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Abstract

Analysis of gene sets has been widely applied in various high-throughput biological studies.

One weakness in the traditional methods is that they neglect the heterogeneity of genes

expressions in samples which may lead to the omission of some specific and important

gene sets. It is also difficult for them to reflect the severities of disease and provide expres-

sion profiles of gene sets for individuals. We developed an application software called

IGSA that leverages a powerful analytical capacity in gene sets enrichment and samples

clustering. IGSA calculates gene sets expression scores for each sample and takes an

accumulating clustering strategy to let the samples gather into the set according to the

progress of disease from mild to severe. We focus on gastric, pancreatic and ovarian can-

cer data sets for the performance of IGSA. We also compared the results of IGSA in KEGG

pathways enrichment with David, GSEA, SPIA, ssGSEA and analyzed the results of IGSA

clustering and different similarity measurement methods. Notably, IGSA is proved to be

more sensitive and specific in finding significant pathways, and can indicate related

changes in pathways with the severity of disease. In addition, IGSA provides with signifi-

cant gene sets profile for each sample.

Introduction

During the past several years, the measurement of differential gene expression has been applied
to various high-throughput biological studies. To facilitate the functional analysis of long lists
of genes [1], a number of enrichment methods, including Over-Representation Analysis
(ORA), Functional Class (FCS) approaches, Network-Based (NB) approaches[2], Single Sam-
ple (SS) methods[3] and others (such as topGO [4]) have been developed.ORA, the earliest
approach [5], statistically evaluates the fraction of genes in gene sets (e.g., pathways) found
among the set of significant differentially expressed genes. The methods in this category
include DAVID [6], Onto-Express [7], and GoMiner [8]. The hypothesis of FCS approaches is
that changes in sets of functionally related genes can have significant effects; this approach
helps to alleviate the need for selecting significant genes as a first step, which omits important
information about the genes. FCS methods include GSEA [9] and PAGE [10]. NB approaches
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introduce networks (e.g., pathway network, gene interaction network, etc.) to promote enrich-
ment analysis. A variety of tools are based on the NB approach, such as SPIA (pathway topol-
ogy based) [11], DRAGEN (transcriptional regulatory network based) [12], ScorePAGE
(pathway topology based) [13], and ToppCluster [14]. Single Sample (SS) methods compute
gene set scores for each individual sample based on the expression of genes; such methods
include PLAGE [15], ssGSEA [16], Z-score [17], and GSVA [18].
However, one weakness in these methods is that many of them neglect information about

the heterogeneity of gene expression in the samples [19], which may lead to the omission of
some specific gene sets. Moreover, clustering approaches based on traditional methods, such as
unsupervisedhierarchical clustering, may classify samples (or gene sets) meaningfully,
although these methods hardly reflect the different severities of diseases in different classes.
Hence, these tools are inappropriate for analysis in some situations, particularly in individual-
izedmedicine.
Here, we present Individual Gene Sets Analysis (IGSA), a functional and efficient software

tool based on Java and R, which can be used to analyze gene lists and visualize the results from
various angles. IGSA takes advantage of the heterogeneity of gene expressions in samples and
the homogeneity of gene expression at the functional level.
Differing from other methods such as ORA, FCS and NB, whose enrichment analysis is

based on the changes of gene expression between cases and controls, IGSA preserves all gene
expression data in samples and involves these data in the calculation of an expression score for
each gene set in each sample. This approach is similar in spirit to SS; however, methods in SS,
such as PLAGE, standardize gene expression profiles (GEPs) through z-scores, which assumes
that gene expression profiles are jointly normally distributed; this means that all genes act inde-
pendently within each gene set. Moreover, methods such as ssGSEA and GSVA rank gene
expression and expression-level statistics, respectively, resulting in the loss of detailed informa-
tion about gene expression in each sample.
In addition, IGSA employs the accumulating clustering strategy (Fig 1), letting samples

