional magnetic resonance imaging effective connectivity study. Hum Brain Mapp.

2015; doi: 10.1002/hbm.23057 PMID: 26608776

59. Cohen Kadosh K, Luo Q, de Burca C, Sokunbi MO, Feng J, Linden DEJ, et al. Using real-time fMRI to

influence effective connectivity in the developing emotion regulation network. NeuroImage. 2015; 125:

616–626. doi: 10.1016/j.neuroimage.2015.09.070 PMID: 26475487

60. Wen X, Rangarajan G, Ding M. Is Granger causality a viable technique for analyzing fMRI data? PloS

One. 2013; 8: e67428. doi: 10.1371/journal.pone.0067428 PMID: 23861763

61. Chiong W, Wilson SM, D’Esposito M, Kayser AS, Grossman SN, Poorzand P, et al. The salience net-

work causally influences default mode network activity during moral reasoning. Brain J Neurol. 2013;

136: 1929–1941. doi: 10.1093/brain/awt066 PMID: 23576128

62. Zhang Y, Li Q, Wen X, Cai W, Li G, Tian J, et al. Granger causality reveals a dominant role of memory

circuit in chronic opioid dependence. Addict Biol. 2016; doi: 10.1111/adb.12390 PMID: 26987308

63. Zhong Y, Huang L, Cai S, Zhang Y, von Deneen KM, Ren A, et al. Altered effective connectivity pat-

terns of the default mode network in Alzheimer’s disease: an fMRI study. Neurosci Lett. 2014; 578:

171–175. doi: 10.1016/j.neulet.2014.06.043 PMID: 24996191

64. Liu Z, Zhang Y, Bai L, Yan H, Dai R, Zhong C, et al. Investigation of the effective connectivity of resting

state networks in Alzheimer’s disease: a functional MRI study combining independent components

analysis and multivariate Granger causality analysis. NMR Biomed. 2012; 25: 1311–1320. doi: 10.

1002/nbm.2803 PMID: 22505275

65. Liu Z, Bai L, Dai R, Zhong C, Wang H, You Y, et al. Exploring the effective connectivity of resting state

networks in mild cognitive impairment: an fMRI study combining ICA and multivariate Granger causal-

ity analysis. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc IEEE Eng Med Biol Soc Annu Conf.

2012; 2012: 5454–5457. doi: 10.1109/EMBC.2012.6347228 PMID: 23367163

66. Zhong C, Bai L, Dai R, Xue T, Wang H, Feng Y, et al. Modulatory effects of acupuncture on resting-

state networks: a functional MRI study combining independent component analysis and multivariate

Granger causality analysis. J Magn Reson Imaging JMRI. 2012; 35: 572–581. doi: 10.1002/jmri.22887

PMID: 22069078

67. Stevens MC, Pearlson GD, Calhoun VD. Changes in the interaction of resting-state neural networks

from adolescence to adulthood. Hum Brain Mapp. 2009; 30: 2356–2366. doi: 10.1002/hbm.20673

PMID: 19172655

68. Londei A, D’Ausilio A, Basso D, Sestieri C, Del Gratta C, Romani GL, et al. Brain network for passive

word listening as evaluated with ICA and Granger causality. Brain Res Bull. 2007; 72: 284–292. doi:

10.1016/j.brainresbull.2007.01.008 PMID: 17452288

69. Demirci O, Stevens MC, Andreasen NC, Michael A, Liu J, White T, et al. Investigation of relationships

between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct

differences between schizophrenia patients and healthy controls. NeuroImage. 2009; 46: 419–431.

doi: 10.1016/j.neuroimage.2009.02.014 PMID: 19245841

70. Diez I, Erramuzpe A, Escudero I, Mateos B, Cabrera A, Marinazzo D, et al. Information Flow Between

Resting-State Networks. Brain Connect. 2015; doi: 10.1089/brain.2014.0337 PMID: 26177254

71. Deshpande G, Hu X. Investigating effective brain connectivity from fMRI data: past findings and current

issues with reference to Granger causality analysis. Brain Connect. 2012; 2: 235–245. doi: 10.1089/

brain.2012.0091 PMID: 23016794

72. Schippers MB, Renken R, Keysers C. The effect of intra- and inter-subject variability of hemodynamic

responses on group level Granger causality analyses. NeuroImage. 2011; 57: 22–36. doi: 10.1016/j.

