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Abstract

The K-harmonic means clustering algorithm (KHM) is a new clustering method used to

group data such that the sum of the harmonic averages of the distances between each entity

and all cluster centroids is minimized. Because it is less sensitive to initialization than K-

means (KM), many researchers have recently been attracted to studying KHM. In this study,

the proposed iSSO-KHM is based on an improved simplified swarm optimization (iSSO)

and integrates a variable neighborhood search (VNS) for KHM clustering. As evidence of

the utility of the proposed iSSO-KHM, we present extensive computational results on eight

benchmark problems. From the computational results, the comparison appears to support

the superiority of the proposed iSSO-KHM over previously developed algorithms for all

experiments in the literature.

1. Introduction

Clustering is perhaps the most well-known technique in data mining to cluster data based on

certain criteria. In past decades, clustering has attracted much attention, and it is increasingly

becoming an important tool due to its wide and valuable applications in improving data analy-

sis in various fields, such as the natural sciences, psychology, medicine, engineering, econom-

ics, marketing and other fields [1–28].

Clustering is an NP-hard problem with computational effort growing exponentially with

the problem size [1–3]. There are two categories among all existing clustering algorithms: hier-

archical clustering and partition clustering [3]. The former builds a hierarchy tree of data that

successively merges similar clusters, while the latter begins with a random partition and refines

it iteratively [3].

The most popular class of partition clustering is the centroid-based clustering algorithm.

Among all clustering methods, with an extensive history dating back to 1972, K-means (KM)

is one of the most well-known center-based partition clustering techniques [4–17]. KM is

implemented by first randomly selecting K initial centroids and then trying to minimize heu-

ristically the sum of the squares of distances, e.g., the Euclidean distance, Manhattan distance,

and Mahalanobis distance, between each data point to the centroids [4–16].
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As seen above, KM is relatively simple, even on large datasets. Hence, it has effective wide-

spread applications in various real-life problems, such as market segmentation, classification

analysis, artificial intelligence, machine learning, image processing, and machine vision [4–

16]. Moreover, KM is implemented frequently as a preprocessing stage for other methodolo-

gies as a starting configuration.

However, KM is a heuristic algorithm and has two serious drawbacks [7–16]:

1. Its result depends on the initial random clusters, i.e., sensitivity to initial starting centroids;

2. It may be trapped in a local optimum; i.e., there is no guarantee that it will converge to the

global optimum.

Therefore, the K-harmonic means (KHM) algorithm was proposed by Zhang [7] in 1999 to

solve the problem of sensitivity to initial starting points. However, it still may be trapped by

convergence to a local optimum. Hence, the main focus of KHM research has shifted to

develop soft computing, such as the tabu K-harmonic means [9], simulated annealing based

KHM [10], the particle swarm optimization (PSO) KHM (PSO-KHM) [11], the hybrid data

clustering algorithms based on ant colony optimization and KHM [12], a variable neighbor-

hood search (VNS) for KHM clustering [10], the multi-start local search for KHM clustering

(MLS) [13], the gravitational search algorithm based KHM [14], the candidate groups search

combined with K-harmonic mean (CGS-KHM) [15], the simplified swarm optimization based

KHM (SSO-KHM) [16], the statistical feature extraction modeling KHM [29], the PSO hybrid

with tabu search for KHM clustering [30], the firefly [31] and the enhanced firefly algorithm

[32] for KHM clustering, the fish school search algorithm [33], and the genetic hybrid with

gravitational search for KHM clustering [34], to avoid the local trap problem and reduce

numerical difficulties.

Soft computing is able to help the traditional KHM methods escape from the local optimum

trap and obtain better results [7–16]. However, the update mechanisms of these soft comput-

ing methods are either too tedious, which then requires extra computational efforts, or too

weak in their local search, which requires more time for convergence [16]. Thus, there is

always a need to have a better soft computing method for KHM clustering.

In this paper, a new algorithm, iSSO-KHM, is proposed to help the KHM escape from local

optima by installing a new update mechanism into the SSO and integrating the KHM. The rest

of the paper is organized as follows: Section 2 provides a description of the KHM and an over-

view of SSO. The novel one-variable difference update mechanism and the survival of the fit-

test policy, which are two cores in the proposed iSSO-KHM, are introduced in Section 3.

Section 4 compares the proposed iSSO-KHM with three recently introduced KHM-based algo-

rithms in eight benchmark datasets adopted from the UCI database to demonstrate the perfor-

mance of the proposed iSSO-KHM. Finally, concluding remarks are summarized in Section 5.