(cases) gather into the set according to the degree of possible deterioration, which may reflect
the severity of a disease in different samples. Furthermore, the similarity measurement used in
IGSA clustering focusesmore on the similarity between the samples in quality (i.e., coordinated
expression change (up-regulated or down-regulated) in gene sets between two samples) rather
than in quantity (i.e., the similarity of gene set expression values between two samples), which
promotes the effect of clustering compared with other methods (e.g., Pearson's correlation,
etc.).
We used IGSA to analyze several cancer-related datasets (e.g., gastric cancer, pancreatic can-

cer and ovarian cancer). Compared with other methods (DAVID, GSEA, SPIA, GSVA, ssGSEA
and Z-score), besides the gene sets related to many cancers, this method identifiedmany spe-
cific gene sets in each cancer and, to a certain extent, indicated changes in gene sets related to
the severity of different cancer. IGSA can be accessed freely at http://210.46.85.180:8080/
IGSAWeb.

Materials and Methods

Data preparation

Gastric cancer data. The gastric cancer data (GSE13861) were obtained from GEO. There
were a total of 84 samples, and among these, 19 were classified as normal samples.
Pancreatic cancer data. The pancreatic cancer data (GSE16515) were obtained from

GEO. There were a total of 52 samples, with 16 samples consisting of both tumor and normal
expression data and 20 samples consisting of only tumor data.
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Ovarian cancer data. The ovarian cancer data (TCGA_OV_exp_u133a) were accessed
from TCGA. The batch 9 ovarian cancer dataset consists of 46 samples, including 8 normal
samples and 37 ovarian cancer samples (the remaining one sample was discarded because it is
not normal or cancer). The data were downloaded in September 2014. The batch 40 ovarian
cancer dataset included a total of 51 ovarian cancer samples. The survival analysis was based
on samples that were diagnosed after the year 2000.
Hepatitis data. These data (GSE48452) were available from GEO, including 73 samples of

human liver grouped into C (control = 14), H (healthy obese = 27), S (steatosis = 14) and N
(nash = 18) groups.
Pathways. There were a total of 278 pathways (version 70.0) obtained from KEGG.
GO gene sets. We downloaded the gene ontology data (data-version: releases/2015-08-20)

and the annotation data (gaf-version: 2.0) from the Gene Ontology Consortium.The third-
layer GO terms of BP (Biological Process) and MF (Molecular Function) were extracted and
annotated with gene product annotation. This analysis included 1,334 BP terms and 331 MF
terms.

Fig 1. The workflow of IGSA. Step one, normalize the expression of genes and calculate each gene set expression score for each

sample. Step two, find significant gene sets (e.g., pathways) according to Fisher’s exact test (count the number of gene set scores above

or below the average score in controls and cases, and construct 2x2 contingency tables). Step three, obtain significant gene set

expression according to a list of significant gene sets and gene sets expression, and then subject the results to IGSA clustering (the

similarity measure is SMIC).

doi:10.1371/journal.pone.0164542.g001
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IGSA enrichment

The following procedure was adopted for IGSA enrichment.
Normalize the gene expression. All of expression data were transformed to the log scale

and without any filtering for the very low expressed genes. We removed the probes which
could not be mapped to any genes or mapped to multiple genes.
Taking into account differences in gene expression among the samples (disease samples and

normal samples), we calculated the proportions of gene expression in each sample and then
compared the proportions with the average level.
Let g_ij denote the expression value of gene i in sample j. Let N be the number of samples.

Then, the normalized expression value of each gene in each sample (Expr_Gene(g_ij)) is calcu-
lated as follows:

ExprGeneðgijÞ ¼
gijXN

j
gij

�
1

N

In this way, the expression values of genes higher than the average level are intended to be
positive (also called up-regulated), and the values of genes lower than the average level are
inclined to be negative (down-regulated).
Calculate gene set expression in different samples. We used the average expression val-

ues of genes in both the gene set and the sample (i.e., the intersection of genes from the sample
and from the gene set) as the gene set (e.g., pathway) expression in the sample.
Let Q_i denote all genes in the gene set i (e.g., pathway), and let S_j be the all genes in sample

j. Let | Q_i \ S_j | denote the number of genes which exist in both the sample j and the gene set
i. The expression of gene set i (e.g., pathwayP) of sample j〖Expr_GeneSet〗_pathway(P_(i, j))
can be calculated by gene expression (denote as Expr_Gene) using the following formula:

