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Abstract

The major therapeutic strategy used to treat exacerbated cystic fibrosis (CF) is antibiotic

treatment. As this approach easily generates antibiotic-resistant strains of opportunistic

bacteria, optimized antibiotic therapies are required to effectively control chronic and recur-

rent bacterial infections in CF patients. A promising future for the proper use of antibiotics is

the management of lung microbiota. However, the impact of antibiotic treatments on CF

microbiota and vice versa is not fully understood. This study analyzed 718 sputum samples

from 18 previous studies to identify differences between CF and uninfected lung microbiota

and to evaluate the effects of antibiotic treatments on exacerbated CF microbiota. A refer-

ence-based OTU (operational taxonomic unit) picking method was used to combine analy-

ses of data generated using different protocols and platforms. Findings show that CF

microbiota had greater richness and lower diversity in the community structure than unin-

fected control (NIC) microbiota. Specifically, CF microbiota showed higher levels of oppor-

tunistic bacteria and dramatically lower levels of commensal bacteria. Antibiotic treatment

affected exacerbated CF microbiota notably but only transiently during the treatment

period. Limited decrease of the dominant opportunistic bacteria and a dramatic decrease of

commensal bacteria were observed during the antibiotic treatment for CF exacerbation.

Simultaneously, low abundance opportunistic bacteria were thriving after the antibiotic

treatment. The inefficiency of the current antibiotic treatment against major opportunistic

bacteria and the detrimental effects on commensal bacteria indicate that the current empiric

antibiotic treatment on CF exacerbation should be reevaluated and optimized.

Introduction

Cystic fibrosis (CF), as an inherited disease of the secretory glands, is caused by defectivemuta-
tions of the CF transmembrane conductance regulator (CFTR) gene [1–3]. Thickened mucus
secretions resulting from the defective CFTR enable the development and persistence of pul-
monary bacterial infections [4, 5]. These chronic pulmonary infections, which are mainly
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caused by opportunistic bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus,
induce intense bronchial neutrophilic inflammation. As a result of chronic polymicrobial infec-
tion and inflammation, CF is a devastating life-threatening disease with the majority of mortal-
ities due to respiratory failure [6, 7]. Over the course of CF lung disease two categories have
been identified according to disease severity: exacerbated and clinically stable. Pulmonary
exacerbation is the hallmark of CF and is characterized by aggravated pulmonary symptoms
and decreased pulmonary function. A clinically stable condition is the stationary phase before
or after pulmonary exacerbation.

Unlike the traditional view of a sterile lung, accumulating evidence shows that a microbial
community resides in the lung tissue; this is referred to as the lung microbiota [8–11]. Healthy
lung microbiota predominately consist of commensal bacteria, including Streptococcus, Veillo-
nella, Prevotella, and Actinomyces. [8, 12–14]. Maintenance of a healthy lung microbiota is
important for reducing the risk of respiratory tract diseases [12, 15, 16]. Decreaseddiversity
and increased amounts of opportunistic bacteria are notable features of CF lung microbiota
compared to uninfected control (NIC) microbiota [17–20]. A substantial reduction in the
diversity of airway microbiota paired with stabilized microbial density is associated with CF
lung disease progression [8, 17, 21–23].

Chronic and recurrent colonization of opportunistic bacteria causes devastating lung dam-
age and respiratory decline. Intravenous (IV) injection of broad-spectrumantibiotics is the
leading therapy for treating pulmonary exacerbation. A typical IV-antibiotic treatment usually
requires a duration of two weeks and is inefficient at controlling infections because of the easily
generated antibiotic-resistant bacterial strains [24–29]. Thus, effective control mechanisms
against opportunistic bacterial infections are neededwithout generating antibiotic-resistant
strains to optimize therapies [22, 30–34].

Management of lung microbiota provides a promising alternative for the treatment of CF
with pulmonary exacerbation [8, 10]. Probiotic commensal bacteria of NIC microbiota have
substantial and continuous effects on human health and physiological development, including
in maturing the immune system and in preventing pathogen invasion [35]. By regulating path-
ogen activity and enhancing the natural immune system using probiotic supplementary thera-
pies and antibiotic treatments that precisely target opportunistic bacteria, the growth of
antibiotic-resistant bacteria can be prevented and the toxicity of these bacteria to NIC micro-
biota can be reduced [36]. However, several key questions must be answered before microbiota
profiling can inform clinical practice. First, how many opportunistic bacteria are there in CF
lung microbiota? Second, aside from opportunistic bacteria what are the differences between
CF and NIC microbiota? Third, how do antibiotic treatments influence opportunistic and com-
mensal bacteria? Numerous studies have attempted to answer these questions, but little
instructive information has been obtained. This is partially due to the small sample size
enrolled, which has limited the ability to investigate potential correlations between lung micro-
biota and CF [12].