neuroimage.2011.02.008 PMID: 21316469

73. Deshpande G, Sathian K, Hu X. Effect of hemodynamic variability on Granger causality analysis of

fMRI. NeuroImage. 2010; 52: 884–896. doi: 10.1016/j.neuroimage.2009.11.060 PMID: 20004248

74. Seth AK, Chorley P, Barnett LC. Granger causality analysis of fMRI BOLD signals is invariant to hemo-

dynamic convolution but not downsampling. NeuroImage. 2013; 65: 540–555. doi: 10.1016/j.

neuroimage.2012.09.049 PMID: 23036449

Top-Down Network Effective Connectivity in Abstinent Substance Dependent Individuals

PLOS ONE | DOI:10.1371/journal.pone.0164818 October 24, 2016 20 / 21

http://dx.doi.org/10.1038/nrn.2016.44
http://www.ncbi.nlm.nih.gov/pubmed/27225071
http://www.ncbi.nlm.nih.gov/pubmed/12948688
http://dx.doi.org/10.1002/hbm.23057
http://www.ncbi.nlm.nih.gov/pubmed/26608776
http://dx.doi.org/10.1016/j.neuroimage.2015.09.070
http://www.ncbi.nlm.nih.gov/pubmed/26475487
http://dx.doi.org/10.1371/journal.pone.0067428
http://www.ncbi.nlm.nih.gov/pubmed/23861763
http://dx.doi.org/10.1093/brain/awt066
http://www.ncbi.nlm.nih.gov/pubmed/23576128
http://dx.doi.org/10.1111/adb.12390
http://www.ncbi.nlm.nih.gov/pubmed/26987308
http://dx.doi.org/10.1016/j.neulet.2014.06.043
http://www.ncbi.nlm.nih.gov/pubmed/24996191
http://dx.doi.org/10.1002/nbm.2803
http://dx.doi.org/10.1002/nbm.2803
http://www.ncbi.nlm.nih.gov/pubmed/22505275
http://dx.doi.org/10.1109/EMBC.2012.6347228
http://www.ncbi.nlm.nih.gov/pubmed/23367163
http://dx.doi.org/10.1002/jmri.22887
http://www.ncbi.nlm.nih.gov/pubmed/22069078
http://dx.doi.org/10.1002/hbm.20673
http://www.ncbi.nlm.nih.gov/pubmed/19172655
http://dx.doi.org/10.1016/j.brainresbull.2007.01.008
http://www.ncbi.nlm.nih.gov/pubmed/17452288
http://dx.doi.org/10.1016/j.neuroimage.2009.02.014
http://www.ncbi.nlm.nih.gov/pubmed/19245841
http://dx.doi.org/10.1089/brain.2014.0337
http://www.ncbi.nlm.nih.gov/pubmed/26177254
http://dx.doi.org/10.1089/brain.2012.0091
http://dx.doi.org/10.1089/brain.2012.0091
http://www.ncbi.nlm.nih.gov/pubmed/23016794
http://dx.doi.org/10.1016/j.neuroimage.2011.02.008
http://dx.doi.org/10.1016/j.neuroimage.2011.02.008
http://www.ncbi.nlm.nih.gov/pubmed/21316469
http://dx.doi.org/10.1016/j.neuroimage.2009.11.060
http://www.ncbi.nlm.nih.gov/pubmed/20004248
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049
http://dx.doi.org/10.1016/j.neuroimage.2012.09.049
http://www.ncbi.nlm.nih.gov/pubmed/23036449


75. Smith SM, Bandettini PA, Miller KL, Behrens TEJ, Friston KJ, David O, et al. The danger of systematic

bias in group-level FMRI-lag-based causality estimation. NeuroImage. 2012; 59: 1228–1229. doi: 10.

1016/j.neuroimage.2011.08.015 PMID: 21867760

76. Hillman EMC. Coupling mechanism and significance of the BOLD signal: a status report. Annu Rev

Neurosci. 2014; 37: 161–181. doi: 10.1146/annurev-neuro-071013-014111 PMID: 25032494

77. D’Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a

challenge for neuroimaging. Nat Rev Neurosci. 2003; 4: 863–872. doi: 10.1038/nrn1246 PMID:

14595398

78. Murphy K, Birn RM, Bandettini PA. Resting-state fMRI confounds and cleanup. NeuroImage. 2013; 80:

349–359. doi: 10.1016/j.neuroimage.2013.04.001 PMID: 23571418

79. Fergusson DM, Horwood LJ, Beautrais AL. Cannabis and educational achievement. Addict Abingdon

Engl. 2003; 98: 1681–1692.