ExprGeneSet pathwayðPi;jÞ ¼

P
ExprGeneðQi\SjÞ

jQi \ Sjj

Calculate the significanceof each gene set. For each gene set, we counted the number of
expression scores above or below the average value (the average value was zero after normaliza-
tion applied with method 2.2.1) in controls and cases. Then, we constructed 2x2 contingence
tables and used Fisher’s exact test to obtain the significance value for each gene set. The null
hypothesis is that the gene set (i.e., pathway) is independent of the cancer. We also adjusted the
p value of each gene set by the FDR.

IGSA clustering

In consideration of the amplification of gene expression along with the progression of cancer
(more genes tend to be expressed aberrantly) [20], we developed an accumulating clustering
strategy that can reflect the degree of disease severity by adding disease samples into the seed
set according to the average similarity of the disease sample with other seeds (samples as start
seed and the other seeds in the seed set).
Similaritymeasurement in IGSA clustering (SMIC). The similarity measurement in

IGSA clustering focusesmore on the similarity between the samples in quality (i.e., coordinated
changes such as up-regulated or down-regulated expression in gene sets between two samples)
rather than in quantity. We used qualitative rather than quantitative measures to avoid the
impact on the analysis that results from the over-fitting model.
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The similarity between two samples in IGSA clustering is calculated based on the co-expres-
sion of gene sets (CGSs, gene sets in both samples whose expression values are simultaneously
above or below the average value) and differential expression of gene sets (DGSs, gene sets in
both samples whose expression values are on two sides of the average values).
The similarity between two samples can be simply represented as the number of CGSs.

However, the expression values of some CGSs in both samples may be simultaneously above or
below the average value; this indicates that the phenomenon of co-expression among some
gene sets may be a random event, which is common when the number of samples is not large
enough; this phenomenon is also observed for DGSs. As a result, a weight (the probability of a
gene set whose expression in both samples is not a random event, in which 1-means the proba-
bility of a gene set whose expression in both samples is a random event) should be introduced
into the calculating to relieve the impact of the pseudo CGSs and DGSs.
Let N_cgs denote the number of CGSs and N_dgs denote the number of DGSs. Thus, the

number of real CGSs in CGSs is N_cgs�θ^(N_cgs) (Only the gene set in CGSs whose expression
is not a random event will be regarded as a real CGS), and the number of real CGSs in DGSs is
N_dgs�〖(1‒θ)〗̂(N_dgs) (For a gene set in DGSs whose expression is random, this may indicate
co-expression). The complete function of similarity measurement (〖Similarity〗_ij) for sample i
and sample j is as follows:

Similarityij ¼ Ncgs�y
Ncgs þNdgs � ð1 � yÞ

Ndgs

The interval of θ is [0.5, 1] (We assumed that most co-expression events should be real, and
thus the value of theta should not be less than 0.5). When θ is 0.5, all gene sets are expressed at
random, and when θ equals 1, all CGSs and DGSs are considered to be meaningful.
Furthermore, due to the uncertainty of θ, which may be interfered by array signal quality,

etc., we use the maximum likelihood estimation (MLE) method to calculate the similarity.

Similarityij ¼ LðyÞ ¼ Ncgs�y þNdgs � ð1 � yÞ

The concrete steps in IGSA clustering. IGSA clustering is based on the similarity of
expression of significant gene sets derived from IGSA enrichment.
Step 1: Create a seed set for storing seed samples that represent the start seed and samples

that have been clustered and create a candidate set for storing candidate samples (disease sam-
ples) that are waiting to be clustered.
Step 2: Construct a vector as a start seed through calculating the average expression value of

each gene set (i.e., significant differential expression pathways) in normal samples, and add the
vector into the seed set (the vector is a start seed). Add all disease samples into the candidate
set. For example, suppose after IGSA enrichment, we obtain 11 significant gene sets.We first
obtained the start seed through calculating the average expression value of these 11 gene sets in
all normal samples and added it into the seed set as the start seed.
Step 3: Calculate the average similarity score of each sample in the candidate set with all

