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Abstract

Purpose

This study developed light cured dental composites with added monocalcium phosphate
monohydrate (MCPM), tristrontium phosphate (TSrP) and antimicrobial polylysine (PLS).
The aim was to produce composites that have enhanced water sorption induced expan-
sion, can promote apatite precipitation and release polylysine.

Materials and Methods

Experimental composite formulations consisted of light activated dimethacrylate monomers
combined with 80 wt% powder. The powder phase contained a dental glass with and with-
out PLS (2.5 wt%) and/or reactive phosphate fillers (15 wt% TSrP and 10 wt% MCPM). The
commercial composite, Z250, was used as a control. Monomer conversion and calculated
polymerization shrinkage were assessed using FTIR. Subsequent mass or volume
changes in water versus simulated body fluid (SBF) were quantified using gravimetric stud-
ies. These were used, along with Raman and SEM, to assess apatite precipitation on the
composite surface. PLS release was determined using UV spectroscopy. Furthermore,
biaxial flexural strengths after 24 hours of SBF immersion were obtained.

Results

Monomer conversion of the composites decreased upon the addition of phosphate fillers
(from 76 to 64%) but was always higher than that of Z250 (54%). Phosphate addition
increased water sorption induced expansion from 2 to 4% helping to balance the calculated
polymerization shrinkage of ~ 3.4%. Phosphate addition promoted apatite precipitation
from SBF. Polylysine increased the apatite layer thickness from ~ 10 to 20 ym after 4
weeks. The novel composites showed a burst release of PLS (3.7%) followed by diffusion-
controlled release irrespective of phosphate addition. PLS and phosphates decreased
strength from 154 MPa on average by 17% and 18%, respectively. All formulations, how-
ever, had greater strength than the 1ISO 4049 requirement of > 80 MPa.
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Conclusion

The addition of MCPM with TSrP promoted hygroscopic expansion, and apatite formation.
These properties are expected to help compensate polymerization shrinkage and help
remineralize demineralized dentin. Polylysine can be released from the composites at early
time. This may kill residual bacteria.

Introduction

Commonly used dental restorative materials include dental composite and amalgam. Follow-
ing the 2013 Minamata Convention a multi-national phase-out of mercury-containing devices,
including dental amalgam, has been agreed [1]. A number of clinical studies, however, have
reported higher failure rates for dental composite restorations compared with dental amalgam
[2-4]. The most frequent cause of composite failure has been recurrent (secondary) infection.
This may result in continuing apatite dissolution beneath the restoration. It may occur if the
cavity becomes unsealed due to polymerization shrinkage and there is bacterial ingress or
residual infected dentin [5, 6]. A dental composite that swells to compensate shrinkage, pro-
motes apatite precipitation from dentinal fluid and has antibacterial components could there-
fore be beneficial.

Water sorption-induced expansion and remineralizing action of dental composites can be
encouraged through the incorporation of hygroscopic Mono Calcium Phosphate Monohydrate
(MCPM) with Tri Calcium Phosphate (TCP) [7, 8]. These phosphates can additionally encour-
age the precipitation of apatite (brushite or hydroxyapatite) that may promote the reminerali-
zation of the demineralized dentin [9]. In other dental products, calcium has been replaced by
strontium (Sr). Strontium ions can replace calcium in hydroxyapatite but in addition may pro-
vide antibacterial action and greater radiopacity [ 10, 11]. Calcium substitution by Sr in bioac-
tive glasses for orthopedic applications has also been shown to stabilize hydroxyapatite
precursor phases and crystalline growth [12]. Polylysine (e-poly-L-lysine; PLS) is a small natu-
ral homopolymer, which has been approved by the FDA as a food preservative [13]. PLS has
demonstrated a wide antimicrobial spectrum in addition to low toxicity to human cells [14].

The aim of this study was therefore to produce MCPM, tri strontium phosphate (TSrP) and
PLS containing composites. Monomer conversion, calculated polymerization shrinkage, water
sorption induced mass and volume change, material induced apatite precipitation and PLS
release were assessed in addition to mechanical strength.

Materials and Methods
Composite paste preparation

Four experimental light activated dental composite formulations were prepared using a powder
to liquid ratio of 4:1 (weight ratio). Chemicals used in this study are presented in Table 1. The
monomer phase in all formulations was prepared by mixing UDMA and TEGDMA in 3:1
weight ratio with 1 wt% CQ, 1 wt% DMPT, and 5 wt% 4-META respectively. The powder
phase of each formulation contained varying levels of Glass, MCPM, TSrP, and PLS (Table 2).
A commercial dental composite (Z250 shade B3, 3M, USA) was used for comparison.

The fillers and monomer of each formulation were weighed and mixed using a planar mixer
(SpeedMixer, Synergy Devices Limited, UK) at 3500 rpm for 10 s followed by 2000 rpm for 2
min. The consistency of the mixed experimental composites was comparable to commercial
packable composites.
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Table 1. Chemicals used in this study.

Abbreviation Chemicals Batch/lot number Company

UDMA Urethane dimethacrylate 90761 DMG, Hamburg, Germany

TEGDMA Tri-ethylene glycol dimethacrylate, 88661 DMG, Hamburg, Germany

4-META 4-Methacryloyloxyethyl trimellitic anhydride 595697 Polysciences, PA, USA

cQ Camphorquinone 90339 DMG, Hamburg, Germany

DMPT N, N-dimethyl-p-toluidine MKBR6240V Sigma Aldrich, Gillingham,UK

Glass Silanated bariumaluminosilicate glass, particle | 680326 DMG, Hamburg, Germany
diameter ~ 7 ym

MCPM Monocalcium phosphate monohydrate, particle | MCP-B26 Himed, Old Bethpage, NY,USA
diameter ~ 53 ym

TSrP Tristrontium phosphate, particle diameter EDI0O77976 Chemieliva, Chongging,China
~10 ym

PLS e-Polylysine, particle diameter ~ 20-50 ym 128211-04-3 Handary, Brussel, Belgium

doi:10.1371/journal.pone.0164653.t001

Monomer conversion and polymerization shrinkage

Monomer conversion was determined by using a Fourier transform infrared spectrometer
(FTIR, Perkin-Elmer Series 2000, Beaconsfield, UK) equipped with a golden gate Attenuated
Total Reflectance (ATR) accessory (3000 Series RS232, Specac Ltd., UK) at a controlled tem-
perature of 25°C [8]. Uncured pastes (n = 5) were placed in a ring (1 mm depth and 10 mm
diameter) on the ATR diamond, covered with acetate sheet, then light cured for 40 s from the
top surface with a LED light curing unit (1,100-1,330 mW/cm?, Demi Plus, Kerr, USA). FTIR
spectra of the bottom surfaces were recorded every 4 s for 20 min between 700-4000 cm, at a
resolution of 4 cm™. In this study conversion, C, was obtained using Eq 1.

100(AA, — AA))
C () = o 1)
Where AA, and AA, were the absorbance of the C-O peak (1320 cm™) above background level
at 1335 cm' initially and after time ¢. Final peak height and degree of monomer conversion
were calculated by linear extrapolation of the data versus inverse time to zero.

One mole of polymerizing C = C groups typically gives volumetric shrinkage of 23 cm>/mol
[15]. Total percentage volume shrinkage (¢) (%) due to composite polymerization can there-
fore be estimated from monomer conversion using the following equation.

n.x.
=92 Jpaiinis 2
9=23Cp Y. (2)

i

where C, monomer conversion (%); p, composite density (g/cm3 ); n;; the number of C=C
bonds per molecule; W;, molecular weight (g/mol) of each monomer; x;, mass fraction of each
monomer [8].