This study analyzed the largest number of airway microbiota from CF patients and unin-
fected controls from published studies to evaluate the differences between uninfected and CF-
derived microbiota. The efficacy of the antibiotic treatments in regulating the composition of
lung microbiota in CF patients was also evaluated. In general, intravenous antibiotics treatment
is the most popular strategies for CF exacerbation, while oral intake of antibiotics is commonly
used to control seizures. The antibiotic treatment mentioned in this study refers to the large
overdose intravenous therapy for CF exacerbation. Overall, our findings show that CF micro-
biota were richer and had a lower diversity in the community structure than NIC microbiota
The obtained data provide insights necessary to evaluate the current therapeutic strategy.
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Materials and methods

1. Definitions

The items used in this study were the same as those defined by Rabin et al [8] with some modi-
fications. Briefly, enrolled CF patients were divided into two groups according to disease stages:
baseline CF and CF with pulmonary exacerbation (defined as a hospitalization for respiratory
symptoms requiring large-dose antibiotic therapy.) The pulmonary exacerbation stage was
divided into three subgroups according to the stages of antibiotic administration: BeforeTreat,
DuringTreat, and AfterTreat. NIC (uninfected control) was defined an individual without
acute or chronic infections such as viral infections, tuberculosis, chronic obstructive pulmonary
disease, bronchiectasis, or idiopathic pulmonary fibrosis. Antibiotic therapy or antibiotic treat-
ment in this study specifically referred to the administration of antibiotics necessary to treat CF
with pulmonary exacerbation, excluding the use of antibiotics for chronic maintenance.

2. Data collection and preprocessing

High-throughput sequencing data of 16s rRNA were collected from public databases (Table 1).
Bacterial 16s rRNA genes were PCR amplified and sequenced on different sequencing platforms
across the studies (Roche 454 or Illumina Hiseq/Miseq). Primers and targeted regions are listed
in Table 1. Raw sequenceswere filtered and processed using the default parameters of the NGS
QC Toolkit version 2.3 [37]. Briefly, for data generated by the Roche 454 (pyrosequencing) plat-
form, sequences that were outside of 200–1000 nucleotides in length, with more than six ambigu-
ous bases, contained homopolymer regions (> 6 bp), had at least two mismatches in the primer,
or could not be assigned to a sample by the corresponding barcode were excluded. For data gen-
erated by the Illumina (Hiseq and Miseq) platform, paired-end reads were first merged if possi-
ble. Reads were then truncated if more than three consecutive low-quality base calls were found,
and reads were excluded if ambiguous bases were found after quality trimming.

3. OTU picking

To compare sequences from different regions of the 16s rRNA gene, a reference mapping protocol
[38–39] was used to group the sequences into operational taxonomic units (OTUs). Sequences
derived from the same bacteria were assumed to match the same reference sequence regardless of
the region or length of the targeted 16s rRNA gene. Specifically, the Greengenes database (May
2013 version) [40] of near full-length 16s rRNA was used as the reference database. Close refer-
ence OTU picking module in QIIME (version 1.8.0) was used to assign the OTUs [41], and a 97%
minimum pairwisenucleotide sequence identity threshold was employed to align sequences in
UCLUST [42]. Sequenceswith identity percentages lower than 97% to any of the reference
sequences in the Greengenes database were excluded from further analysis. Moreover, samples
with a proportion of assignable sequences less than 85% were excluded. Samples with less than
1000 sequences after quality filtering and OTU assignment were also discarded.

4. Alpha diversity measurements

Shared OTUs among different sample groups were plotted in Venn diagrams using Venny soft-
ware (http://bioinfogp.cnb.csic.es/tools/venny/index.html).Alpha diversity measurements of
community richness and diversity were analyzed by estimators of Chao1 and Shannon indices,
respectively. Default parameters were applied and boxplots were created using the “Phyloseq”
in R package [43]. OTUs of each sample across all studies were then grouped by different taxo-
nomic levels using the workflow script of QIIME according to the 454 overview tutorial (http://
qiime.org/tutorials/tutorial.html).
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Table 1. Information of the data exploited in this study.

Study/

ACCN

Sample

Type

Clinical

Status

Sample

amount

Treatment

before/on/

after

Targeted

region of 16s

rRNA

Sequencing

platform

Major findings Reference

SRP044880 Sputum Exacerbation 14 6/2/6 V6 454 Intravenous antibiotic therapy often

does not profoundly impact bacterial

community structure of CF airway

microbiome.

[22]

SRP038106 Sputum Stable 13 - V4-V6 454 The microbial communities in sputum

from pediatric CF patients living

together were much more alike than

those from pediatric individuals living

apart.