seeds, and then add the sample, rather than the gene-set, with the highest average similarity
score into the seed set (the sample is marked as seed) and remove the sample from the candi-
date set. For example, suppose we have 20 cancer samples in the candidate set and 2 samples in
the seed set (the one is the start seed and the other is the clustered disease sample of the highest
similarity score with the start seed). For each of the 20 cancer samples, we calculate the average
similarity between the cancer sample and 2 samples in the seed set. Finally, we will obtain 20
similarity values for 20 cancer samples and we will move the sample with the highest value into

IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering
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the seed set from the candidate set. Thus, the size of the seed set is increased to 3, and the size
of candidate set is decreased to 19.
Step 4: Repeat step 3 until the candidate set is null.
All samples are clustered in turn according to the similarity score. Fig 2 shows the workflow

of IGSA clustering; this can be used for gene set clustering as well. The procedure is similar to
sample clustering except the calculation of similarity is based on gene set expression in each
sample rather than based on sample expression in each gene set, and the start seed is a zero-
vector (there is no tag in the gene sets that marks each of them as normal or diseased as in the
sample; therefore, the start seed is set as a zero-vector, and the length of the vector is equal to
the number of samples).

Results

IGSA enrichment results

To evaluate the performance of IGSA enrichment, we ran the enrichment analysis program
based on the pathways involved in various cancer-related expression profiles.
We first applied this method to a gastric cancer dataset, and IGSA (FDR<0.01) identified

48 significantly up-regulated pathways (SUPs; pathways whose expression value was higher
than the average expression value) and 38 significantly down-regulated pathways (SDPs, the
pathways whose expression value was lower than the average expression value). Out of 48
SUPs found by IGSA, 35 pathways were reported to be related to gastric cancer (the accuracy
was approximately 72.92%; we denote accuracy as the proportion of the found pathways

Fig 2. The workflow of IGSA clustering. Step one, create an empty seed set and an empty candidate set. Step two, construct a

start seed by calculating the average expression value of each significant gene set in the normal samples, and add the start seed

into the empty seed set. Add all of the disease samples into the empty candidate set. Step three, calculate the average similarity

of each sample in the candidate set with all seed samples in the seed set, and move the sample with the highest similarity score

from the candidate set to the seed set. Step four, repeat step three until the candidate set is null.

doi:10.1371/journal.pone.0164542.g002
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reported to be related to the cancer by manually finding supporting papers with research based
on experiments). The accuracy of SDPs identificationwas approximately 76.32%.
In addition to the common cancer-related pathways (such as cell cycle, DNA replication,

etc.), IGSA also found some pathways that were specifically related to gastric cancer. For exam-
ple, the primary pathway for bile acid biosynthesis (hsa00120), in which bile acid promotes
gastric carcinogenesis without inflammatory cell infiltration [21]; the other specific pathways,
like Notch signaling pathway (hsa04330) [22], salmonella infection (hsa05132) [23], gastric
acid secretion (hsa04971) [24], were also identified using IGSA.
Our methods were also applied to pancreatic cancer and ovarian cancer datasets to demon-

strate the universality of IGSA. Significantly, at an FDR<0.01, IGSA found 37 SUPs (the accu-
racy was 78.38%) and 6 SDPs (the accuracywas 83.33%) in the pancreatic cancer dataset and
18 SUPs (the accuracywas 72.22%) and 28 SDPs (the accuracywas 53.57%) in the ovarian can-
cer dataset. S1–S3 Tables shows all significant differentially expressed pathways found in the
three cancer-related datasets and related supporting papers.