2. Overview of SSO and KHM

The proposed iSSO-KHM is based on both SSO and KHM. Before discussing the proposed

iSSO-KHM, how to solve the KHM clustering, basic SSO and KHM algorithms is introduced

formally in this section.

2.1 The SSO

SSO is a new population-based soft computing method that was introduced originally by Yeh

for discrete-type optimization problems [17] and has applications in two hot research topics in

soft computing: swarm intelligence and evolutionary computing. From the applications in
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various optimization problems, SSO has demonstrated its simplicity, efficiency, and flexibility

at exploring large and complex spaces [16–28].

Let Nsol be the number of solutions that are initialized randomly, K be the number of vari-

ables and the number of centroids, ci = (ci,1, ci,2,. . ., ci,K) be the ith solution inside the problem

space with a fitness value F(ci) determined by the fitness function F to be optimized, pBest Pi =

(pi,1, pi,2,. . .,pi,K) be the best fitness function value of the ith solution with its own history, and

gBest PgBest = (pgBest,1, pgBest,2,. . .,pgBest,K) be the solution with the best fitness function value

among all pBests, where i = 1, 2, . . ., Nsol and gBest2{1, 2, . . ., Nsol}.

Analogous to all other soft computing techniques, SSO searches for optimal solutions by

updating generations. In every generation of SSO, each variable cj,k is updated according to the

following simple step function after Cw, Cp, and Cg are given:

ci;k ¼

cj;k if rC 2 ½0;CwÞ

pi;k if rC 2 ½Cw;CpÞ

pgBest;k if rC 2 ½Cp;CgÞ

x if rC 2 ½Cg ; 1Þ

: ð1Þ

8
>>>>>>>><

>>>>>>>>:

where j = 1, 2, . . ., Nsol; k = 1, 2, . . ., K; Cw, Cp−Cw, Cg, and 1−Cg are the predefined probabili-

ties to determine whether cj,k will be updated to the same value (i.e., no change); pj,k in its

pBest, pgBest,k of gBest, and regenerated to a new randomly generated feasible value [16–28].

Moving toward pBest is a local search; moving toward gBest is a global search. Moving

toward a randomly generated feasible value is also a global search to maintain population

diversity and enhance the capacity of escaping from a local optimum. Thus, each solution is a

compromise among the current solution, pBest, gBest, and a random movement; this process

combines local search and global search, yielding high search efficiency [16–28].

2.2 The KHM

KHM is similar to KM [7–16]. It is also a center-based partition clustering and randomly

selects K initial centroids in the beginning. The major difference between KHM and KM is

that KHM uses harmonic averages of the distances from each data point to the centers as com-

ponents of its performance function. The detail of the KHM clustering algorithm is shown as

follows [7–16]:

KHM PROCEDURE.

STEP K1. Select K initial centroids c1, c2, . . ., cK randomly, where ck is the centroid of the kth

cluster; let F
�

be a large number, and provide a tolerance ε.

STEP K2. Calculate fitness function:

Fðc1; c2; . . .ckÞ ¼
XN

i¼1

K
XK

k¼1

1

kXi � ckk
p

; ð2Þ

where p is the pth power of the Manhattan distance.

STEP K3. If (F
�

/F(c1, c2, . . ., cK) − 1<ε), then halt and go to STEP K7; else, let F
�

= F(c1, c2, . . .,

cK).
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STEP K4. Calculate the membership of each data Xi to centroids ck for i = 1, 2, . . ., N and

k = 1, 2, . . ., K as below:

Mðck;XiÞ ¼
kXi � ckk

� p� 2

XK

k¼1

kXi � ckk
� p� 2

; ð3Þ

STEP K5. Calculate the weight of each data Xi for i = 1, 2, . . ., N as below:

WðXiÞ ¼

XK

k¼1

kXi � ckk
� p� 2

ð
XK

k¼1

kXi � cjk
� p
Þ

2

: ð4Þ

STEP K6. Calculate the new centroid ck for k = 1, 2, . . ., K as below and go to STEP K2:

ck ¼

XN

i¼1

Mðck; XiÞ �WðXiÞ � Xi

XN

i¼1

Mðck; XiÞ �WðXiÞ

ð5Þ

STEP K7. Assign data point Xi to cluster k if M(cj, Xi)�M(ck, Xi) for j = 1, 2, . . ., K.

STEP K2 calculates the fitness function F(c1, c2, . . ., cK) of KHM by summing up all harmonic

averages of the distances between each data point and all centroids. STEP K3 defines the stop-

ping criteria for KHM. In STEP K4, KHM employs each member function M(ck, Xi) to mea-

sure the influence over the centroid ck to data Xi. This member function determines which

cluster each data point belongs to in STEP K7. STEP K5 assigns dynamic weight W(Xi) to each

data point such that the larger the weight is, the smaller the distance is to any centroid to avoid

multiple centroids close together. STEP K6 updates the current centroids.