Table 2. Composition of powder phase of experimental composites.

Formulation (F) Glass (wt%) MCPM (wt%) TSrP (wt%) PLS (wt%)
1 72.5 10 15 2.5

2 75 10 15 0

3 97.5 0 0 25

4 100 0 0 0

doi:10.1371/journal.pone.0164653.t002
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Mass and volume changes

For all formulations, disc specimens were prepared by carefully packing the composite resin in
a metal circlip (1 mm depth and 15 mm diameter, n = 3) and covering top and bottom with
acetate sheet. Discs were light cured for 40 s on each side with the LED light curing unit. Speci-
mens were then left for 24 hr at ambient temperature to allow completion of polymerization.
Disc specimens were subsequently weighed and immersed in 10 ml of deionized water or simu-
lated body fluid (SBF) prepared according to BS ISO 23317:2012 [16]. The tubes were incu-
bated at 37°C for up to 9 weeks. At 1,2,4,6,12,24,48,72,96 hrand 1, 2, 3,4, 6,7, 8,9 weeks
the samples were removed and carefully blotted dry. Their mass and volume were subsequently
measured using a four-figure balance (Ohaus PA214, Parsippany, NJ, USA) with density kit
before replacement into the original storage solution. The percentage mass and volume change,
AM and AV, were determined from Eqs 3 and 4 respectively [17].

AM (%) = 100%0‘ M) 3)
AV(%) = 7100[‘?/0_ Vil (4)

where M, and V, are mass and volume at time ¢ after immersion, whereas M, and V/, is initial
mass and volume.

Apatite formation

The ability of the resin composites to promote apatite precipitation was assessed following the BS
ISO 23317:2012. In order to characterize any changes in surface chemistry and apatite precipita-
tion, Raman microscopy (Horiba Jobin Yvon, Paris, France) was employed. Briefly, disc speci-
mens (1 mm deep and 15 mm diameter, n = 1) were immersed in SBF at 37°C for 24 hr, 1 week
or 4 weeks. At each time point, specimens were removed, blot dried and secured on glass micro-
scope slides. They were then excited at 633.8 nm by a He-Ne laser through a microscope objective
(50x). Surface point spectra were obtained in the region of 800-1700 cm™ using a confocal hole
of 300 pm, giving an approximate spatial resolution of 5 um in x, y and z directions. For single
point spectra, the average of 20 spectra each of 10 s acquisition time was generated. To obtain
Raman maps, point spectra were obtained every 4 um over an area of 40x50 um?. After baseline
subtraction, spectra were normalized over the full spectral range and chemical maps generated
using LabSpec 5 software. Using the full spectra of pure components, this program enables chem-
ical maps to be generated even when, as with different phosphates, main peaks are partially over-
lapping. In the maps, different colors indicate which chemical component is the dominant phase
at a given point on the material surface. The phosphate P-O stretch gives intense peaks for pure
MCPM at 901,912 and 1011 cm’’, brushite (dicalcium phosphate dihydrate) at 989 cm™, TSrP
at 948 cm™" and apatite at 960 cm™ [18]. The glass and polymer phase give peaks at 1370, 1400,
and 1447 cm™. Specimens used for Raman mapping were then coated with gold-palladium for
imaging using a sputter coater (Polaron E5000, East Sussex, UK) for 90 s at 20 mA. Surface scan-
ning was carried out using a scanning electron microscope (Phillip XL-30, Eindhoven, The Neth-
erlands) operating with primary beam energy of 5 kV and a current of approximately 200 pA.

Polylysine release

Disc specimens (1 mm x 15 mm, n = 3) were stored in 10 ml of deionized water and incubated
at 37°C. At each time point (1, 6 and 24 hr, 1, 2, 3, 4, 5, 6, and 7 weeks), the storage solution
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was removed for analysis and replaced with a fresh solution. A Trypan Blue (TB, Sigma
Aldrich, Gillingham, UK) assay was modified to enable analysis of the PLS concentration [19].
This method involved mixing 80 ppm of TB in 0.02 MES (4-Morpholineethanesulfonic acid,
Sigma Aldrich, Gillingham, UK) / 0.03 NaCl (Sigma Aldrich, Gillingham, UK) with an equal
volume of sample storage solution. The resultant mix was incubated at 37°C for 1 hr to enable
a precipitation reaction between TB and the PLS. After allowing for cooling to room tempera-
ture the mixture was centrifuged at 13000 rpm for 20 min. The remaining supernatant was
carefully pipetted and analyzed using an ultraviolet / visible (UV) spectrometer (Unicam

UV 500, Thermospectronic, Cambridge, UK). Absorbance between 300 and 800 nm due to
unreacted TB was recorded. To assess the concentration of PLS that had reacted with the TB,
the above procedure was repeated with solutions of known polylysine concentration (1, 2, 4, 5,
6,7,8,9,and 10 ppm in deionized water). This enabled generation of a calibration curve of
absorbance at 580 nm versus PLS concentration. The cumulative amount of PLS release (%) at
time ¢ was the calculated by Eq 5.

% PLS release = M )

w

c

where w, is the amount of PLS (g) incorporated in the specimen, R, is the amount of PLS
released into each storage solution (g) collected at time t.

Biaxial flexural strength (BFS) and modulus of elasticity

Prior to testing, specimens, prepared as above but of 1 mm x 10 mm (n = 8), were immersed in
10 ml of SBF for 24 hr in an incubator at 37°C. A “Ball on ring” jig was used with a computer-
controlled universal testing machine (Shimadzu AGSX, Kyoto, Japan) [20]. The specimens’
thickness was measured using a digital vernier caliper (Moore & Wright, West Yorkshire, UK)
and placed on a knife-edge ring support of 8 mm diameter. The load was applied using a 4 mm
diameter spherical ball indenter at 1 mm.min™" crosshead speed. The failure stress was
recorded in N and the biaxial flexural strength (S; Pa) was calculated using the following equa-
tion:

F

e
212 —

S
I

{(1 ) [0.485111( ) + 0.52} + 0.48} (6)
where F is the load at failure (N), [ is the specimens thickness (m), e is the radius of circular
support (m) and v is Poison ‘s ratio (0.3) [20]. Then, the force versus displacement graph was

also used to calculate the biaxial modulus of elasticity using Eq 7.

(AN B2’
£= () < () 7
A

Where E is elastic modulus of the specimen (Pa) rate of change of load with regards to

central deflection or gradient of force versus displacement curve (N/m), f3. is centre deflection

function and center deflection junction (0.5024)[21], h is ratio of support radius to the radius
of disc, and v is Poison’s ratio (0.3).