Comparisons with other methods

We compared the IGSAmethod with other enrichment methods, including DAVID, GSEA,
SPIA, GSVA, ssGSEA and Z-score (Fig 3).
Most of these methods identified some pathways commonly related to cancers, including

cell cycle (hsa04110) and DNA replication (hsa03030). However, IGSA also found pathways
that were specifically related to the different cancer types.
Three methods (IGSA, DAVID and GSEA) performedwell in gastric cancer data

(accuracy> 70%) (S4 Table online), with the exception of GSEA in finding SDPs (no signifi-
cant pathways found). Notably, more than 95% of papers supporting significant pathways were
found by IGSA (S5 Table).
In pancreatic cancer datasets, most of the tested methods identified some significant path-

ways, except for SPIA (found no SUPs and only one SDP), ssGSEA (the accuracywas less than
70%) and GSVA (found no SDPs). Again, IGSA identified the most paper-supported signifi-
cant pathways (the proportion was approximately 73.91%).

Fig 3. The comparison of the seven methods by accuracy (average accuracy in three cancer-related datasets) and the

proportion of significant pathways supported by papers found in three cancer-related datasets. IGSA was more robust and

sensitive in finding significant pathways compared with the other methods. Although the accuracy of DAVID and SPIA was a bit

higher than that of IGSA, both DAVID and SPIA found only a subset of significant pathways.

doi:10.1371/journal.pone.0164542.g003
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The methods performed less well in finding pathways from the ovarian cancer dataset
(TCGA, Batch9); however, compared with the other methods, DAVID and IGSA still per-
formed well in identifying SUPs (accuracy> 70%). Although DAVID was 100% accurate in
finding SDPs, this method found only 5 pathways, which was fewer than IGSA (16 pathways).
S1–S3 Tables show the list of significant pathways (including related supporting papers)

found by the sevenmethods. S4 and S5 Tables show the comparison of the sevenmethods by
accuracy and the proportion of significant pathways supported by papers that each method
identified.

Potential progression of diseases at a functional level

We applied the IGSA clustering to a hepatitis dataset (P<0.05), and 14 significant pathways
were found (Fig 4). As expected, IGSA clustering was capable of indicating the progression of
hepatitis. In Fig 4, samples with the most severe disease clustered at the end (colored red). The
other two types of sample, although not clustered well (perhaps caused by pseudo-significant
pathways), were still distinguished by the progression of disease to some extent.
We also applied IGSA clustering to the ovarian cancer dataset (TCGA, batch9). In clustering

based on SUPs, the survival time was reduced when newer cancer samples were added into the
seed set. In clustering based on all significant pathways (including SUPs and SDPs), the cluster-
ing was not significant. One possible reason for this result is the high false-positive rate among
SDPs (the accuracywas only approximately 53.57%).We also compared the similarity mea-
surement in IGSA clustering (SMIC) with other methods, including Euclidean distance, Pear-
son's correlation and Spearman's rank correlation (Fig 5, Figure A in S1 File). The results
showed that the IGSA clustering based on three measurement (SMIC, Pearson's correlation
and Spearman's rank correlation) all can cluster the disease samples into different classes,
except that the clustering based on Euclidean distance didn’t performwell (p value of 0.061).

Fig 4. The clustering of samples in hepatitis datasets. The blue curves show the average similarity scores of clustering

samples. The red curves were loess curves obtained by fitting the similarity scores. The gray vertical lines are used to divide the

samples according to the flex points in the red curve. Most serious disease samples (nash) tended to be clustered on the right (in

class 3). In class 2, Samples of less severe disease (steatosis) showed a tendency to cluster in the middle. In class 1, most of

healthy obese samples tended to be clustered on the left. To some extent, the clustering may reveal the severity of samples in

hepatitis datasets.

doi:10.1371/journal.pone.0164542.g004
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Further studies on these classes (obtained by the IGSA clustering based on SMIC, Pearson's
correlation and Spearman's rank correlation) by performing survival analysis indicated that the
SMIC (p value of 0.018), compared with Pearson's correlation (p value of 0.049) and Spear-
man's rank correlation (p value of 0.049), was more remarkable, although the clustering based
on Pearson's correlation and Spearman's rank correlation can cluster the disease samples sig-
nificantly too.
To analyze the significant pathways found by IGSA enrichment, we first used unsupervised

