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Abstract

In this paper, control of uncertain fractional-order financial chaotic system with input satura-

tion and external disturbance is investigated. The unknown part of the input saturation as

well as the system’s unknown nonlinear function is approximated by a fuzzy logic system.

To handle the fuzzy approximation error and the estimation error of the unknown upper

bound of the external disturbance, fractional-order adaptation laws are constructed. Based

on fractional Lyapunov stability theorem, an adaptive fuzzy controller is designed, and the

asymptotical stability can be guaranteed. Finally, simulation studies are given to indicate

the effectiveness of the proposed method.

1 Introduction

Thirty years ago, Stutzer, an economist, first obtained the chaotic behavior in financial system
[1]. Up to now, it has been shown that financial systems can exhibit complicated behavior, for
example, chaos [2–5]. Besides, financial crisis can be seen as a kind of chaotic phenomenon [2,
6]. Meanwhile, researchers have found that system uncertainties in the economic development,
for example, the abrupt change variety of economy in frequency and the influence of non-
financial elements, are increasing [7–10]. Accordingly, taking the chaotic behavior as well as
system uncertainties into consideration, to solve financial crisis and some relevant problems, it
is advisable to study the chaos control methods for financial systems.

Fractional calculus is an old topic which has a history more than 300 years. Now, it can be
seen in many domains, ranging from life sciences and materials engineering to secret commu-
nication and control theory [11–21]. One of a major merits of fractional-order systems, com-
pared with the integer ones, is that the fractional-order ones have memory, and they have been
proven to be a powerful technique to describe the hereditary and memory properties of a lot of
materials and processes. It is known that financial variables possess memories, so fractional-
order models can be well used to describe dynamical behaviors in economic systems. Up to
now, some work has been done to control or discuss the dynamical behavior of fractional-
order financial systems [4, 9, 10, 22–28]. Generally speaking, the control and synchronization
for fractional-order financial chaotic systems is becoming a hot research area.
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On the other hand, most of actual physical systems may be inflicted by input saturation
because there exist a limited size of actuators, sensors, and interfacing system devices [29–33].
These input constraints usually damage the performance of the system or cause system’s ulti-
mate instability if it is not well handled.With respect to integer-order systems with input satu-
ration, many control methods have been given (for example, see, [29–36]). The usually used
idea to handle input saturation is that the sector bounded conditions are associated with input
nonlinearities, thus the stability of the system can be discussed based on Lyapunov stability cri-
terion. However, as a generalization of integer-order system, fractional-order systems have
many very different properties. Thus, these methods which are effective for integer-order sys-
tems can not be used to control fractional-order system directly. Up to now, there are only very
few literatures which consider the controller design for fractional-order nonlinear systems with
input saturation [37, 38]. In above prior work, the input saturation is handled by some linear
inequality, which contains a restricted condition. As far as financial systems are considered, the
input saturation phenomenon may occur naturally. So, how to design effective controllers for
fractional-order financial chaotic systems is a challenging and meaningful work.

Motivated by above discussions, in this paper, we will study the control for uncertain frac-
tional-order financial chaotic system subjected to input saturation with system uncertainty and
external disturbance. Our contributions consist in: (1) control of fractional-order financial cha-
otic system subjected to input saturation is considered in this paper, and the input saturation is
handled by a kind of transformation; (2) Fuzzy logic systems are used to approximate nonlin-
ear functions which contain both system uncertainties and input saturation, and an adaptive
fuzzy controller is proposed by using the fractional Lyapunov method; (3) to update the fuzzy
parameters, fractional-order adaptation laws, which have one more free degree compared with
the conventional integer-order ones, are designed.

The remainder of this paper is organized as follows: Section 2 lists some preliminaries. In
Section 3, adaptive fuzzy control algorithm is given and stability of the closed-loop system is
analyzed. Simulation studies are presented in Section 4. Finally, Section 5 gives the conclusions
of this work.