Statistical analysis

All values and errors reported throughout this study were mean and 95% confidence intervals
respectively. Raw data are provided in S1 File. Data were analyzed with SPSS version 22 for
Mac (IBM, USA). Monomer conversion and BFS were analyzed with a Kruskal-Wallis test, and
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post hoc comparison was performed using Dunnett’s T3 test (p = 0.05). Calculated polymeriza-
tion shrinkage and modulus of elasticity were analyzed using one-way analysis of variance
(ANOVA) followed by Tukey test (p = 0.05). Line fitting for regression analysis was undertaken
using the function LINEST in Microsoft Excel. In addition, a factorial analysis method was
employed to assess the effects of variables and variable interactions. The formulations in this
study are based upon a 2 variables and 2 levels factorial design. An appropriate factorial equa-
tion is then

InP =< InP > +a, +a,+a, (8)

a; and a, quantifies the effect of the phosphate fillers (PO) and PLS addition on the property
value (P) of the experimental composites, a; , is an interaction effect of PO and PLS addition,
and brackets indicate an average value of In P [22]. The percentage effect of the variables, Q, is
then calculated using:

Q%) = 100(1 —%> — 100(1 — exp(2a)) 9)
0

Gy and Gy are the geometric average property (e.g. monomer conversion, mass change, vol-
ume change, BFS and modulus) for the 2 samples with one of the additives versus the other 2
without respectively. The effect of polylysine was therefore obtained by comparing average
results of samples F1 and F3 with the average for F2 and F4. Effect of phosphates is gained by
dividing the geometric average of F1 and F2 by that for F3 and F4. Finally, the interaction effect
is calculated from the average value of samples F1 and F4 divided by that of F2 and F3.

95% confidence interval (CI) error bars were calculated assuming CI = 2SD/+/n where SD is
standard deviation and 7 is sample number. The effect of an additive was considered significant
if the magnitude of a; was greater than both its calculated 95% CI and the interaction term.

Results
Monomer conversion and polymerization shrinkage

All composites showed rapid monomer conversion up to 50% at the bottom of the specimens
within 10 s after the start of light exposure (equal to 20 s after the start of data collection).
From 20 s after the beginning of light exposure, reaction rate slowed substantially (Fig 1A).
The final monomer conversions of experimental composites (64-76%) were significantly
higher than Z250 (54 + 3%) (Fig 1B). The final conversion of F1 (65 + 1%) and F2 (67 + 1%)
were not significantly different from each other, but were significantly lower than F3 (74 + 1%)
and F4 (74 + 1%). Translucency of the cured composites increased from F1 to F4. The translu-
cency of F4 and Z250 materials was comparable (Fig 1C). The calculated shrinkage of F1, F2,
F3,and F4 were 3.1 +0.1,3.2 + 0.1, 3.5 £ 0.1, and 3.5 + 0.1 vol% respectively (Fig 1D). Shrink-
age of Z250 could not be calculated because its exact composition was unknown. Factorial anal-
ysis showed the addition of phosphate filler decreased both of final monomer conversion and
shrinkage by 10 + 2% whilst the effect of PLS was negligible (2 + 2%).

Mass and volume change

With F4, plots of mass change versus square root of time began to level off after 2 weeks (Fig
2). The final mass changes were 1.4 (£ 0.1) and 1.0 (+ 0.1) wt% in water and SBF respectively.
Upon addition of PLS (F3) mass change continued for longer to final values of 2.0 (+ 0.1) and
1.7 (£ 0.2) wt% in water versus SBF respectively. Conversely, addition of phosphate filler (F1 or
F2) caused a greater increase in early mass change but this peaked by 2 weeks. By 9 weeks, the
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Fig 1. (A) Example polymerization profiles showing monomer conversion versus time of data acquisition (light
exposure started at 10 s), (B) mean final monomer conversion, (C) composite discs after light curing showing
different translucencies and (D) mean calculated polymerization shrinkage (same letters indicate no statistically

significant differences (p < 0.05) and error bars are 95% confidence intervals (n = 5)

).

doi:10.1371/journal.pone.0164653.g001

mass changes had declined to values of 0.0 (£ 0.2) and 1.5 (+ 0.30) for F2 and -0.6 (+ 0.4) and
2.0 (£ 0.1) wt% for F1 in water versus SBE The difference in mass change in water versus SBF
was proportional to the square root of time (R*>0.95) with proportionality constants of 0.039

(£ 0.002) and 0.075 (+ 0.005) wt%/hr - for F2 and F1 respectively.

Conversely, volume change (Fig 2) reached plateau values in both fluids and all formula-
tions at later times. The final values of volume change were 4.5 (+ 0.2), 3.7 (£ 0.1), 2.2 (£ 0.2),
2.1 (£ 0.1) vol% for F1, F2, F3 and F4 in water and 5.2 (+ 0.1),4.6 (+ 0.1), 1.9 (+ 0.1), 1.9 (+ 0.1)
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Fig 2. Mass and volume changes in SBF or deionized water as a function of square root of time (t/hr) of all
formulations. Error bars are 95% CI (n = 3).

doi:10.1371/journal.pone.0164653.9002

vol% in SBE. Differences in final values in water versus SBF were therefore 0.7 (+ 0.1), 0.9 (+
0.2),-0.4 (£ 0.1),-0.1 (£ 0.0) for F1, F2, F3, and F4 respectively.

Apatite formation

After one day immersion in SBE, Raman spectra of F3 and F4 showed only peaks attributable
to glass and polymers with no calcium phosphate peaks as was expected. At 1 day, peaks for
glass, polymer and TSrP dominated the Raman spectra for F1 and F2 (Fig 3). The surface
MCPM, however, had fully dissolved due to its high solubility. At this time, in Raman maps
some areas of apatite were detected (green areas in maps in Fig 3) and in addition with F1 also
a small amount of brushite (orange region). The average Raman apatite peak increased in
intensity more rapidly with F1 than with F2. With F2, over 50% of the surface area examined
was covered by a sufficiently thick layer (>1 pm) to fully mask the underlying composite by 4
weeks. Conversely, with F1 this occurred at 1 week.
The SEM examination revealed a thin layer of apatite on the surfaces of F1 and F2 at all 3
time points of immersion (Fig 4), but no apatite was detected on the surfaces of the F3 and F4
groups. The apatite layers consisted of globules which at higher magnification indicated a
porous structure. From the size of the glubules and dimensions of cracks in the apatite layers,
the precipitate thicknesses were estimated to be approximately 1, 5 and 10 um after 1 day, 1
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Fig 3. Average Raman spectra and surface Raman maps obtained from F1 and F2 at 1 day, 1 week, and 4
weeks. Blue and green areas represent the polymer plus glass regions versus an apatite coating respectively.
Yellow and red areas represent regions of brushite and TSrP. No MCPM could be detected. At early times some
blues areas are visible in the maps and the average spectra give strong polymer and glass peaks between 1300
and 1500 cm™. A dominant apatite area and peak are observed for F1 at 1 week, but these can be seen for both
formulations at 4 weeks.

doi:10.1371/journal.pone.0164653.9g003
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week, and 4 weeks SBF immersion respectively for F2. With F1 the layer thickness was appoxi-
mately 2, 10, and 20 um at these time periods.

Polylysine release

The composite formulations containing PLS (F1 and F3) exhibited a burst release of polylysine
at early time points followed by release that was linear with the square root of time (Fig 5). Lin-
ear regression of data from 6 hr indicated a burst release of 3.4 + 1.0% and 4.0 + 0.8% and gra-
dient of 0.26 + 0.06%/hr "> and 0.23 + 0.04%/hr *~ for F1 and F3 respectively with R* > 0.95
in both cases. Results for these two formulations were not significantly different.