hierarchical clustering (UHC) to cluster the samples (from ovarian cancer dataset, TCGA,
batch9) based on the pathways. We evaluated the clustering of the ovarian cancer data through
the corresponding survival analysis. In consideration of the low accuracy in finding SDPs (only
53.57%), we applied the clustering to the samples based on SUPs and divided the cases into
three classes according to their threshold for distinguishing controls from cases.We also com-
pared the result with clustering based on the up-regulated genes (SAM, FDR<0.1, clustered by
unsupervisedhierarchical clustering, and the samples were divided into two classes according
to their threshold for distinguishing controls from cases). The result based on pathways (p
value of 0.187) was marginally better than the other (p value of 0.240) (Fig 6B and 6C, Figure B
in S1 File).
Further improvement was made when we divided the cases into three classes based on the

results of IGSA clustering (the classes were divided according to the flex points in the loess
curve fitted to the adjacent similarity scores of clustering samples where the changes of similar-
ity in samples from both sides were distinctly distinguished; Fig 6A). Interestingly, the three
classes were rather similar to the three classes obtained by pathway-based UHC (the average
ratio of overlap in three classes was approximately 32.21%). However, compared with the
results of survival analysis using UHC, the results of IGSA were more significant (p value of
0.0362). In addition, according to the results of the survival analysis, we found that the curve of
class 3 was not distinctly separated from the other two classes (although the probability for sur-
viving more than 1,300 days in class 3 was lower than in the other two classes). Therefore, we
integrated the samples from class 2 and class 3 into one class and conducted the survival

Fig 5. The comparison of IGSA clustering with different similarity measurement. The blue points represent the survival time of the

samples. The blue lines were generated by linear fitting the blue points. The green curve shows the average similarity scores of clustering

samples. The red curves were loess curves obtained by fitting the similarity scores. The gray vertical lines are used to distinguish the

samples according to the flex points in the red curve. (A) represents the IGSA clustering based on SMIC applied in the ovarian cancer data

set (batch 9) based on pathways. (B) represents the IGSA clustering based on Euclidean distance applied in the ovarian cancer data set

(batch 9) based on pathways. The survival time in both methods (A, B) tended to decrease. However, the red curve in B was too smooth to

divide the samples into different disease classes.

doi:10.1371/journal.pone.0164542.g005
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analysis again. Notably, the result was still significant (p value of 0.0442), and the survival time
from the two classes was distinct (Fig 6D).
Furthermore, we used IGSA clustering to cluster the samples based on the expression pro-

files of significant pathways (including 13 SUPs and 16 SDPs found by IGSA), which were
shown to be related to ovarian cancer in previously published papers. The samples were
divided into two classes, and the survival time in the two classes was significantly different (p
value of 0.0778. Fig 7A, Figure C(A) in S1 File). To evaluate the applicability of the significant
pathways (i.e., whether these significant pathways could be used as a signature for ovarian can-
cer), another ovarian cancer dataset (TCGA, ovarian cancer data, batch 40) was subjected to
clustering based on the same significant pathways. Interestingly, the samples in the data were
also divided into two classes, and according to the survival analysis, the difference between the
two classes was significant (p value of 0.0364. Fig 7B, Figure C(B) in S1 File).

Fig 6. The classification comparison of IGSA, HCBP (hierarchical clustering based on pathways) and HCBG (hierarchical

clustering based on genes) in ovarian cancer datasets (TCGA batch 9). A shows the survival time curves of three classes obtained

by IGSA (p value of 0.0362). B shows the survival analysis of three classes obtained by HCBP (p value of 0.187). C shows the survival

time curves of three classes obtained by HCBG (p value of only 0.240). D shows the survival time curves of two classes (class 1 and

class 2,3) obtained by IGSA (p value of 0.0362). The p values in both A and D are significant compared with HCBP and HCBG.

doi:10.1371/journal.pone.0164542.g006

Fig 7. The survival analysis of ovarian cancer datasets (TCGA batch 9 and batch 40). Part A shows the survival time curves of

two classes obtained by IGSA (p value of 0.0778). Part B shows the survival analysis of two classes obtained by IGSA based on the

same significant pathways (13 paper supporting SUPs and paper supporting 16 SDPs, p value of 0.0364).