2 Preliminaries

2.1 Preliminaries

The fractional-order integrodifferential operator can be seen as a extended concept of the inte-
ger-order one. The mostly commonly utilized definitions in literature are Grünwald-Letnikov,
Riemann-Liouville, and Caputo definitions. The main reason why Caputo’s derivative is intro-
duced for engineering applications consists in that, just like in integer-order systems, its
Laplace transform requires integer-order derivatives for the initial conditions. On the contrary,
the Laplace transform of the Riemann-Liouville definition contains fractional-order derivatives
that are difficult to be physically interpreted. The Caputo’s derivative will be used in this paper.
The q-th fractional integral can be given as

I � qf ðtÞ ¼
1

GðqÞ

Z t

0

f ðtÞ
ðt � tÞ

1� q dt; ð1Þ

where Γ(�) stands for the Gamma function.
The q-th fractional-order derivative is given as

Dqf ðtÞ ¼
1

Gðn � qÞ

Z t

0

f ðnÞðtÞ
ðt � tÞ

qþ1� n dt; ð2Þ

where n − 1� q< n (n 2 N ). In this paper, only the case 0< q� 1 is included.
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To facilitate the controller design, let us give the following results first.
Definition 1 [11]. The Mittag-Leffler function can be given as

Ea1 ;a2
ðzÞ ¼

X1

k¼0

z
k

Gða1kþ a2Þ
; ð3Þ

where α1 and α2 are positive constants, and z 2 C.
The Laplace transform of Eq (3) is [11]

L ftb� 1Ea1 ;a2
ð� ata1Þg ¼

sa1 � a2

sa1 þ a
: ð4Þ

Lemma1 [11]. Let a2 2 C. If 0< α1< 2 and pa1

2
< i < minfp; pa1g, then, when |z|!1

and ι� |arg(z)� π, we have:

Ea1 ;a2
ðzÞ ¼ �

Xn

j¼1

1

Gða2 � a1jÞz
j þ o

1

jzj
nþ1

 !

: ð5Þ

Lemma2 [11]. Let 0< α1< 2 and a2 2 R. If pa1

2
< i � minfp; pa1g, then we can obtain

jEa1 ;a2
ðzÞj �

C
1þ jzj

ð6Þ

where C> 0, ι� |arg(z)|� π and |z|� 0.
Lemma3 [12]. Suppose that x(t) = 0 is an equilibrium point of the following system

DaxðtÞ ¼ f ðt; xðtÞÞ: ð7Þ

If there exist a Lyapunov function V(t, x(t)) and a class-K function gi, i = 1, 2, 3 such that

g1ðk xðtÞ kÞ � Vðt; xðtÞÞ � g2ðk xðtÞ kÞ; ð8Þ

DaVðt; xðtÞÞ � � g3ðk xðtÞ kÞ; ð9Þ

then system Eq (7) is asymptotically stable.
Lemma4 [13, 15]. Let xðtÞ 2 Rn be a smooth function and G 2 Rn�n be a positive definite

matrix. Then it holds that

1

2
DaxTðtÞGxðtÞ � xTðtÞGDaxðtÞ: ð10Þ

2.2 Description of a fuzzy logic system

A fuzzy inference system contains four parts, i.e., the fuzzifier, the knowledge base, the fuzzy
inference and the defuzzifier [17, 39–49]. The fuzzy rules are used by the fuzzy inference to
construct a mapping from xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; � � � ; xnðtÞ�

T
2 Rn which is the input vector to an

output f̂ ðtÞ 2 R. Suppose that there are N fuzzy rules are used. The ith rule can be expressed
as

Rule i : if x1ðtÞ is Fi
1

and � � � xnðtÞ is Fn
i then f̂ ðtÞ is gi; ð11Þ

where Fi
1
; � � � ; Fi

n represent fuzzy sets and gi corresponds to the output of this fuzzy rule. The
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above fuzzy inference can bemodeled by

f̂ ðxðtÞÞ ¼

XN

i¼1

gi
Yn

j¼1

mFij
ðxjðtÞÞ

XN

i¼1

Yn

j¼1

mFij
ðxjðtÞÞ

; ð12Þ

where mFij
ðxjðtÞÞ is the value of membership of xj(t) to Fi

j . Denote W
T
ðtÞ ¼ ½g1; g2; � � � ; gN � and ϕ

(x(t)) = [q1(x(t)), q2(x(t)), � � �, qN(x(t))]T, where qj is defined by

qj ¼

Yn

j¼1

mFij
ðxjðtÞÞ

XN

i¼1

Yn

j¼1

mFij
ðxjðtÞÞ

; ð13Þ

then, we can rewrite Eq (12) as

f̂ ðxðtÞÞ ¼ W
T
ðtÞ�ðxðtÞÞ: ð14Þ

In fact, Eq (12) is the most frequently utilized in literatures. Based on the universal approxi-
mation theorem [39], we can use the fuzzy logic system Eq (12) to approximate any continuous
function f(t) which is defined on some compact set O to an arbitrary degree of accuracy.