[19]

SRP039515 Sputum Stable 89 - V1-V2 454 Divergence between microbiota in

upper airway compared to lower

airway samples, indicating greater

differences between communities,

was associated with increased

sputum neutrophil elastase.

[23]

SRP036061 Sputum Exacerbation 8 8/0/0 V3-V5 454 Time between Collection and Storage

Significantly Influences Bacterial

Sequence Composition in Sputum

Samples from Cystic Fibrosis

Respiratory Infections.

[29]

SRP041296 Sputum Exacerbation 37 0/37/0 V1-V2 454 CF Pulmonary exacerbation

treatment results in variable changes

of anaerobic genera suggesting the

need for larger studies particularly of

patients without traditional CF

pathogens.

[53]

SRP025173 Sputum Stable/

Exacerbation

20/43 17/12/14 V4-V6 454 Total and relative abundance of

genera at the population level were

remarkably stable for individual

patients regardless of clinical status.

[51]

SRP039563 Sputum Exacerbation 8 - V1-V2 454 As CF control for samples from

Chronic Obstructive Pulmonary

Diseases.

[54]

SRP040968 Sputum Exacerbation 8 - V3-V5 454 Four or more freeze thaw cycles result

in a significant distortion of microbiota

profiles from CF sputum.

[55]

GAO_CF_

VAMPs

Sputum Stable/

Exacerbation

22/14 - V4-V6 454 The increased fractional

representation of Streptococcus was

the strongest predictor of clinically

stable CF. Streptococcus may play an

important role in increasing the

diversity of the CF lung microbiome

and promoting patient stability.

[56]

ERP009095 Sputum Stable 77 - V3 Miseq Continuous treatment with antibiotics

results in high individuality in CF

community composition and lack of

correlation to clinical host factors.

[34]

SRP015882 Sputum Stable/

Exacerbation

16/7 0/7/0 V3-V7/V3-V5 454 Diminished microbial diversity is

associated with severity of pulmonary

inflammation within adult CF cohort.

[48]

Mgm

4603051.3

Sputum Stable/

Exacerbation

15/20 0/7/0 V6 Hiseq An adult-like lower airways

microbiome is established early in life

and that throat swabs may be a good

surrogate in clinically stable children

with CF without chronic

Pseudomonas aeruginosa infection in

sputum sampling is often not feasible.

[57]

(Continued )
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5. Beta diversity measurements

To compare the bacterial composition between different groups, unweighted UniFrac analyses
of bray-curtis dissimilarity were performed. For this purpose, one thousand sequences were
randomly selected from each sample. All analyses were carried out using QIIME.

The 16s rRNA sequencing data and corresponding metadata used in this study are available
in publically accessible databases (NCBI SRA [http://www.ncbi.nlm.nih.gov/sra],MG-RAST
[https://metagenomics.anl.gov], and VAMPs [https://vamps.mbl.edu/]) with accession num-
bers listed in Table 1.

6. Statistical analyses

Analysis of variance (ANOVA) tests were performed to assess OTUs that significantly differed
between sample categories. T-tests were used to determine α-diversity significance.Analysis of
similarities (ANOSIM) tests were performed to determine β-diversity significance.

Results

Differential community richness and diversity among CF and NIC

microbiota

Alpha diversity measurements were used to assess the variation in community structure
between the microbiota of CF patients and NICs. Specifically, Chao1 and Shannon indices
were employed to analyze community richness and diversity, respectively (Fig 1). These results

Table 1. (Continued)

Study/

ACCN

Sample

Type

Clinical

Status

Sample

amount

Treatment

before/on/

after

Targeted

region of 16s

rRNA

Sequencing

platform

Major findings Reference

PC01 Sputum Stable 56 - V5-V7 454 SI-Seq has a dynamic range of at

least five orders of magnitude, can

classify .96% of sequences to the

genus level, and performs just as well

as 454 and paired-end Illumina

methods in estimation of standard

microbial ecology diversity

measurements.

[58]

PC02 Sputum Stable/

Exacerbation

13/49 25/0/24 V1-V2 454 The adult CF lung microbiome is

largely stable through periods of

exacerbation and antibiotic treatment

and short-term compositional

changes in the airway microbiota do

not account for CF pulmonary

exacerbations.