doi:10.1371/journal.pone.0164542.g007
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Furthermore, we analyzed the clustering of gastric cancer datasets. Through double cluster-
ing for both samples and significant pathways, we observed expression changes of pathways in
different gastric cancer samples. As shown in Fig 8, among the cancer samples whose signifi-
cant pathway expression scores were similar to the average expression values of normal sam-
ples, pathways such as DNA replication and base excision repair (the basic pathways for
cancer) showed significant expression. Furthermore, pathways that are more specific to certain
tissues (e.g., salmonella infection) tended to show higher expression when the samples were
associated with more severe disease (i.e., the pathway expression scores of samples were very
different from the average expression values of normal samples).
To further validate the performance of IGSA enrichment analysis, we applied the method to

three cancer-related datasets based on third-layer GO gene sets, including BP (Biological Pro-
cess) gene sets and MF (Molecular Function) gene sets. Figure D in S1 File was the result of the
IGSAmethod compared with other enrichment methods, including DAVID, GSEA, GSVA,
ssGSEA and Z-score. S6–S8 Tables show the list of the significant differentially expressed GO
gene sets found by the six methods (the method SPIA cannot be used for GO enrichment anal-
ysis) in three cancer-related datasets and the related supporting papers. S9 and S10 Tables
show the comparison of the six methods from two aspects, the accuracy and the proportion of
significant GO gene sets supported by papers. Figure E in S1 File shows the clustering of sam-
ples in hepatitis datasets based on GO gene sets. Figure F in S1 File shows the comparison of
IGSA clustering based on SMIC, Euclidean distance, Pearson's correlation and Spearman's
rank correlation in ovarian cancer data. Figure G in S1 File shows the classification comparison
of IGSA (p value of 0.008), HCBGO (hierarchical clustering based on GO gene sets) (p value of
0.209) and HCBG (hierarchical clustering based on genes) in ovarian cancer datasets (TCGA
batch 9). Figure H in S1 File shows the survival analysis of ovarian cancer datasets (TCGA
batch 9 and batch 40). Furthermore, we analyzed the double clustering of gastric cancer

Fig 8. The clustering of samples and significant pathways in gastric cancer datasets. The x-axis was generated according to

the list of significant pathways in the gastric cancer data clustered by IGSA clustering. The y-axis was generated according to the list of

cases in the gastric cancer data clustered by IGSA clustering (samples whose pathway expression values were more similar to the

average expression values of normal samples were closer to the origin of the coordinate). The dots represent the marks for pathways

whose expression values in cancer samples were higher than the average level. The color of the dots from blue to green represents

the potential progression (mild to severe) of the cancer.

doi:10.1371/journal.pone.0164542.g008

IGSA: Individual Gene Sets Analysis, including Enrichment and Clustering

PLOS ONE | DOI:10.1371/journal.pone.0164542 October 20, 2016 11 / 16



datasets too (Figures I and J in S1 File). All of the results were consistent with the results based
on the pathways.

Discussion

Traditional methods (e.g., DAVID, GSEA, SPIA etc.) focus on the analysis of gene expression.
The enrichment analysis used with these methods is based on changes in gene expression
between cases and controls, with only one value used to represent the expression of a gene in
all samples (e.g., the ratio of the mean value in cases to the mean value in controls), discarding
the information from diverse individual gene expression. Particularly, in the analysis of person-
alizedmedicine, the gene sets (e.g., pathways) found using traditional methods contribute only
slightly to the analysis. Other methods (such as ssGSEA, GSVA, etc.) calculate the gene set
scores for each sample, althoughmost of these methods lack the information of gene set (e.g.,
pathway) expression for various reasons (e.g., ranking of expression, etc.).
However, IGSA, as distinct from traditionalmethodswhose enrichment strategies focus on