3 Main results

3.1 Description of fractional-order financial chaotic systems

The mathematical model of the fractional-order financial system to be considered in this paper
is [9, 22, 23]

Dqx1ðtÞ ¼ x3ðtÞ þ ðx2ðtÞ � aÞx1ðtÞ

Dqx2ðtÞ ¼ 1 � bx2ðtÞ � x2
1
ðtÞ

Dqx3ðtÞ ¼ � x1ðtÞ � gx3ðtÞ;

ð15Þ

8
>>><

>>>:

where α corresponds to the saving amount, β represents the cost per investment, γ is the elas-
ticity of demand of commercial market, and q 2 (0, 1]. The first state variable x1(t), which rep-
resents the interest rate, can be effected by the surplus between investment and savings as well
as structural adjustments of the prices. The second state variable x2(t) corresponds to the rate
of investment, and inversely proportional to the cost of investment and the interest rate. The
third state variable x3(t) depends on the difference between supply and demand in the market,
and it can also be affected by the inflation rate. The equilibrium points of Eq (15) are:

Q1 ¼ 0;
1

b
; 0

� �

;

Q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � b � abg

g

r

;
1þ ag

g
; �

1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � b � abg

g

s !

;

Q3 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � b � abg

g

r

;
1þ ag

g
;
1

g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g � b � abg

g

s !

:

ð16Þ
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With respect to the equilibrium point Q� ¼ ½x�
1
; x�

2
; x�

3
�
T , the Jacobian matrix is

JQ ¼

� aþ x�
2

x�
1

1

� 2x�
1
� b 0

� 1 0 � g

2

6
6
6
4

3

7
7
7
5
: ð17Þ

Suppose that α = 1, β = 0.1 and γ = 1, then the eigenvalues of the equilibriumQ1 = (0.000;
10.000; 0.000) are ρ1 = 8.8990, ρ2 = −0.8990, and ρ3 = −0.1000. As a result, it is a saddle point.
For equilibrium pointsQ2 = (0.8944; 2.000; −0.8944) and Q3 = (−0.8944; 2.000; 0.8944), they
are: ρ1 = −0.7609 and ρ2,3 = 0.3304 ± 1.4112i. Since they are unstable equilibriums, the condi-
tion for chaos is satisfied. It is easy to get the minimal commensurate order of the system is
q> 0.8537. Let the initial conditions be x1(0) = 1, x2(0) = 2, x3(0) = −0.5. The chaotic attractor
of the fractional-order financial system Eq (15) is shown in Figs 1 and 2 when q = 0.86 and
q = 0.97, respectively.

Fig 1. Chaotic behavior of fractional-order financial system Eq (15) with q = 0.86 in (a) x1(t) − x2(t) − x3(t),

(b) x1(t) − x2(t), (c) x1(t) − x3(t) and (d) x2(t) − x3(t).

doi:10.1371/journal.pone.0164791.g001
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3.2 Adaptive fuzzy controller design

Taking the system uncertainties and external disturbance into consideration, and let A ¼

� a 0 1

0 � b 0

� 1 0 � g

2

4

3

5 and f ðxðtÞÞ ¼
� x1ðtÞx2ðtÞ
1 � x2

1
ðtÞ

0

2

4

3

5, the controlled fractional-order financial

chaotic system Eq (15) can be rewritten as

DqxðtÞ ¼ AxðtÞ þ f ðxðtÞÞ þ 4f ðxðtÞÞ þ GdðtÞ þ GSðuðtÞÞ ð18Þ

where x(t) = [x1(t), x2(t), x3(t)]T is the state vector, G 2 R3�3 is a constant control gain matrix,
uðtÞ ¼ ½u1ðtÞ; u2ðtÞ; u3ðtÞ�

T
2 R3 represents the control input to be designed,SðuðtÞÞ ¼

½Sðu1ðtÞÞ; Sðu2ðtÞÞ;Sðu3ðtÞÞ�
T
2 R3 represents the input saturation, and4f(x(t)) and dðtÞ 2