Fig 4. SEM images of F1 and F2 composite surfaces after submersion in SBF for 1 day, 1 week or 4 weeks.
Cracks observed in the apatite layers were formed due to the coating process.

doi:10.1371/journal.pone.0164653.9004
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Fig 5. PLS release upon square root of time (hr) of formulations containing PLS (F1 and F3). Error bars are 95% CI (n = 3).

doi:10.1371/journal.pone.0164653.9005

Biaxial flexural strength (BFS) and modulus of elasticity

The highest and lowest BFS were obtained for Z250 (217 + 22 MPa) and F1 (104 + 3 MPa)
respectively (Fig 6). F2 (125 + 4 MPa) and F3 (127 + 6 MPa) had comparable BFS but both
were lower than F4 (154 + 6 MPa). Z250 had the highest modulus (6.2 + 0.4 GPa) but that of
F4 (5.7 £ 0.3 GPa) was not significantly different. F1 (5.0 + 0.1 GPa) showed the lowest modu-
lus but this was not significantly different from that for F2 (5.5 + 0.4 GPa) and F3 (5.5 £ 0.3
GPa). Factorial analysis indicated that adding PO and PLS decreased strength on average by 18
(+3) % and 17 (+ 3) % respectively with no variable interaction effect (1 + 6%). In contrast,
these additives had no significant effect on modulus of the experimental composites.

Discussion

The objective of this study was to assess the monomer conversion and calculated polymeriza-
tion shrinkage, mass and volume changes, apatite formation, PLS release, and the mechanical
properties of novel resin composites with added calcium / strontium phosphate and polylysine.
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Fig 6. BFS and modulus of elasticity of each formulation. Same letters indicate no statistically significant
differences (p < 0.05). Error bars are 95% CI (n = 8).

doi:10.1371/journal.pone.0164653.9g006

Monomer conversion and polymerization shrinkage

Sufficient monomer conversion is essential for reducing toxicity and enhancing mechanical
properties of dental composites [23, 24]. It has been shown that the amount of toxic monomers
eluted from such resin composites was substantially decreased when their monomer conver-
sion was greater than 50% [25]. The monomer conversion of materials in this study were com-
parable with those of commercial products containing UDMA as the primary base monomer
[26]. In addition, the conversion of Z250 obtained above is in agreement with that reported in
an earlier study using a similar technique [27]. The higher conversion of experimental compos-
ites compared with that of Z250 is in agreement with a previous study [8]

Maximum final conversion of a composite is largely governed by the glass transition tem-
perature (Tj) of the monomers. As the monomers polymerize the T, increases. Rate of conver-
sion decreases dramatically when the T of the polymerizing mixture becomes coincident with
the surrounding temperature [28]. High conversion is therefore generally observed in polymers
consisting of flexible, low T, monomers. The monomer T, and the final room temperature con-
versions of homopolymers for Bis-GMA, UDMA, and TEGDMA are -8, -35 and -83°C and 39,
67 and 76% respectively [29]. Therefore, the final conversion values of Z250 (consisting of Bis-
GMA as a primary monomer) and the experimental composites observed in the current study
are within the expected range of these values.

Monomer conversion in this study was recorded at 1 mm depth, but in a clinical situation
the cavity depth can be up to 4 mm. In a previous study, it was shown that the monomer con-
version of Z250 was significantly below 50% if its thickness was greater than 1 mm [8]. This
commercial material must therefore be placed in multiple layers complicating the clinical pro-
cedure. The same study also revealed that the conversion of the UDMA composites could be
more than 50% up to 4 mm depth. This result, together with the very rapid cure, could facilitate
the placement of the experimental composites.

The monomer conversion of the experimental composites was decreased upon the addition
of PO. A possible explanation for this might be that this filler enhanced light scattering in the
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composites. The refractive index of the UDMA/TEGDMA mixture, glass, TSrP, MCPM, and
PLS were approximately 1.47, 1.46, 1.65, 1.54, and 1.42 respectively [30-33]. The refractive
indices mismatch between the monomer and particles will enhance scattering, thereby decreas-
ing the amount of monomer conversion [34]. This then subsequently reduced calculated poly-
merization shrinkage in formulation with PO addition (F1, F2).

The calculated shrinkage of the experimental composites fell within the shrinkage observed
with current commercial dental composites (1-6%) [35] and was only slightly greater than that
of 2-2.4% observed for Z250 [8, 36]. The values were also in agreement with both calculated
and experimental results obtained previously for similar formulations [20]. The calculation of
polymerization shrinkage assumes that the shrinkage per mole of the C = C groups is constant
throughout the polymerization process. Previous studies have shown reasonable agreement
between calculated and experimental shrinkage results but that at lower and higher conver-
sions, the calculation could slightly under [20] and over [8] estimate shrinkage.

Mass and volume changes

Polymer-based dental restorations are continuously exposed to oral fluids. As a result, water
sorption leads to changes in mechanical and physical properties. Water sorption is however
required to enable components release to promote remineralizing or antibacterial effects [37,
38]. Water sorption is generally a diffusion-controlled process. Hence, the results in this study
were plotted versus the square root of time. A previous study of calcium phosphate and CHX
containing composites, demonstrated that the rate of water sorption was governed primarily
by the hydrophilicity of the polymer phase, whereas the final water content was mainly deter-
mined by the amount of hydrophilic calcium phosphate [39].

Hydrophilicity of both PLS and MCPM probably led to an increase in early water sorption
and, therefore, mass increase. This water would be expected to subsequently dissolve these
components enabling their diffusion-controlled release and / or, in the case of MCPM, dispro-
portionation into dicalcium phosphate and phosphoric acid. The dicalcium phosphate may
then precipitate as lower solubility brushite that binds the water within the composite. The
phosphoric acid may then diffuse to the tristrontium phosphate particles and react to form dis-
trontium phosphate. Alternatively, it may be released into the aqueous surroundings.

In the current study, the mass changes observed with F3 and F4 were comparable with
those observed for commercial materials [40]. Unlike F3 and F4, the mass changes of com-
posites with PO (F1 and F2) were markedly affected by type of storage solution. The final
negative mass changes of F1 and F2 composites in water might have been a consequence of
greater mass loss compared with mass gain arising from water sorption. The buffer, in SBF
would neutralize any released acid due to the reaction of MCPM with water. The phosphate
counterions, however, may have supersaturated the solution and re-precipitate with calcium
as apatite on the surface of the composites thereby reducing mass loss. The greater difference
in mass in water versus SBF of F1 compared with F2 suggests the PLS is able to enhance the
precipitation.

The volume of the experimental composites might have increased through the water
expanding the polymerized resin matrix [39]. Although PLS addition enhanced mass change of
the composites, it had minimal effect on volume change. Water sorption had therefore
increased material density. Conversely, PO addition caused a large increase in volume. Previ-
ous studies suggest this may be due to the lower density brushite formation in the bulk of the
materials forcing expansion of the surrounding polymer matrix [22, 39]. The final composite
volume changes in water were comparable with polymerization shrinkage. In addition, the 1%
difference in volume change observed at late time with F1 and F2 in water versus in SBF would
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be consistent with a 10 um layer of apatite. This would be expected to help remineralization of
>10 pm depth of surrounding acid affected dentin.

Water sorption may therefore promote component release and induce expansion to com-
pensate polymerization shrinkage and stress [41]. It could, however, also negatively affect the
long-term color stability and mechanical properties. Assessing these properties is therefore
needed in future work.

Apatite formation

A composite resin that promotes precipitation of apatite from ion-containing solutions may
help seal gaps at the tooth-restoration interface and remineralize any residual demineralized
dentin. The ion content of SBF is similar to that of dentinal fluid. Furthermore, BS ISO 23317:
2012 is a commonly used standard for assessment of the ability of materials to promote apatite
precipitation from SBF [42, 43]. It was therefore used in the above study.

The formulations with MCPM and TSrP (F1 and F2) formed a visible apatite layer within
24 hr as was previously observed with the composites containing MCPM, TCP and CHX [7].
Hence, replacement of TCP and CHX with TSrP and PLS in this new study has not removed
the apatite forming ability of the composites. An advantage of strontium over calcium phos-
phate would be increased radiopacity whilst the benefit of PLS instead of CHX would be
enhanced eukaryotic cell compatibility [44, 45].