3. The Proposed iSSO-KHM

Based on the novel one-variable difference update mechanism and the policy of survival of the

fittest, the proposed iSSO-KHM is able to find a good solution without needing to explore all

possible combinations of solutions. These two parts, i.e., the novel one-variable difference

update mechanism and the policy of survival of the fittest, are discussed in this section.

3.1 The one-variable difference update mechanism

Each soft computing method has its own generic update mechanism and numerous revised

update mechanisms for different applications in various situations. In most soft computing,

the update mechanism is only changed slightly. For example, the update mechanism of PSO is

considered to be a vector-based update mechanism using the following two equations where c1

and c2 are two constants:
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Vtþ1

i ¼ wVt
i þ c1 � r1 � ðP

t
i � Xt

i Þ þ c2 � r2 � ðP
t
gBest � Xt

i Þ ð6Þ

Xtþ1

i ¼ Xt
i þ Vtþ1

i : ð7Þ

Note that all variables in the same solution share two random variables in PSO, i.e., ρ1 and

ρ2 which are generated randomly from a uniform distribution within [0, 1] in Eq 6. In ABC,

one variable for each solution is selected randomly for updating. The updated operators in tra-

ditional GA are either two variables via one-cut-point mutation, or up to half the number of

variables changed via one-cut-point crossover. In the traditional SSO, however, all variables

are updated simultaneously based on Eq 1.

To reduce the number of random values and to change solutions gradually without break-

ing the trend and stability in the convergent status, only one variable is updated in each solu-

tion for each iteration in the proposed iSSO-KHM. Another reason to adapted the one-

variable update mechanism is due to the specific factor that the KHM is essentially insensitive

to the initial conditions and only needs to refine its solution [7–16].

The update mechanism listed in Eq 1 is more suitable for this discrete data or type, and

each variable of centroids is a floating point value in the KHM. Hence, the step function in Eq

1 is also revised for floating-point data in the novel one-variable difference update mechanism

for the proposed iSSO-KHM as follows:

cj;k ¼ cj;k þ r1 � r2 �

ðcgBest;k � cj;kÞ if rC 2 ½0;CgÞ

ðcgBest;k � cy;kÞ if rC 2 ½Cg ;CwÞ

ðcx;k � cj;kÞ otherwise

; ð8Þ

8
>><

>>:

where ρ1, ρ2, and ρc are random numbers generated from the uniform distribution within

[0,1]. Note that Cg = .4 and Cw = .6 in this study, the role of pBest is removed, and the compari-

son order is Cg first and then Cw in the step function of Eq 6, which is different from Eq 1.

For example, let c3 = (1.3, 4.5, 6.7, 8.9) be the current solution, cgBest = c6 = (2.7, 7.6, 5.4, 9.8)

be the gBest, cx = c5 = (2.3, 5.5, 7.7, 9.9) and cy = c7 = (6.2, 8.5, 1.7, 4.9) be two randomly

selected solutions, and the third variable (i.e., c3,3) be selected randomly to update. Assume

that ρ1 = 0.3 and ρ2 = 0.6 are generated randomly. Table 1 shows the newly updated c3 for

three different cases resulting from three different values of ρc:

3.2 Survival-of-the-fittest policy

The policy of survival of the fittest, inspired by natural selection, is a strategy to select the most fits

and eliminate unfits. In the traditional SSO, the updated solution must replace the old solution

regardless of whether the updated solution is worse [17–28]. However, gBest is based on survival-

of-the-fittest policy; i.e., only a solution that is better than the gBest can replace gBest [17–28].

Unlike SSO, the proposed one-variable difference update mechanism only updates one var-

iable and places more emphasis on the local search. Additionally, KHM is less sensitive to the

Table 1. The new update c3 for three different cases.

Case ρc original c3,3 updated c3,3 updated c3

1 0.12 6.7 6.7+0.3�0.6�(5.4−6.7) = 6.466 (1.3, 4.5, 6.466, 8.9)

2 0.45 6.7 6.7+0.3�0.6�(5.4−1.7) = 7.366 (1.3, 4.5, 7.366, 8.9)

3 0.99 6.7 6.7+0.3�0.6�(7.7−1.7) = 7.780 (1.3, 4.5, 7.780, 8.9)

doi:10.1371/journal.pone.0164754.t001
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updated solutions. Hence, the survival-of-the-fittest policy applies to both gBest and all

updated solutions to reduce the evolution time.