R3 are the system uncertainty and external disturbance, respectively. In this paper, the input
saturation is defined as

SðuiðtÞÞ ¼

ui;max; uiðtÞ � ui;max

uiðtÞ; ui;min � uiðtÞ � ui;max

ui;min; uiðtÞ � ui;min

ð19Þ

8
><

>:

Fig 2. Chaotic behavior of fractional-order financial system Eq (15) with q = 0.97 in (a) x1(t) − x2(t) − x3(t),

(b) x1(t) − x2(t), (c) x1(t) − x3(t) and (d) x2(t) − x3(t).

doi:10.1371/journal.pone.0164791.g002
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where ui,max> 0, ui,min< 0, i = 1, 2, 3 are known constants. Define

oiðtÞ ¼

ui;max � uiðtÞ; uiðtÞ � ui;max

0; ui;min � uiðtÞ � ui;max

uiðtÞ � ui;min; uiðtÞ � ui;min:

ð20Þ

8
>>><

>>>:

Let ω(t) = [ω1(t), ω2(t), ω3(t)]T, then it follows from Eqs (19) and (20) that

SðuðtÞÞ ¼ uðtÞ þ oðtÞ: ð21Þ

To proceed, the following Assumptions are needed.
Assumption 1 The control gain matrix G is an unknown positive definite matrix.
Assumption 2 There exists an unknown positive constant �di such that

jdiðtÞj � �di; i ¼ 1; 2; 3.
Multiplying G−1 to both sides of Eq (18), denoting P = G−1 and using Eq (21), we have

PDqxðtÞ ¼ $ðtÞ þ dðtÞ þ uðtÞ ð22Þ

where$ðtÞ ¼ PAxðtÞ þ Pf ðxðtÞÞ þ P4f ðxðtÞÞ þ oðtÞ is an unknown nonlinear function.
Denote$ðtÞ ¼ ½$1ðtÞ; $2ðtÞ; $2ðtÞ�

T .
Noting that the continuous nonlinear function$iðtÞ is fully unknown, we can approximate

it, by using the fuzzy logic system Eq (14), as

$̂ iðtÞ ¼ W
T
i ðtÞ�iðxðtÞÞ; i ¼ 1; 2; 3: ð23Þ

The ideal parameter of ϑi(t) can be defined as

W
�

i ¼ arg min
WiðtÞ

sup
xðtÞ
j$iðtÞ � $̂ iðtÞj

h i
: ð24Þ

It is worth mentioning that the parameter W
�

i is given only for theoretical analysis purpose. In
fact, in the controller design procedure, we will not need its exact value. Let the parameter esti-
mation error and the fuzzy system approximation error be

~W iðtÞ ¼ WiðtÞ � W
�

i ; ð25Þ

and

εiðtÞ ¼ $iðtÞ � $̂ iðtÞ; ð26Þ

respectively. According to the results in [40, 42, 50], we can suppose that there exists an
unknown positive constant �εi such that

jεiðtÞj � �εi: ð27Þ

Denote ε(t) = [ε1(t), ε2(t), ε3(t)]T, ϑ(t) = [ϑ1(t), ϑ2(t), ϑ3(t)], �ε ¼ ½�ε1; �ε2; �ε3�
T ,

~WðtÞ ¼ ½~W1ðtÞ; ~W2ðtÞ; ~W3ðtÞ�, W
�
¼ ½W

�

1
; W
�

2
; W
�

3
�
T , we have

$̂ðtÞ � $ðtÞ ¼ $̂ðtÞ � $̂ðt; W�Þ þ $̂ðt; W�Þ � $ðtÞ

¼ W
T
ðtÞ�ðxðtÞÞ � W

�T
�ðxðtÞÞ � εðtÞ

¼ ~WTðtÞ�ðxðtÞÞ � εðtÞ:

ð28Þ

To proceed, we will present the following two Lemmas.
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Lemma5 Let zðtÞ 2 R be a smooth function. If DqzðtÞ � 0, then the function z(t) is mono-
tone decreasing.