the elimination of the impact of heterogeneity between samples at the gene expression level, takes
advantage of the heterogeneity of gene expression in samples and focuses on specific and signifi-
cant gene sets, as a complement of these traditionalmethods. In clustering, IGSA stresses the sim-
ilarity between the samples in quality rather than in quantity, which averts the over-fitting caused
by focusing toomuch on the quantity of similarity, which commonly occurswhen using tradi-
tional methods.Moreover, IGSA uses an accumulating clustering strategy, adding disease samples
into sets according to the extent of possible deterioration, which can reveal the severity of disease
in different samples and correlate the related changes in pathways with the severity of disease.
As mentioned in the results, compared with other methods (DAVID, GSEA, SPIA, GSVA,

ssGSEA and Z-score), the performance of IGSA was comparatively specific, sensitive and
robust. In clustering, IGSA proved to be more effective than the traditional method (unsuper-
vised hierarchical clustering based on significant gene expression). The reason for this result is
that IGSA concentrates on the similarity of samples at the functional level rather than at the
molecular level, which is more susceptible to noise and samples. In the classification, the classes
divided by IGSA are not very well separated (class 3 is not markedly separated from the other
classes), which may be caused by incomplete survival information, among other reasons (e.g.,
many other factors, including lncRNA, miRNA, etc. may also influence the survival time of
patients). In addition, using IGSA, we identified a signature (13 papers supporting SUPs and
16 paper supporting SDPs found by IGSA) for ovarian cancer, and the survival times of the
classes based on the signatures were significantly distinct.
IGSA also provides the expression of significant gene sets in each sample, which reveals a

legible difference in different classes and is conducive to personalizedmedicine. It is also possi-
ble for IGSA clustering to indicate the potential progression of a disease due to the strategy
used for clustering, which may be very useful for the analysis of disease progression at the func-
tional level.
To assess IGSA universality, we added other 3 non-cancer datasets from GEO for the analy-

sis which includes diabetes (Type II) GSE9006, myocardial infarction GSE48060, and rheuma-
toid arthritis GSE55235. Except myocardial infarction, the performance of IGSA on the other
two datasets is better. The accuracy of detecting significant pathways were as high as 100% for
diabetes and 92.9% for rheumatoid arthritis, while the accuracy of detecting significant path-
ways for myocardial infarction was 62.5% (S11 Table).The results showed that IGSA is not
only suitable for cancer analysis and is also applicable to other complicated diseases.
There are also some flaws with IGSA; for instance, this approach has some difficulty in find-

ing pathways in datasets with a relatively low proportion of control samples. According to the
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results of enrichment, the proportion of controls in the samples has an impact on pathway
identification. IGSA effectively identified pathways in gastric cancer and pancreatic cancer
datasets (the proportion is 22.62% and 30.77%), whereas in the lower proportion samples
(such as the ovarian cancer dataset, in which the control proportion was only 17.78%), the per-
formance of IGSA was decreased. In spite of this, IGSA performedwell in finding SUPs com-
pared with the other methods. It is also difficult for IGSA to analyze data with few samples
because under such conditions, the strategy adopted by IGSA for enrichment will retrograde to
the traditional method (for instance, one case and one control).
In addition, relying on gene expression data alone to analyze cancer-related data is not suffi-

cient; instead, it is more effective to integrate IGSA with other tools (suitable for other types of
data, such as miRNA, CNVs, lncRNA, etc.) to analyze cancer samples. The strategy used in
IGSA is also suitable for the analysis of other data (e.g., miRNA expression profiles).
At present, analyses based on integrating multiple genomic datasets are very common. Du

et al. [25] analyzed clinically relevant lncRNAs in human cancer through the integration of
SCNA (somatic copy number alteration), lncRNA and clinical data. Moreover, Wu et al. [26]
predicted disease-causing nonsynonymous single-nucleotide variants by integrating multiple
genomic data, and Sanchez et al. [27] integrated the analysis of Chip-seq and RNA-seq data to
unveil a lncRNA tumor suppressor signature. In the future, we plan to expand the capacity of
IGSA analysis and devise a framework for IGSA to analyze samples through integrating multi-
ple datasets (including CNVs, SVs, lncRNAs, miRNAs, etc.).
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