The apatite precipitation rate was faster with F1 than F2. This may be due to the effect of
positively charged amine from PLS. This positively charged lysine group and extra water sorp-
tion may have encouraged the mineral release and attract the negatively charged pro-nucle-
ation cluster, thus increasing the nucleation sites and the precipitation of the apatite [46]. This
would be expected to enable remineralization of demineralized dentin and minimize the gap
formation at the tooth-restoration interface. Typical clinical marginal gaps are ~10 um [47]
which is comparable to the thicknesses of the apatite layer. The rapid formation of apatite
would be expected to enable immediate remineralizing of any residual demineralized dentin
and help to minimize gap formation at the tooth-restoration interface.

Polylysine release

Chlorhexidine (CHX) is a commonly used antibacterial agent for inhibition of dental biofilm
formation. Recent studies, however, have demonstrated increasing antibiotic resistance to
chlorhexidine [48, 49] and some severe hypersensitivity reactions [50, 51]. Polylysine is a FDA
approved preservative that may potentially be used as alternative to address these issues. Previ-
ous studies have shown that to gain high release of CHX from composites requires addition of
PO or hydrophilic monomer [8, 17]. The results of this study showed that the release of PLS
was high regardless of PO addition. A possible explanation for this might be that PLS, com-
pared with CHX, is a highly water-soluble compound that in itself can encourage high water
sorption. In addition, PLS is a polyelectrolyte [52]. Therefore, its polymer chain will become
positively charged upon dissolution in aqueous solutions. This creates a repulsive force
between the repeating units in the polymer chain leading to polymer chain extension. This pro-
cess may enable movement of the chain out of the composites into the surrounding water. The
above data has demonstrated that the release of polylysine can be given by a slightly modified
Fickian equation [53].

2Dt

APLS = APLS, + APLS \ [ (10)
T

Where APLS represents the change in cumulative PLS in the solution; APLS,, early burst
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release; APLS,.., maximum change in the solution; D, PLS diffusion coefficient; t, time; /, sample
thickness. The early burst release may be due to the dissolution of PLS from the composite
resin surface. This burst release may be expected to remove the residual bacteria and prevent
the early rapid and spontaneous adhesion of bacteria. PLS may also subsequently be trapped
and accumulate at the tooth restoration interface. This might prevent long term bacterial
colonization.

Biaxial flexural strength and modulus of elasticity

Successful dental composite restoration depends on sufficient mechanical strength to with-
stand the masticatory forces. According to BS ISO 4049, flexural strength from three-point
bending test of 80 MPa is required for the restorative type dental composite [54]. The biaxial
flexural strength obtained in the above study yields similar results to the three-point bending
test but can be more reproducible [55]. The result from the above study therefore suggests the
materials would pass the standard. Furthermore, the strength of the composites in the above
studies was comparable or higher than that of calcium phosphate containing composites from
previous publications [56, 57]. Addition of PO and PLS negatively affected mechanical proper-
ties of the composites as was expected. This could be due to the decrease in monomer conver-
sion, the increase in water sorption, and the lack of adequate bond between these additives and
the matrix [58]. Fillers treated with silane such as methacryloxypropyltrimethoxysilane can
form a covalent bond, which is one of major factors that contributes to the strength of methac-
rylate-based composites [59]. PO and PLS fillers in this study were, however, intentionally not
silane treated to enable their reaction and release. Although 4-META may provide a chemical
bond between these fillers and matrix, this bond may be not sufficient to provide significant
benefit. The releasing of components may also affect the long-term mechanical properties of
the composites. With the provided level of PO, a previous study suggests, however, that the
reduction in strength may be no more than that observed with Z250 [8]. This could be due to
the formation of high-density dicalcium phosphates in the pores left after the releasing of reac-
tive fillers [39].

Conclusion

The addition of MCPM with TSrP and polylysine promoted hygroscopic expansion, apatite
formation, and early polylysine release. These properties are expected to compensate the poly-
merization shrinkage, reseal any restoration gaps, and may help remineralize or kill residual
demineralized dentin or bacteria in a cavity. Although addition of these fillers decreased the
monomer conversion and strength of the composites, these properties were still within an
acceptable range.

Supporting Information

S1 File. Raw data. Experimental composite raw data.
(XLSX)

Acknowledgments

ESSCHEM and DMG have supplied monomers and fillers. Dr. Graham Palmer and Dr. Nicola
J. Mordan provided technical support.

PLOS ONE | DOI:10.1371/journal.pone.0164653 October 11,2016 15/19


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164653.s001

@° PLOS | ONE

Composites with Ca / Sr Phosphates and Polylysine

Author Contributions

Conceptualization: PP WX HP AY.

Formal analysis: PP AY.

Funding acquisition: PP EZ AY.

Investigation: PP SL EZ.

Methodology: PP WX AY.

Project administration: HP AY.

Supervision: PP HP AY.

Validation: PP AY.

Visualization: PP HP AY.

Writing - original draft: PP HP AY.

References

1.

10.

11.

12.

13.

Austin R, Eliyas S, Burke FJ, Taylor P, Toner J, Briggs P. British Society of Prosthodontics Debate on
the Implications of the Minamata Convention on Mercury to Dental Amalgam—Should our Patients be
Worried? Dent Update. 2016; 43(1):8-10, 2—4, 6-8. PMID: 27024898

Kopperud SE, Tveit AB, Gaarden T, Sandvik L, Espelid |. Longevity of posterior dental restorations
and reasons for failure. Eur J Oral Sci. 2012; 120(6):539—48. doi: 10.1111/e0s.12004 PMID: 23167471

Roumanas ED. The frequency of replacement of dental restorations may vary based on a number of
variables, including type of material, size of the restoration, and caries risk of the patient. J Evid Based
Dent Pract. 2010; 10(1):23—4. doi: 10.1016/j.jebdp.2009.11.009 PMID: 20230960

Overton JD, Sullivan DJ. Early failure of Class Il resin composite versus Class Il amalgam restorations
placed by dental students. J Dent Educ. 2012; 76(3):338-40. PMID: 22383602

Nedeljkovic I, Teughels W, De Munck J, Van Meerbeek B, Van Landuyt KL. Is secondary caries with
composites a material-based problem? Dent Mater. 2015; 31(11):e247-77. doi: 10.1016/j.dental.
2015.09.001 PMID: 26410151

Banerjee A. Minimal intervention dentistry: part 7. Minimally invasive operative caries management:
rationale and techniques. Br Dent J. 2013; 214(3):107—-11. doi: 10.1038/sj.bd].2013.106 PMID:
23392023

Aljabo A, Abou Neel EA, Knowles JC, Young AM. Development of dental composites with reactive fil-
lers that promote precipitation of antibacterial-hydroxyapatite layers. Mater Sci Eng C Mater Biol Appl.
2015. doi: 10.1016/j.msec.2015.11.047 PMID: 26706532

Aljabo A, Xia W, Liagat S, Khan MA, Knowles JC, Ashley P, et al. Conversion, shrinkage, water sorp-
tion, flexural strength and modulus of re-mineralizing dental composites. Dent Mater. 2015. doi: 10.
1016/j.dental.2015.08.149 PMID: 26361809

Gandolfi MG, Taddei P, Siboni F, Modena E, De Stefano ED, Prati C. Biomimetic remineralization of
human dentin using promising innovative calcium-silicate hybrid "smart" materials. Dent Mater. 2011;
27(11):1055-69. doi: 10.1016/j.dental.2011.07.007 PMID: 21840044