Proof 1 It is easy to get that

DqzðtÞ þ gðtÞ ¼ 0: ð29Þ

where gðtÞ 2 R is a non-negative function. The Laplace transform of Eq (29) is

ZðsÞ ¼
zð0Þ
s
�

GðsÞ
sq

ð30Þ

where Z(s) and G(s) represent the Laplace transforms of z(t) and g(t), respectively. The solution
of Eq (30) can be given as

zðtÞ ¼ zð0Þ � D� qgðtÞ: ð31Þ

Noting that g(t)� 0 for all t> 0, according to Eq (1) we have D� qgðtÞ � 0. Thus, it follows Eq
(31) that z(t)� z(0), and the function z(t) is monotone decreasing.

Lemma6 Let V1ðtÞ ¼ 1

2
z2

1
ðtÞ þ 1

2
z2

2
ðtÞ, where z1ðtÞ 2 R and z2ðtÞ 2 R are smooth functions.

Suppose that

DqV1ðtÞ � � kz2
1
ðtÞ ð32Þ

where κ> 0. Thus, it holds that

z2
1
ðtÞ � 2V1ð0ÞEqð� 2ktqÞ: ð33Þ

Proof. Taking the q-th fractional integral Eq (32) gives

V1ðtÞ � V1ð0Þ � � kD� qz2
1
ðtÞ: ð34Þ

Then Eq (34) implies

z2
1
ðtÞ � 2V1ð0Þ � 2kD� qx2ðtÞ: ð35Þ

Thus we know that we can find a function h(t)� 0 such that

z2
1
ðtÞ þ hðtÞ ¼ 2V1ð0Þ � 2kD� qz2

1
ðtÞ: ð36Þ

Then the Laplace transform (L f�g) of Eq (36) is

ZðsÞ ¼ 2V1ð0Þ
sq� 1

sq þ 2k
�

sq

sq þ 2k
HðsÞ: ð37Þ

Based on Eq (4), we can solve Eq (37) as

z2
1
ðtÞ ¼ 2V1ð0ÞEqð� 2ktqÞ � 2hðtÞ � ½t� 1Eq;0ð� 2ktqÞ� ð38Þ

where � represents the convolution operator. It is easy to know that both Eq, 0(−2ktq) and t−1

are nonnegative functions, thus we have that Eq (33) holds. This ends the proof of Lemma 6.
According to Lemma 6, we can obtain the following results.
Lemma7 Suppose that V2ðtÞ ¼ 1

2
zTðtÞG1zðtÞ þ 1

2
rTðtÞG2rðtÞ, where zðtÞ 2 Rn and rðtÞ 2

Rn are smooth functions, and G1 and G2 2 Rn�n are two positive definite matrices. Then, if
there exists a positive definite matrix G3 and such that

DqV2ðtÞ � � xTðtÞG3xðtÞ; ð39Þ

then we have kx(t)k and ky(t)k will converge to the origin asymptotically (i.e. lim
t!1
k xðtÞ k¼ 0).
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The main results can be concluded as the following Theorem.
Theorem 1 Consider the controlled fractional-order financial chaotic system Eq (18) under

the Assumptions 1 and 2. Suppose that the controller is designed as

uðtÞ ¼ � W
T
ðtÞ�ðxðtÞÞ � K1xðtÞ � K̂ 2ðtÞsgnðxðtÞÞ; ð40Þ

where K1 = diag(k1i, k12, k13) and K̂ 2ðtÞ ¼ diagðk̂21ðtÞ; k̂22ðtÞ; k̂23ðtÞÞ (k1i> 0 is positive design
parameter and k̂2iðtÞ is adjustable parameter which is the estimation of the unknown constant
k2i ¼

�di þ �ε i) and the fractional adaptation laws are given as

DaW
T
i ðtÞ ¼ d1ixiðtÞ�ðtÞ ð41Þ

and

Dak2iðtÞ ¼ d2ijxiðtÞj ð42Þ

where δ1i and δ2i are positive design parameters, then we have that the state variables will con-
verge to the origin asymptotically and all signals involved will keep bounded.