80. Yamada T, Kendix M, Yamada T. The impact of alcohol consumption and marijuana use on high

school graduation. Health Econ. 1996; 5: 77–92. doi: 10.1002/(SICI)1099-1050(199601)5:1<77::AID-

HEC184>3.0.CO;2-W PMID: 8653193

81. Swaim RC, Beauvais F, Chavez EL, Oetting ER. The effect of school dropout rates on estimates of

adolescent substance use among three racial/ethnic groups. Am J Public Health. 1997; 87: 51–55.

PMID: 9065226

82. Bergen SE, Gardner CO, Aggen SH, Kendler KS. Socioeconomic status and social support following

illicit drug use: causal pathways or common liability? Twin Res Hum Genet Off J Int Soc Twin Stud.

2008; 11: 266–274. doi: 10.1375/twin.11.3.266 PMID: 18498205

83. Verweij KJH, Huizink AC, Agrawal A, Martin NG, Lynskey MT. Is the relationship between early-onset

cannabis use and educational attainment causal or due to common liability? Drug Alcohol Depend.

2013; 133: 580–586. doi: 10.1016/j.drugalcdep.2013.07.034 PMID: 23972999

84. Grant JD, Scherrer JF, Lynskey MT, Agrawal A, Duncan AE, Haber JR, et al. Associations of alcohol,

nicotine, cannabis, and drug use/dependence with educational attainment: evidence from cotwin-con-

trol analyses. Alcohol Clin Exp Res. 2012; 36: 1412–1420. doi: 10.1111/j.1530-0277.2012.01752.x

PMID: 22587016

85. Sara G, Burgess P, Harris M, Malhi GS, Whiteford H, Hall W. Stimulant use disorders: characteristics

and comorbidity in an Australian population sample. Aust N Z J Psychiatry. 2012; 46: 1173–1181. doi:

10.1177/0004867412461057 PMID: 22990432

86. Stinson FS, Grant BF, Dawson DA, Ruan WJ, Huang B, Saha T. Comorbidity between DSM-IV alcohol

and specific drug use disorders in the United States: results from the National Epidemiologic Survey

on Alcohol and Related Conditions. Drug Alcohol Depend. 2005; 80: 105–116. doi: 10.1016/j.

drugalcdep.2005.03.009 PMID: 16157233

Top-Down Network Effective Connectivity in Abstinent Substance Dependent Individuals

PLOS ONE | DOI:10.1371/journal.pone.0164818 October 24, 2016 21 / 21

http://dx.doi.org/10.1016/j.neuroimage.2011.08.015
http://dx.doi.org/10.1016/j.neuroimage.2011.08.015
http://www.ncbi.nlm.nih.gov/pubmed/21867760
http://dx.doi.org/10.1146/annurev-neuro-071013-014111
http://www.ncbi.nlm.nih.gov/pubmed/25032494
http://dx.doi.org/10.1038/nrn1246
http://www.ncbi.nlm.nih.gov/pubmed/14595398
http://dx.doi.org/10.1016/j.neuroimage.2013.04.001
http://www.ncbi.nlm.nih.gov/pubmed/23571418
http://dx.doi.org/10.1002/(SICI)1099-1050(199601)5:1&lt;77::AID-HEC184&gt;3.0.CO;2-W
http://dx.doi.org/10.1002/(SICI)1099-1050(199601)5:1&lt;77::AID-HEC184&gt;3.0.CO;2-W
http://www.ncbi.nlm.nih.gov/pubmed/8653193
http://www.ncbi.nlm.nih.gov/pubmed/9065226
http://dx.doi.org/10.1375/twin.11.3.266
http://www.ncbi.nlm.nih.gov/pubmed/18498205
http://dx.doi.org/10.1016/j.drugalcdep.2013.07.034
http://www.ncbi.nlm.nih.gov/pubmed/23972999
http://dx.doi.org/10.1111/j.1530-0277.2012.01752.x
http://www.ncbi.nlm.nih.gov/pubmed/22587016
http://dx.doi.org/10.1177/0004867412461057
http://www.ncbi.nlm.nih.gov/pubmed/22990432
http://dx.doi.org/10.1016/j.drugalcdep.2005.03.009
http://dx.doi.org/10.1016/j.drugalcdep.2005.03.009
http://www.ncbi.nlm.nih.gov/pubmed/16157233