3.3 The complete pseudocode of the proposed iSSO-KHM

Like the existing related KHM algorithms, the KHM procedure discussed in section 2.2 to cal-

culate the fitness of each solution is implemented in the iSSO-KHM and acts as a local search

to further improve each updated solution heuristically. The steps of complete pseudocode of

the proposed iSSO-KHM are described as follows.

iSSO-KHM PROCEDURE.

STEP 0. Generate cj = (cj,1, cj,2, . . ., cj,K) randomly, update cj, and calculate its fitness using the

KHM procedure discussed in Section 2.2 for all j = 1, 2, . . ., Nsol.

STEP 1. Let gen = 1 and find gBest2{1, 2, . . ., Nsol} such that F(cgBest)�F(cj) for all j = 1, 2, . . .,

Nsol.

STEP 2. Let j = 1.

STEP 3. Select a variable (i.e., a centroid) randomly from cj, say cj,k where k2{1, 2, . . ., K}, and

let c
�

= cj and F
�

= F(cj).

STEP 4. Generate a random number ρC from the uniform distribution between [0, 1]

STEP 5. If ρC<Cg, then let x = gBest, y = j, and go to STEP 8.

STEP 6. If ρC<Cw, then let x = gBest, select y randomly from {1, 2, . . ., K}, and go to STEP 8.

STEP 7. Select two integers x and y randomly from {1, 2, . . ., K}.

STEP 8. Let cj,k = cj,k+ρ[0,1]�ρ[0,1]+(cx,k−cy,k), and run the procedure KHM to update cj and cal-

culate its fitness.

STEP 9. If F(cj)>F
�

, then let cj = c
�

and F(cj) = F
�

, and go to STEP 11.

STEP 10. If F(cj)<F(cgBest), then let gBest = j.

STEP 11. If the runtime is less than the predefined T, then go to STEP 2; otherwise, cgBest is the

final solution, and halt.

STEP 12. If j<Nsol, let j = j+1, and go to STEP 3.

In the above, STEP 0 simply runs the KHM procedure for each randomly generated solution

to calculate its fitness function and update the solution. STEP 1 finds the first gBest from these

initial populations after using the KHM procedure. STEPs 2–12 implement the proposed one-

variable difference update mechanism; STEPs 9 and 10 are based on the survival-of-the-fittest

policy to decide whether to accept the updated solution or replace gBest. Note that the stopping

criterion in STEP 11 is the runtime T, and T = 0.1, 0.3, and 0.5 CPU seconds in the experi-

ments tested in Section 4.

4. Experimental Results

In this section, we present the computational results of the comparisons among the proposed algo-

rithm and existing algorithms on eight benchmark datasets to test the performance of iSSO-KHM.

4.1 The Experimental Setting

To evaluate the efficiency and effectiveness (i.e., the solution quality) of the proposed

iSSO-KHM, eight benchmarks adopted from UCI are tested: Abalone (denoted by A, 4177
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records and seven features), Breast-Cancer-Wisconsin (denoted by B, 699 records and nine

features), Car (denoted by C, 1728 records and six features), Glass (denoted by G, 214 records

and nine features), Iris (denoted by I, 150 records and four features), Segmentation (denoted

by S, 2310 records and 19 features), Wine (denoted by W, 178 records and 13 features), and

Yeast (denoted by Y, 1484 records and eight features).

Moreover, iSSO-KHM is compared to four KHM-related soft computing algorithms:

CGS_KHM, MLS_KHM, PSO_KHM, and SSO_KHM. Note that CGS_KHM has better per-

formance than tabu search and VNS for the Iris, Glass and Wine datasets.

The programming language used was C++ with default options for all five algorithms:

CGS_KHM (denoted by CGS), iSSO-KHM (denoted by iSSO), MLS_KHM (denoted by MLS),

PSO_KHM (denoted by MLS), and SSO_KHM (denoted by SSO). All codes were run using a

64-bit Window 10 Operating System with Intel Core i7-5960X 3.00 GHz CPU and 16 GB of

RAM.

In experiments, all values of K are set to three; the pth power of the Manhattan distance is

p = 1.5, 2.0, and 3.0; and the runtime limit is T = 0.1, 0.3, and 0.5 CPU seconds. For each test

and algorithm, the number of solutions is 15, i.e., Nsol = 15, the number of independent runs

is 55, and only the best 50 results are recorded to remove possible outliers; the stopping criteria

are T = 0.1, 0.3, and 0.5 CPU seconds.

All required parameters for CGS, MLS, PSO, and SSO are taken directly from [15], [13],

[11], and [20] for a fair comparison; two parameters, Cg = 0.4 and Cw = 0.6, are used in the pro-

posed iSSO-KHM.