Proof 2 From Eqs (22), (28) and (40) we have

PDqxðtÞ ¼ $ðtÞ þ dðtÞ � W
T
ðtÞ�ðxðtÞÞ � K1xðtÞ � K2sgnðxðtÞÞ

¼ dðtÞ � K1xðtÞ � K2sgnðxðtÞÞ � ~WTðtÞ�ðtÞ þ εðtÞ:
ð43Þ

Multiplying xT(t) to both sides of Eq (43), and using Assumptions 1 and 2, we can obtain

xTðtÞPDqxðtÞ ¼
X3

i¼1

diðtÞxiðtÞ � xTðtÞK1xðtÞ �
X3

i¼1

k̂2iðtÞjxiðtÞj

�
X3

i¼1

xiðtÞ~W
T
i ðtÞ�iðtÞ þ

X3

i¼1

εiðtÞxiðtÞ

�
X3

i¼1

�dijxiðtÞj � xTðtÞK1xðtÞ �
X3

i¼1

k̂2iðtÞjxiðtÞj

�
X3

i¼1

xiðtÞ~W
T
i ðtÞ�iðtÞ þ

X3

i¼1

�εijxiðtÞj

¼
X3

i¼1

k2ijxiðtÞj � xTðtÞK1xðtÞ �
X3

i¼1

k̂2iðtÞjxiðtÞj

�
X3

i¼1

xiðtÞ~W
T
i ðtÞ�iðtÞ

¼ � xTðtÞK1xðtÞ �
X3

i¼1

xiðtÞ~W
T
i ðtÞ�iðtÞ �

X3

i¼1

~k2iðtÞjxiðtÞj

ð44Þ

where

~k2iðtÞ ¼ k̂2iðtÞ � k2i ð45Þ

is the estimation error.
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Let

VðtÞ ¼
1

2
xTðtÞPxðtÞ þ

X3

i¼1

1

2d1i

~WT
i ðtÞ~WiðtÞ þ

X3

i¼1

1

2d2i

~k2

2iðtÞ: ð46Þ

Noting that Dq~k2iðtÞ ¼ Dqk̂2iðtÞ and Dq~WðtÞ ¼ DqŴðtÞ. Thus, Lemma 4, Eqs (41), (42) and
(44) imply that

DqVðtÞ � xTðtÞPDqxðtÞ þ
X3

i¼1

1

d1i

~WT
i ðtÞD

q~WiðtÞ þ
X3

i¼1

1

d2i

~k2iðtÞD
q~k2iðtÞ

¼ � xTðtÞK1xðtÞ �
X3

i¼1

xiðtÞ~W
T
i ðtÞ�iðtÞ �

X3

i¼1

~k2iðtÞjxiðtÞj

þ
X3

i¼1

1

d1i

~WT
i ðtÞD

q~WiðtÞ þ
X3

i¼1

1

d2i

~k2iðtÞD
q~k2iðtÞ

¼ � xTðtÞK1xðtÞ �
X3

i¼1

xiðtÞ~W
T
i ðtÞ�iðtÞ �

X3

i¼1

~k2iðtÞjxiðtÞj

þ
X3

i¼1

1

d1i

~WT
i ðtÞD

qŴiðtÞ þ
X3

i¼1

1

d2i

~k2iðtÞD
qk̂2iðtÞ

¼ � xTðtÞK1xðtÞ:

ð47Þ

Noting that DqVðtÞ � 0, according to Lemma 5 we know that x(t), ~W iðtÞ and ~k2iðtÞ will keep
bounded, and as a result, ϑi(t) and k̂2iðtÞ are all bounded for all t� 0. Thus, we know that all sig-
nals involved will remain bounded. Besides, it follows from Lemma 7 and Eq (47) that x(t) will
converge to zero asymptotically. And this completes the proof of Theorem 1.

Remark 1 It is worth mentioning that in the controller design, the model of the fractional-
order financial chaotic systems is not needed (see, Eq (40)). Besides, the proposed method can be
generalized to control many other uncertain fractional-order nonlinear systems.

Remark 2 In Eq (40), the sign function, which may result in the chattering phenomenon, is
used. To solve this problem, we can use some continuous function to replace it.

Remark 3 It should be noted that the input saturation in fractional-order systems is also con-
sidered in [37] and [38]. In [37], stability and stabilization for a class of fractional-order linear
system is discussed. To handle the effect of the input saturation, a memoryless nonlinearity is
used, thus the input saturation can be written as a linear matrix inequality. This method is very
interesting and easy to be realized. However, the results of this work can be guaranteed only is a
small region of the initial condition. In [38], a fractional-order nonlinear model is considered.
Just like the work of [37], a memoryless nonlinearity is also used. Besides, to discuss the stability
of the closed-loop system, a assumption, lim

x!0

f ðxðtÞÞ
xðtÞ ¼ 0 is used to impose restrictions on the system

nonlinear function. However, this is a very restrictive condition, which is very hard to be satisfied
in real physical systems. As a comparison, the above mentioned problems will not occur in this
paper.