Shahid S, Hassan U, Billington RW, Hill RG, Anderson P. Glass ionomer cements: Effect of strontium
substitution on esthetics, radiopacity and fluoride release. Dent Mater. 2014; 30(3):308-13. doi: 10.
1016/j.dental.2013.12.003 PMID: 24418629

Lippert F, Hara AT. Strontium and caries: a long and complicated relationship. Caries Res. 2013; 47
(1):34—49. doi: 10.1159/000343008 PMID: 23051661

Drouet C, Carayon M-T, Combes C, Rey C. Surface enrichment of biomimetic apatites with biologi-
cally-active ions Mg2+ and Sr2+: A preamble to the activation of bone repair materials. Mater Sci Eng
C Mater Biol Appl. 2008; 28(8):1544—-50. doi: 10.1016/j.msec.2008.04.011

Shukla SC, Singh A, Pandey AK, Mishra A. Review on production and medical applications of -polyly-
sine. Biochem Eng J. 2012; 65(0):70-81. doi: 10.1016/j.bej.2012.04.001

PLOS ONE | DOI:10.1371/journal.pone.0164653 October 11,2016 16/19


http://www.ncbi.nlm.nih.gov/pubmed/27024898
http://dx.doi.org/10.1111/eos.12004
http://www.ncbi.nlm.nih.gov/pubmed/23167471
http://dx.doi.org/10.1016/j.jebdp.2009.11.009
http://www.ncbi.nlm.nih.gov/pubmed/20230960
http://www.ncbi.nlm.nih.gov/pubmed/22383602
http://dx.doi.org/10.1016/j.dental.2015.09.001
http://dx.doi.org/10.1016/j.dental.2015.09.001
http://www.ncbi.nlm.nih.gov/pubmed/26410151
http://dx.doi.org/10.1038/sj.bdj.2013.106
http://www.ncbi.nlm.nih.gov/pubmed/23392023
http://dx.doi.org/10.1016/j.msec.2015.11.047
http://www.ncbi.nlm.nih.gov/pubmed/26706532
http://dx.doi.org/10.1016/j.dental.2015.08.149
http://dx.doi.org/10.1016/j.dental.2015.08.149
http://www.ncbi.nlm.nih.gov/pubmed/26361809
http://dx.doi.org/10.1016/j.dental.2011.07.007
http://www.ncbi.nlm.nih.gov/pubmed/21840044
http://dx.doi.org/10.1016/j.dental.2013.12.003
http://dx.doi.org/10.1016/j.dental.2013.12.003
http://www.ncbi.nlm.nih.gov/pubmed/24418629
http://dx.doi.org/10.1159/000343008
http://www.ncbi.nlm.nih.gov/pubmed/23051661
http://dx.doi.org/10.1016/j.msec.2008.04.011
http://dx.doi.org/10.1016/j.bej.2012.04.001

@° PLOS | ONE

Composites with Ca / Sr Phosphates and Polylysine

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Yoshida T, Nagasawa T. epsilon-Poly-L-lysine: microbial production, biodegradation and application
potential. Appl Microbiol Biotechnol. 2003; 62(1):21-6. doi: 10.1007/s00253-003-1312-9 PMID:
12728342

Dewaele M, Truffier-Boutry D, Devaux J, Leloup G. Volume contraction in photocured dental resins:
the shrinkage-conversion relationship revisited. Dent Mater. 2006; 22(4):359-65. doi: 10.1016/j.
dental.2005.03.014 PMID: 16143380

British Standard. ISO 23317:2012 Implants for surgery-In vitro evaluation for apatite-forming ability of
implant materials. 2012. Switzerland. British Standards Limited

Leung D, Spratt DA, Pratten J, Gulabivala K, Mordan NJ, Young AM. Chlorhexidine-releasing methac-
rylate dental composite materials. Biomaterials. 2005; 26(34):7145-53. doi: 10.1016/j.biomaterials.
2005.05.014 PMID: 15955557

Young AM, Ng PY, Gbureck U, Nazhat SN, Barralet JE, Hofmann MP. Characterization of chlorhexi-
dine-releasing, fast-setting, brushite bone cements. Acta Biomater. 2008; 4(4):1081-8. doi: 10.1016/j.
actbio.2007.12.009 PMID: 18313374

Grotzky A, Manaka Y, Fornera S, Willeke M, Walde P. Quantification of [small alpha]-polylysine: a
comparison of four UV/Vis spectrophotometric methods. Anal Methods. 2010; 2(10):1448-55. doi: 10.
1039/COAY00116C

Walters NJ, Xia W, Salih V, Ashley PF, Young AM. Poly(propylene glycol) and urethane dimethacry-
lates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dent
Mater. 2016; 32(2):264—77. doi: 10.1016/j.dental.2015.11.017 PMID: 26764174

Higgs WA, Lucksanasombool P, Higgs RJ, Swain MV. A simple method of determining the modulus of
orthopedic bone cement. J Biomed Mater Res. 2001; 58(2):188-95. doi: 10.1002/1097-4636(2001)
58:2%3C188::aid-jbm1006%3E3.0.co;2-v PMID: 11241338

Mehdawi I, Neel EA, Valappil SP, Palmer G, Salih V, Pratten J, et al. Development of remineralizing,
antibacterial dental materials. Acta Biomater. 2009; 5(7):2525-39. doi: 10.1016/j.actbio.2009.03.030
PMID: 19410530

Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: a review. Clin Oral
Investig. 2008; 12(1):1-8. doi: 10.1007/s00784-007-0162-8 PMID: 18040729

Ferracane JL. Resin-based composite performance: are there some things we can’t predict? Dent
Mater. 2013; 29(1):51-8. doi: 10.1016/j.dental.2012.06.013 PMID: 22809582

Durner J, Obermaier J, Draenert M, llie N. Correlation of the degree of conversion with the amount of
elutable substances in nano-hybrid dental composites. Dent Mater. 2012; 28(11):1146-53. doi: 10.
1016/j.dental.2012.08.006 PMID: 22940188

Alshali RZ, Silikas N, Satterthwaite JD. Degree of conversion of bulk-fill compared to conventional
resin-composites at two time intervals. Dent Mater. 2013; 29(9):e213-7. doi: 10.1016/j.dental.2013.
05.011 PMID: 23845799

Zorzin J, Maier E, Harre S, Fey T, Belli R, Lohbauer U, et al. Bulk-fill resin composites: polymerization
properties and extended light curing. Dent Mater. 2015; 31(3):293-301. doi: 10.1016/j.dental.2014.12.
010 PMID: 25582061

Achilias DS, Sideridou I. Study of the effect of two BPO/amine initiation systems on the free-radical
polymerization of MMA used in dental resins and bone cements. J Macromol Sci A 2002; 39(12):1435—
50. doi: 10.1081/MA-120016045

Sideridou |, Tserki V, Papanastasiou G. Effect of chemical structure on degree of conversion in light-
cured dimethacrylate-based dental resins. Biomaterials. 2002; 23(8):1819-29. doi: 10.1016/S0142-
9612(01)00308-8 PMID: 11950052

Antonucci JM, Fowler BO, Venz S. Filler systems based on calcium metaphosphates. Dent Mater.
1991; 7(2):124-9. doi: 10.1016/0109-5641(91)90058-7 PMID: 1936640