In all tables listed in S1 Appendix and the following two subsections, the notations Favg,

Fmin, Fmax, and Fstd denote the average, minimal (the best), maximal (the worst) and standard

deviation of the fitness values obtained from related algorithms. Additionally, the notations

favg, fmin, fmax and fstd represent the number of Favg, Fmin, Fmax and Fstd that are the best among

all algorithms under the same related conditions, e.g., p, T, and/or dataset.

To compare the efficiency of the update mechanism of the proposed iSSO, the average of

the corresponding fitness calculation number (Navg) and the number of best Navg represented

by navg are recorded. Note that for a fixed T, a higher Navg means that the related update mech-

anism is more efficient and increases the search performance for finding an optimal solution.

To properly evaluate the clustering method, the Fmeasure value is provided and the number

of best Fmeasure [35,36] is represented by fmea. The Fmeasure is one of the standard clustering

validity measures based on the ideas of precision and recall from information retrieval [35,36].

Evidently, the bigger value of Fmeasure is, the higher the quality of clustering is.

All experimental results are listed in S1 Appendix. S1 Appendix demonstrates that iSSO has

achieved better solutions for each test problem with lower standard deviations and higher fit-

ness computation numbers compared to the other methods.

4.2 General Observations for favg, fmin, fmax, fstd, and navg, and fmea

All results in S1 Appendix are ranked and discussed in this subsection. Tables 2–5 summarize

these ranking based on different T and p, T only, p only, and algorithm only, respectively. The

letter next to the number denotes the related dataset, e.g., B2S denotes one best value in dataset

B and two best value in dataset S.

From Table 2, iSSO has higher numbers in favg, fmin, fmax, fstd, navg, and fmea than other

methods for different setting of T and p. Hence, iSSO is more efficient, effective, and robust

than other methods.

Table 3 summarizes the values of favg, fmin, fmax, fstd, navg, and fmea for T = 0.1, 0.3, and 0.5

separately. We can observe that the longer runtime is, the better the solution quality obtained

A New Soft Computing Method for KHM Clustering

PLOS ONE | DOI:10.1371/journal.pone.0164754 November 15, 2016 7 / 14



from iSSO in Table 3. For example, fmin is increased from 18 to 23 for T = 0.1 to T = 0.2. PSO

is the second best in fmea for both T = 0.1 and 0.3; SSO is the second best in fmin for T = 0.1 and

0.2, and in fmea for T = 0.3. Additionally, as seen from Table 3, iSSO tends to perform much

better than other methods from time to time, e.g., there are six cases in which Fmin are better

than that of iSSO for T = 0.1 but none in which Fmin is better than that of iSSO for T = 0.3.

Table 4 sums up the values of favg, fmin, fmax, fstd, navg, and fmea for p = 1.5, 2.0, and 2.5 sepa-

rately. It is evident that iSSO is still the best method compared to the others in all aspects.

According to published results, other methods work more effectively when p = 2.0 [7–16].

However, given the results, iSSO still retains its performance, regardless of the value of p. For

example, fmin is 21 for p = 1.5 and 22 for both p = 2.0 and 2.5. Interesting observations can still

Table 2. The number of favg, fmin, fmax, fstd, navg, and fmea.

T 0.1 0.3 0.5

p Alg. favg fmin fmax fstd navg fmea favg fmin fmax fstd navg fmea favg fmin fmax fstd navg fmea

1.5 CGS S 0 S BS 0 0 S 0 S S 0 W 0 0 0 0 0 0

iSSO 6 6 7 6 7 5 7 7 7 7 8 7 8 8 8 8 8 7

MLS 0 S 0 0 A 0 0 0 0 0 0 0 0 0 0 0 0 S

PSO 0 0 0 0 0 W 0 0 0 0 0 0 0 0 0 0 0 0

SSO A A 0 0 0 AS 0 A 0 0 0 0 0 0 0 0 0 0

2.0 CGS S S S BS 0 0 S 0 S S 0 0 0 0 0 0 0 0

iSSO 7 6 7 6 7 6 6 8 6 6 8 5 7 8 7 7 8 5

MLS 0 0 0 0 A W B 0 B B 0 W B 0 B B 0 0

PSO 0 0 0 0 0 0 0 0 0 0 0 S 0 0 0 0 0 I

SSO 0 A 0 0 0 A 0 0 0 0 0 A 0 0 0 0 0 AY

2.5 CGS S 0 S BS 0 0 0 0 S S 0 0 0 0 0 0 0 0

iSSO 7 6 7 6 7 5 8 8 7 7 8 5 8 8 8 8 8 6

MLS 0 S 0 0 A W 0 0 0 0 0 0 0 0 0 0 0 G

PSO 0 0 0 0 0 IS 0 0 0 0 0 BW 0 0 0 0 0 0

SSO 0 A 0 0 0 0 0 0 0 0 0 A 0 0 0 0 0 I

doi:10.1371/journal.pone.0164754.t002

Table 3. The values of favg, fmin, fmax, fstd, navg, and fmea for T = 0.1, 0.3, and 0.5.