4 Simulation studies

In the simulation, the system parameters are chosen as that in Section 3, i.e., α = 1, β = 0.1 and
γ = 1. The fractional-order q is selected as q = 0.91, and the initial condition is chosen as x(0) =
[2, −3, 3]T. The design parameters are k1i = 0.8, δ1i = δ2i = 1, i = 1, 2, 3, and the initial condition
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for k̂1iðtÞ is k̂1ið0Þ ¼ 1. The control gain matrix is G = diag(0.7, 1.1, 1), which is positive defi-
nite. The system uncertainty is4f ðxðtÞÞ ¼ ½0:1x1ðtÞx2ðtÞ; � 1 � 0:2x2

3
ðtÞ; sin ðx1ðtÞÞ�

T , and
the external disturbance is d(t) = [0.1sin(t), 0.1cos(t), 0.15sin(3t)].

For the fuzzy logic systems, we choose four Gaussian membership functions distributed on
[−3, 3]. As a results, there are 4 × 4 × 4 = 64 fuzzy rules are involved in the controller design.
The initial condition is yið0Þ ¼ 0 2 R64; i ¼ 1; 2; 3.

The simulations are presented in Figs 3–8. The state variables, which is indicated in Fig 3,
tend to the origin rapidly. To eliminate the chattering phenomenon which is produced by the

Fig 3. Time responses of the states variables.

doi:10.1371/journal.pone.0164791.g003

Fig 4. u1(t) and Sðu1ðtÞÞ.

doi:10.1371/journal.pone.0164791.g004
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sign(�) function in Eq (40), we use the continuous function arctan(10) to replace it. The control
inputs and their input saturations are shown in Figs 4–6. The norm of the fuzzy parameters,
and the estimations of the unknown constants, are given in Figs 7 and 8, respectively. It can be
seen that the state variables have a rapid convergence, and the adaptive fuzzy controller works
well even in a noisy environment with input saturation as well as a fully unknown system
model. Yet, the state variables cannot stop at the origin but have some tiny fluctuations near
the origin. The reasons for this phenomenon are: (1) with respect to a fractional-order

Fig 6. u3(t) and Sðu3ðtÞÞ.

doi:10.1371/journal.pone.0164791.g006

Fig 5. u2(t) and Sðu2ðtÞÞ.

doi:10.1371/journal.pone.0164791.g005
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nonlinear system, whenever the system trajectories reach the equilibrium point, they can not
stay there thereafter because there are no finite-time stable equilibria in fractional-order sys-
tems [51]; (2) sign(�) is replaced by arctan(10) in this paper so that asymptotical convergence
of the tracking error cannot be guaranteed.

It should be pointed out that the proposedmethods is valid for all q 2 (0, 1]. The simulation
results for q = 0.98 are given in Figs 9 and 10, from which we can see that the results are the
same as that of the case q = 0.91.

Fig 7. kW1(t)k, kW2(t)k and kW3(t)k.

doi:10.1371/journal.pone.0164791.g007

Fig 8. k̂21ðtÞ, k̂22ðtÞ and k̂23ðtÞ.

doi:10.1371/journal.pone.0164791.g008
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5 Conclusion

Most of real world systems are inflicted by input constraints, especially in financial systems.
This paper provides an adaptive fuzzy controller for uncertain fractional-order financial cha-
otic systems subject to input saturation. The saturation is divided into two parts, i.e., an
unknown nonlinear function and the control input to be determined. The unknown part
together with system uncertainty is approximated by a fuzzy logic system. It is showed that
fractional-order adaptation laws can be given to eliminate the fuzzy approximation errors as

Fig 10. Simulation results for q = 0.98: Control inputs.

doi:10.1371/journal.pone.0164791.g010

Fig 9. Simulation results for q = 0.98: State variables.

doi:10.1371/journal.pone.0164791.g009
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well as estimation errors. How to design adaptive fuzzy control for fractional-order financial
chaotic system (commensurate or incommensurate) with other kinds of input nonlinearities,
such as backlash-like hysteresis and dead-zones, is one of our future research directions.
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