Yang Y, Dubois A, Qin XP, Li J, El Haj A, Wang RK. Investigation of optical coherence tomography as
an imaging modality in tissue engineering. Phys Med Biol. 2006; 51(7):1649-59. doi: 10.1088/0031-
9155/51/7/001 PMID: 16552095

Fujita K, Nishiyama N, Nemoto K, Okada T, Ikemi T. Effect of base monomer’s refractive index on cur-
ing depth and polymerization conversion of photo-cured resin composites. Dent Mater J. 2005; 24
(3):403-8. doi: 10.4012/dmj.24.403 PMID: 16279731

Richert L, Arntz Y, Schaaf P, Voegel J-C, Picart C. pH dependent growth of poly(L-lysine)/poly(L-glu-
tamic) acid multilayer films and their cell adhesion properties. Surf Sci. 2004; 570(1-2):13—-29. doi: 10.
1016/j.susc.2004.06.178

Howard B, Wilson ND, Newman SM, Pfeifer CS, Stansbury JW. Relationships between conversion,
temperature and optical properties during composite photopolymerization. Acta Biomater. 2010; 6
(6):2053-9. doi: 10.1016/j.actbio.2009.11.006 PMID: 19913646

PLOS ONE | DOI:10.1371/journal.pone.0164653 October 11,2016 17/19


http://dx.doi.org/10.1007/s00253-003-1312-9
http://www.ncbi.nlm.nih.gov/pubmed/12728342
http://dx.doi.org/10.1016/j.dental.2005.03.014
http://dx.doi.org/10.1016/j.dental.2005.03.014
http://www.ncbi.nlm.nih.gov/pubmed/16143380
http://dx.doi.org/10.1016/j.biomaterials.2005.05.014
http://dx.doi.org/10.1016/j.biomaterials.2005.05.014
http://www.ncbi.nlm.nih.gov/pubmed/15955557
http://dx.doi.org/10.1016/j.actbio.2007.12.009
http://dx.doi.org/10.1016/j.actbio.2007.12.009
http://www.ncbi.nlm.nih.gov/pubmed/18313374
http://dx.doi.org/10.1039/C0AY00116C
http://dx.doi.org/10.1039/C0AY00116C
http://dx.doi.org/10.1016/j.dental.2015.11.017
http://www.ncbi.nlm.nih.gov/pubmed/26764174
http://dx.doi.org/10.1002/1097-4636(2001)58:2%3C188::aid-jbm1006%3E3.0.co;2-v
http://dx.doi.org/10.1002/1097-4636(2001)58:2%3C188::aid-jbm1006%3E3.0.co;2-v
http://www.ncbi.nlm.nih.gov/pubmed/11241338
http://dx.doi.org/10.1016/j.actbio.2009.03.030
http://www.ncbi.nlm.nih.gov/pubmed/19410530
http://dx.doi.org/10.1007/s00784-007-0162-8
http://www.ncbi.nlm.nih.gov/pubmed/18040729
http://dx.doi.org/10.1016/j.dental.2012.06.013
http://www.ncbi.nlm.nih.gov/pubmed/22809582
http://dx.doi.org/10.1016/j.dental.2012.08.006
http://dx.doi.org/10.1016/j.dental.2012.08.006
http://www.ncbi.nlm.nih.gov/pubmed/22940188
http://dx.doi.org/10.1016/j.dental.2013.05.011
http://dx.doi.org/10.1016/j.dental.2013.05.011
http://www.ncbi.nlm.nih.gov/pubmed/23845799
http://dx.doi.org/10.1016/j.dental.2014.12.010
http://dx.doi.org/10.1016/j.dental.2014.12.010
http://www.ncbi.nlm.nih.gov/pubmed/25582061
http://dx.doi.org/10.1081/MA-120016045
http://dx.doi.org/10.1016/S0142-9612(01)00308-8
http://dx.doi.org/10.1016/S0142-9612(01)00308-8
http://www.ncbi.nlm.nih.gov/pubmed/11950052
http://dx.doi.org/10.1016/0109-5641(91)90058-7
http://www.ncbi.nlm.nih.gov/pubmed/1936640
http://dx.doi.org/10.1088/0031-9155/51/7/001
http://dx.doi.org/10.1088/0031-9155/51/7/001
http://www.ncbi.nlm.nih.gov/pubmed/16552095
http://dx.doi.org/10.4012/dmj.24.403
http://www.ncbi.nlm.nih.gov/pubmed/16279731
http://dx.doi.org/10.1016/j.susc.2004.06.178
http://dx.doi.org/10.1016/j.susc.2004.06.178
http://dx.doi.org/10.1016/j.actbio.2009.11.006
http://www.ncbi.nlm.nih.gov/pubmed/19913646

@° PLOS | ONE

Composites with Ca / Sr Phosphates and Polylysine

35.

36.

37.

38.

39.

40.

a1,

42,

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Schneider LFJ, Cavalcante LM, Silikas N. Shrinkage stresses generated during resin-composite appli-
cations: A review. J Dent Biomech. 2010; 2010:131630. doi: 10.4061/2010/131630 PMID:
PMC2951111

Nagem Filho H, Nagem HD, Francisconi PA, Franco EB, Mondelli RF, Coutinho KQ. Volumetric poly-
merization shrinkage of contemporary composite resins. J Appl Oral Sci. 2007; 15(5):448-52. doi: 10.
1590/s1678-77572007000500014 PMID: 19089177

Young AM, Rafeeka SA, Howlett JA. FTIR investigation of monomer polymerisation and polyacid neu-
tralisation kinetics and mechanisms in various aesthetic dental restorative materials. Biomaterials.
2004; 25(5):823-33. doi: 10.1016/S0142-9612(03)00599-4 PMID: WOS:000186853400008

Farrugia C, Camilleri J. Antimicrobial properties of conventional restorative filling materials and
advances in antimicrobial properties of composite resins and glass ionomer cements-A literature
review. Dent Mater. 2015; 31(4):e89-99. doi: 10.1016/j.dental.2014.12.005 PMID: 25582060

Mehdawi IM, Pratten J, Spratt DA, Knowles JC, Young AM. High strength re-mineralizing, antibacterial
dental composites with reactive calcium phosphates. Dent Mater. 2013; 29(4):473-84. doi: 10.1016/j.
dental.2013.01.010 PMID: 23434447

Asaoka K, Hirano S. Diffusion coefficient of water through dental composite resin. Biomaterials. 2003;
24(6):975-9. doi: 10.1016/S0142-9612(02)00435-0 PMID: 000180454000011

Park JW, Ferracane JL. Water aging reverses residual stresses in hydrophilic dental composites. J
Dent Res. 2014; 93(2):195-200. doi: 10.1177/0022034513513905 PMID: 24272790

Yan S, YinJ, CuilL, Yang Y, Chen X. Apatite-forming ability of bioactive poly(l-lactic acid)/grafted silica
nanocomposites in simulated body fluid. Colloids Surf, B. 2011; 86(1):218-24. doi: 10.1016/j.colsurfb.
2011.04.004 PMID: 21536416

Brauer DS. Bioactive glasses-structure and properties. Angew Chem Int Ed Engl. 2015; 54(14):4160—
81. doi: 10.1002/anie.201405310 PMID: 25765017

Fischer D, Li Y, Ahlemeyer B, Krieglstein J, Kissel T. In vitro cytotoxicity testing of polycations: influ-
ence of polymer structure on cell viability and hemolysis. Biomaterials. 2003; 24(7):1121-31. doi: 10.
1016/s0142-9612(02)00445-3 PMID: 12527253