T Alg. favg fmin fmax fstd navg fmea

CGS 3 (S) 1 (S) 3 (S) 6 (3B,3S) 0 0

iSSO 20 18 21 18 21 16

0.1 MLS 0 2 (S) 0 0 3 (A) 2 (W)

PSO 0 0 0 0 0 3 (I,S,W)

SSO 1 (A) 3 (A) 0 0 0 2 (A,S)

CGS 2 (S) 0 3 (S) 3 (S) 0 1 (W)

iSSO 21 23 20 20 24 17

0.3 MLS 1 (B) 0 1 (B) 1 (B) 0 1 (W)

PSO 0 0 0 0 0 3 (B,S,W)

SSO 0 1 (A) 0 0 0 2 (A)

CGS 0 0 0 0 0 0

iSSO 23 24 23 23 24 18

0.5 MLS 1 (B) 0 1 (B) 1 (B) 0 2 (G,S)

PSO 0 0 0 0 0 1 (I)

SSO 0 0 0 0 0 3 (A,I,Y)

doi:10.1371/journal.pone.0164754.t003
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be found, as observed in Table 3, where, in general, CGS yields better results for the S dataset,

than other datasets. PSO and SSO follow on in performance with fmea in p = 2.0 and p = 2.5,

respectively.

Table 5 lists the overall values of favg, fmin, fmax, fstd, navg, and fmea for CGS, iSSO, MLS, PSO,

and SSO separately. In general, it seems that iSSO is only slightly more powerful within dataset

A as fmin = 4 and fmea = 5 for SSO and for within dataset S as fmin = 2 for MLS, fmea = 2 for

PSO, and favg = 5 and fmax = fstd = 6 for CGS. This is similar to what is observed in Tables 2 and

3. However, the number of best values for iSSO in all statistical indexes are still more than 6.2

times better compared to those of other methods. For example, for fstd, CGS produced nine

best values (3 in B dataset and 6 in S dataset), whereas iSSO produced 64 best values. This

trend is also found when iSSO is compared across all algorithms and thus demonstrates that

iSSO outperforms the other algorithms in almost all aspects.

4.3 General Observations for Favg, Fmin, Fmax, Fstd, Navg, and Fmeasure

In general, each result obtained using the proposed iSSO is better than those obtained using

the other methods described S1 Appendix and Section 4.2. For an elaborate analysis, the top

five values of Fmin for each dataset under all settings of T and p are summarized in Table 6 and

discussed in this subsection.

In Table 6, the proposed iSSO has the largest number (33) of results among the top five val-

ues, and SSO, PSO, and CGS have four, two, and one results among the top five values of Fmin,

respectively. Note that in most cases SSO yields better results than CGS and MLS, as seen in

Table 6, but all of the values of favg, fmin, fmax, fstd are zero for SSO in Section 4.2.

Table 4. The values of favg, fmin, fmax, fstd, navg, and fmea for p = 1.5, 2.0, and 2.5.

p Alg. favg fmin fmax fstd navg fmea

1.5 CGS 2 (S) 0 2 (S) 3 (B,2S) 0 1 (W)

iSSO 21 21 22 21 23 19

MLS 0 1 (S) 0 0 1 (A) 1 (S)

PSO 0 0 0 0 0 1 (W)

SSO 1 (A) 2 (A) 0 0 0 2 (A,S)

2 CGS 2 (S) 1 (S) 2 (S) 3 (B,2S) 0 0

iSSO 20 22 20 19 23 16

MLS 2 (B) 0 2 (B) 2 (B) 1 (A) 2 (W)

PSO 0 0 0 0 0 2 (I,S)

SSO 0 1 (A) 0 0 0 4 (3A,Y)

2.5 CGS 1 (S) 0 2 (S) 3 (B,2S) 0 0

iSSO 23 22 22 21 23 16

MLS 0 1 (S) 0 0 1 (A) 2 (G,W)

PSO 0 0 0 0 0 4 (B,I,S,W)

SSO 0 1 (A) 0 0 0 2 (A,I)

doi:10.1371/journal.pone.0164754.t004

Table 5. The values of favg, fmin, fmax, fstd, navg, and fmea for algorithms.