Hidalgo E, Dominguez C. Mechanisms underlying chlorhexidine-induced cytotoxicity. Toxicol In Vitro.
2001; 15(4-5):271-6. doi: 10.1016/S0887-2333(01)00020-0 PMID: 11566548

Nudelman F, Pieterse K, George A, Bomans PH, Friedrich H, Brylka LJ, et al. The role of collagen in
bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater. 2010; 9
(12):1004-9. doi: 10.1038/nmat2875 PMID: 20972429

Benetti AR, Havndrup-Pedersen C, Honore D, Pedersen MK, Pallesen U. Bulk-fill resin composites:
polymerization contraction, depth of cure, and gap formation. Oper Dent. 2015; 40(2):190-200. doi:
10.2341/13-324-L PMID: 00035249000001 1

Smiline GA, Pandi SK, Hariprasad P, Raguraman R. A preliminary study on the screening of emerging
drug resistance among the caries pathogens isolated from carious dentine. Indian J Dent Res. 2012;
23(1):26-30. doi: 10.4103/0970-9290.99033 PMID: 22842245

Kulik EM, Waltimo T, Weiger R, Schweizer |, Lenkeit K, Filipuzzi-Jenny E, et al. Development of resis-
tance of mutans streptococci and Porphyromonas gingivalis to chlorhexidine digluconate and amine
fluoride/stannous fluoride-containing mouthrinses, in vitro. Clin Oral Investig. 2015; 19(6):1547-53.
doi: 10.1007/s00784-014-1379-y PMID: 25483124

Pemberton MN, Gibson J. Chlorhexidine and hypersensitivity reactions in dentistry. Br Dent J. 2012;
213(11):547-50. doi: 10.1038/s}.bd}.2012.1086 PMID: 23222325

Calogiuri G, Di Leo E, Trauatmann A, Nettis E, Ferannini A, Vacca A. Chlorhexidine Hypersensitivity:
A Critical and Updated Review. J Allergy Ther. 2013; 04(04). doi: 10.4172/2155-6121.1000141

Lubbert A, Castelletto V, Hamley IW, Nuhn H, Scholl M, Bourdillon L, et al. Nonspherical assemblies
generated from polystyrene-b-poly(L-lysine) polyelectrolyte block copolymers. Langmuir. 2005; 21
(14):6582-9. doi: 10.1021/1a0502600 PMID: WOS:000230248500065

FuY, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable
polymeric delivery systems. Expert Opin Drug Deliv. 2010; 7(4):429—44. doi: 10.1517/
17425241003602259 PMID: 20331353

British Standard. BS EN ISO 4049:2009 Dentistry-Polymer- based restorative materials. 2009. Swit-
zerland. BSI Standard limited

Pick B, Meira JB, Driemeier L, Braga RR. A critical view on biaxial and short-beam uniaxial flexural
strength tests applied to resin composites using Weibull, fractographic and finite element analyses.
Dent Mater. 2010; 26(1):83—-90. doi: 10.1016/j.dental.2009.09.002 PMID: 19819002

PLOS ONE | DOI:10.1371/journal.pone.0164653 October 11,2016 18/19


http://dx.doi.org/10.4061/2010/131630
http://www.ncbi.nlm.nih.gov/pubmed/PMC2951111
http://dx.doi.org/10.1590/s1678-77572007000500014
http://dx.doi.org/10.1590/s1678-77572007000500014
http://www.ncbi.nlm.nih.gov/pubmed/19089177
http://dx.doi.org/10.1016/S0142-9612(03)00599-4
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000186853400008
http://dx.doi.org/10.1016/j.dental.2014.12.005
http://www.ncbi.nlm.nih.gov/pubmed/25582060
http://dx.doi.org/10.1016/j.dental.2013.01.010
http://dx.doi.org/10.1016/j.dental.2013.01.010
http://www.ncbi.nlm.nih.gov/pubmed/23434447
http://dx.doi.org/10.1016/S0142-9612(02)00435-0
http://www.ncbi.nlm.nih.gov/pubmed/000180454000011
http://dx.doi.org/10.1177/0022034513513905
http://www.ncbi.nlm.nih.gov/pubmed/24272790
http://dx.doi.org/10.1016/j.colsurfb.2011.04.004
http://dx.doi.org/10.1016/j.colsurfb.2011.04.004
http://www.ncbi.nlm.nih.gov/pubmed/21536416
http://dx.doi.org/10.1002/anie.201405310
http://www.ncbi.nlm.nih.gov/pubmed/25765017
http://dx.doi.org/10.1016/s0142-9612(02)00445-3
http://dx.doi.org/10.1016/s0142-9612(02)00445-3
http://www.ncbi.nlm.nih.gov/pubmed/12527253
http://dx.doi.org/10.1016/S0887-2333(01)00020-0
http://www.ncbi.nlm.nih.gov/pubmed/11566548
http://dx.doi.org/10.1038/nmat2875
http://www.ncbi.nlm.nih.gov/pubmed/20972429
http://dx.doi.org/10.2341/13-324-L
http://www.ncbi.nlm.nih.gov/pubmed/000352490000011
http://dx.doi.org/10.4103/0970-9290.99033
http://www.ncbi.nlm.nih.gov/pubmed/22842245
http://dx.doi.org/10.1007/s00784-014-1379-y
http://www.ncbi.nlm.nih.gov/pubmed/25483124
http://dx.doi.org/10.1038/sj.bdj.2012.1086
http://www.ncbi.nlm.nih.gov/pubmed/23222325
http://dx.doi.org/10.4172/2155-6121.1000141
http://dx.doi.org/10.1021/la0502600
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000230248500065
http://dx.doi.org/10.1517/17425241003602259
http://dx.doi.org/10.1517/17425241003602259
http://www.ncbi.nlm.nih.gov/pubmed/20331353
http://dx.doi.org/10.1016/j.dental.2009.09.002
http://www.ncbi.nlm.nih.gov/pubmed/19819002

o ®
@ : PLOS | ONE Composites with Ca / Sr Phosphates and Polylysine

56. WuJL, Weir MD, Melo MAS, Xu HHK. Development of novel self-healing and antibacterial dental com-
posite containing calcium phosphate nanoparticles. Jounal of Dentistry. 2015; 43(3):317-26. doi: 10.
1016/j.jdent.2015.01.009 PMID: WOS:000350150900003

57. Marovic D, Tarle Z, Hiller KA, Muller R, Rosentritt M, Skrtic D, et al. Reinforcement of experimental
composite materials based on amorphous calcium phosphate with inert fillers. Dent Mater. 2014; 30
(9):1052-60. doi: 10.1016/j.dental.2014.06.001 PMID: WOS:000340840000014

58. Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater. 2006; 22
(3):211-22. doi: 10.1016/j.dental.2005.05.005 PMID: 16087225

59. FuS-Y, Feng X-Q, Lauke B, Mai Y-W. Effects of particle size, particle/matrix interface adhesion and
particle loading on mechanical properties of particulate—polymer composites. Compos Part B-Eng.
2008; 39(6):933-61. doi: 10.1016/j.compositesb.2008.01.002

PLOS ONE | DOI:10.1371/journal.pone.0164653 October 11,2016 19/19


http://dx.doi.org/10.1016/j.jdent.2015.01.009
http://dx.doi.org/10.1016/j.jdent.2015.01.009
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000350150900003
http://dx.doi.org/10.1016/j.dental.2014.06.001
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000340840000014
http://dx.doi.org/10.1016/j.dental.2005.05.005
http://www.ncbi.nlm.nih.gov/pubmed/16087225
http://dx.doi.org/10.1016/j.compositesb.2008.01.002