Alg. favg fmin fmax fstd navg fmea

CGS 5 (S) 0 6 (S) 9 (3B,6S) 0 1 (W)

iSSO 64 65 64 61 69 51

MLS 2 (B) 2 (S) 2 (B) 2 (B) 3 (A) 5 (G, 3W, S)

PSO 0 0 0 0 0 7 (B, 2I, 2S, 2W)

SSO 1 (A) 4 (A) 0 0 0 8 (5A, I, S, Y)

doi:10.1371/journal.pone.0164754.t005
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Additionally, we can see that the top four Fmin values are all obtained from the proposed

iSSO for all datasets, except iSSO only has the top two Fmin in both A and S datasets, of which

SSO has the 3rd and 4th best Fmin, and PSO has the 5th best Fmin. It seems that the algorithm

with the best Fmin also has the best Favg, Fmax, Fstd, and Navg in all datasets. However, the algo-

rithm with the best Fmin does not guarantee its Fmeasure is also the best, this is applicable to A,

B, C, G, I and W datasets.

The following are some other observations for p, T, Navg, and Fstd:

1. p: There are 14, 11, and 15 top-five Fmin values across all the eight data sets for p = 1.5, 2.0,

and 2.5 in Table 6, respectively. This debunks published literatures [7–16] which indicate

that p = 2.0 yields the best result. The above observation is also found in Table 4 of Section

4.2.

2. T: The T = 0.1, 0.3, and 0.5 have 15, 16, and 9 top-five Fmin values across all the eight data

sets. Among top-five Fmin values for each dataset, the one with the largest T also has the best

Fmin, e.g., T = .3 in G, I and W datasets and T = 0.5 in the rest of the datasets. Hence, the

above result agrees with the basic concept in soft computing: more runtime results in better

solution quality.

3. Navg: The order of the best Navg for each dataset from large to small is 9494.02 (I)> 5099.84

(G) > 5095.64 (W) > 1685.48 (B) > 769.6 (Y) > 722.9 (C) > 412.40 (S) > 254.26 (A),

where the letter inside parentheses is the related dataset. The above order exactly coincides

with the order from large to small of the number of recorders in each dataset: A (4177) > S

(2310) > C (1728) > Y (1484) > B (699)> G (214)> W (178) > I (150), except when

5099.84 (G) > 5095.64 (W) in Navg. Hence, the smaller the dataset is, the shorter the run-

time is and the larger number of fitness calculations is.

4. Fstd: The order of the best Fstd for each dataset from small to large is 2.04E-11 (I) < 4.70E-

09 (W) < 7.59E-09 (G) < 1.12E-06 (B) < 8.33E-06 (C) < 9.49E-04 (Y)< 3.92E-03 (A) <

1.51E+00 (S), where the letter inside parentheses is the related dataset. The above order of

datasets is similar to that of Navg because the more fitness calculations are performed, the

lower is standard deviation.

5. Conclusions

In this work, a new soft computing method called the iSSO-KHM is proposed to solve the

KHM clustering problem. The proposed iSSO-KHM adapted the fundamental concepts in

both the traditional SSO and KHM by adding the novel one-variable difference update mecha-

nism to update solutions and the survival-of-the-fittest policy to decide whether to accept the

new update solutions.

The computational experiments compare the proposed iSSO-KHM with CGS, MLS, PSO,

and SSO on eight benchmark datasets: Abalone, Breast-Cancer-Wisconsin, Car, Glass, Iris, Seg-

mentation, Wine, and Yeast with settings of K = 3; p = 1.5, 2.0, and 2.5; and T = 0.1, 0.3, and 0.5.

The experimental results show the superiority of iSSO-KHM over the other three algo-

rithms for almost all eight benchmark datasets. Hence, iSSO-KHM can achieve a trade-off

between exploration and exploitation to generate a good approximation in a limited computa-

tion time systematically, efficiently, effectively, and robustly.

However, from the experiments in Section 4, the improved Fmin value does not mean that

the Fmeasure is also improved. Therefore, a potential area of exploration would be to include

Fmeasure in the fitness function to improve both values of Fmin and Fmeasure. Another limitation

of the proposed algorithm is that Cg and Cw in Eq 8 of the proposed update mechanism must
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be known in advance, this also brings up another practical problem that is to develop a param-

eter free idea in the proposed algorithm in the future.

As there are some recently proposed swarm-based clustering algorithms, it is necessary to

have more comparisons about the proposed algorithm with other well-known swarm-based

clustering algorithms in the future. In Section 4, “Experimental results”, the choice of the

Table 6. The top five Fmin for each dataset.

ID T p Alg. Favg Fmin Fmax Fstd Navg Fmeasure

A 0.5 2.5 iSSO 377.100 377.096 377.115 3.92E-03 254.26 57.70%

0.3 2.5 iSSO 377.129 377.097 377.226 3.42E-02 152.28 58.64%

0.3 2.5 SSO 380.591 377.116 403.228 5.83E+00 146.32 58.67%

0.5 2.5 SSO 385.472 377.157 414.058 1.04E+01 241.32 57.69%

0.5 2.5 PSO 418.457 377.634 426.647 1.96E+01 238.2 57.59%

B 0.5 1.5 iSSO 424.867 424.867 424.867 1.12E-06 1685.48 96.15%

0.3 1.5 iSSO 424.867 424.867 424.867 1.71E-05 1023.24 96.12%

0.1 2.5 iSSO 424.886 424.867 424.972 2.66E-02 356.56 96.16%

0.1 2 iSSO 424.883 424.867 424.998 2.42E-02 357.28 96.14%

0.1 1.5 iSSO 424.888 424.868 424.967 2.71E-02 341.78 96.19%

C 0.5 1.5 iSSO 7068.628 7068.628 7068.628 8.33E-06 722.9 39.28%

0.3 1.5 iSSO 7068.630 7068.628 7068.632 1.08E-03 436.18 39.25%

0.1 2.5 iSSO 7069.794 7069.146 7070.432 3.35E-01 150.64 39.33%

0.1 2 iSSO 7070.008 7069.150 7070.889 4.04E-01 150.66 39.39%

0.1 1.5 iSSO 7069.977 7069.189 7070.878 4.25E-01 144.18 39.23%

G 0.3 1.5 iSSO 1059.336 1059.336 1059.336 7.59E-09 5099.84 41.42%

0.3 2 iSSO 1059.336 1059.336 1059.336 6.87E-09 5100.06 41.33%

0.1 2.5 iSSO 1059.336 1059.336 1059.337 6.21E-06 1780.36 41.39%

0.1 1.5 iSSO 1059.336 1059.336 1059.337 5.95E-06 1705.48 41.39%

0.1 2 iSSO 1059.336 1059.336 1059.337 9.23E-06 1779.64 41.50%

I 0.3 1.5 iSSO 181.728 181.728 181.728 2.04E-11 9494.02 75.31%

0.3 2 iSSO 181.728 181.728 181.728 1.83E-11 9495.64 75.36%

0.1 1.5 iSSO 181.728 181.728 181.728 1.08E-07 3185.04 75.25%

0.1 2 iSSO 181.728 181.728 181.728 7.83E-08 3313.24 75.41%

0.1 2.5 iSSO 181.728 181.728 181.728 6.70E-08 3316.62 75.26%

S 0.5 1.5 iSSO 42852347.416 42852345.652 42852350.697 1.51E+00 412.40 53.18%

0.5 2 iSSO 42852347.460 42852345.678 42852351.912 1.61E+00 412.80 53.10%

0.3 2 iSSO 42852454.042 42852348.975 42852724.919 9.39E+01 248.00 53.19%

0.3 1.5 iSSO 42852441.557 42852356.230 42852682.740 7.27E+01 247.90 53.07%

0.3 2 CGS 42852405.328 42852368.882 42852456.610 2.33E+01 184.10 53.14%

W 0.3 1.5 iSSO 5388248.279 5388248.279 5388248.279 4.70E-09 5095.64 62.07%

0.3 2 iSSO 5388248.279 5388248.279 5388248.279 4.70E-09 5095.72 62.22%

0.1 2 iSSO 5388248.279 5388248.279 5388248.279 4.69E-08 1776.94 62.15%

0.1 1.5 iSSO 5388248.279 5388248.279 5388248.279 1.21E-07 1704.06 62.20%

0.1 2.5 iSSO 5388248.279 5388248.279 5388248.279 6.11E-08 1779.74 62.08%

Y 0.5 2.5 iSSO 72.833 72.833 72.836 9.49E-04 769.6 56.21%

0.3 2.5 iSSO 72.837 72.833 72.857 5.41E-03 465.74 56.15%

0.3 2.5 SSO 74.094 72.952 75.856 8.53E-01 445.44 56.05%

0.5 2.5 SSO 73.942 73.038 75.630 6.96E-01 734.42 56.09%

0.3 2.5 PSO 74.343 73.185 75.418 6.40E-01 399.8 55.84%

doi:10.1371/journal.pone.0164754.t006
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parameter K is fixed to 3. The proposed approach will also compare with the other versions of

KHM for different values of K (like the case of p and T parameters).

Supporting Information

S1 Appendix.
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