[18]

SRP015882 Sputum Healthy 9 - V3-V7 454 Samples from healthy individuals

were included as uninfected control

[48]

IPF BALF Healthy 28 - V3-V5 454 Samples from healthy individuals

were included as uninfected control

[47]

SRP050998 Sputum Healthy 73 - V1-V2 454 Samples from healthy individuals

were included as uninfected control

[59]

RVCOPD Sputum Healthy 69 - V3-V5 454 Samples from healthy individuals

were included as uninfected control

[45]

PC03 BALF Healthy 10 - V3 454 Samples from healthy individuals

were included as uninfected control

[60]

doi:10.1371/journal.pone.0164510.t001
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revealed greater richness of CF Baseline (Fig 1A) and lower diversity of Exacerbated CF (Fig
1B) in CF microbiota than the microbiota of NIC. Comparable levels of bacterial abundance
were observedbetweenCF and NIC microbiota, and these levels were remarkably lower than
those of CF-Baseline (CF-Base) microbiota (p< 0.01, Fig 1A). The microbiota of CF patients
with pulmonary exacerbation (CF-Exa) had the lowest community diversity. These results

Fig 1. Boxplots for alpha diversity measurements of the microbiota of CF subgroups. Chao1 and Shannon

indices were used to determine the richness and diversity of the bacterial community, respectively. Chao1 (a) and

Shannon (b) measurements of the microbiota of Uninfected Control (NIC), CF baseline, and Exacerbated CF,

Chao1 (c) and Shannon (d) measurements of the microbiota of Before, During and AfterTreatment of exacerbated

CF. The upper edge of each box represents the 75% line, the lower edge represents the 25% line, and the inner

line of each box represents the 50% line. ** refers to statistically highly significant as p < 0.01.

doi:10.1371/journal.pone.0164510.g001
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suggest that the microbial community of the CF-Exa microbiota has lower community diver-
sity and richness than NIC microbiota.

As the microbiota of the two CF stages and NICs exhibited divergence in the alpha diversity
measurements, beta diversity indices were then calculated to depict this divergence. The
unweighted UniFrac-PCoA analysis demonstrated that the microbiota of NICs can be easily
distinguished from that of CF patients (Fig 2A and 2B). No marked differences were observed
between the microbiota of CF-Base and CF-Exa (Fig 2F). This analysis suggests that there is a
differential divergence between the community structure of the NIC microbiota and CF-Base/
CF-Exa microbiota, whereas no remarkable divergence is observedbetween the CF-Base and
CF-Exa microbiota.

CF microbiota was featured with dominant opportunistic bacteria and

dramatically decreased commensal bacteria

Venn diagrams were then generated to analyze the differences in the bacterial composition
between the CF and NIC microbiota (Fig 3). The NIC microbiota possessed far fewer bacterial
species (1470) than the CF-Base (3764) and the CF-Exa microbiota (2942) (Fig 3A). About
76.5% (1125/1470) of the taxonomies found in the NIC microbiota were also observed in CF
microbiota. More specifically, 73.6% (1082/1470) of these taxonomies were present in CF-Base
microbiota, 55.9% (822/1470) were present in CF-Exa microbiota, and 53.0% (779/1470) were
found in both types of CF microbiota (Fig 3A). About 46.4% (682/1470) of the taxonomies in
NIC microbiota were distinct from the treatment-related CF-Exa microbiota (Fig 3C). In con-
trast, only 29.4% (852/2942) and 28.7% (1082/3764) of the taxonomies identified in CF-Base
and CF-Exa microbiota, respectively, were found in NIC microbiota. Furthermore, all of the
taxonomies found in CF-Base microbiota were also present in treatment-related CF-Exa
microbiota (Fig 3D). These results demonstrate that CF microbiota consist of much higher
abundances of taxonomies than NIC microbiota, whereas CF-Exa microbiota harbor the larg-
est number of distinct taxonomies that differ from those of CF-Base and NIC microbiota.

To probe the differences in taxonomies present in CF and NIC microbiota further, we com-
pared the rank abundance of OTUs at the genus level (Fig 4). Only OTUs with relative abun-
dances larger than 3% were shown. Pseudomonas was the major component of CF-Base and
CF-Exa microbiota with a relative abundance of approximately 30% (Fig 4); this predominance
of Pseudomonas was not observed in NIC microbiota (Fig 4). Similarly, Staphylococcus and
Alcaligenaceae were only observed in CF microbiota with high relative abundance (Fig 4) but
not in the NIC microbiota (Fig 4). Streptococcus, Veillonella, and Prevotella were the dominant
genera in NIC microbiota (Fig 4). These results demonstrate the distinct architectures of CF
and NIC microbiota.

Notable but transient effects of antibiotic treatments were observed in

the microbiota of CF patients with pulmonary exacerbation

To evaluate the effects of antibiotic treatment on CF-Exa microbiota, community structures of
treatment-related microbiota were compared (Fig 1C and 1D). Consistent with antibiotic treat-
ments, the Exa-DuringTreat microbiota exhibited remarkably reduced community richness
(Fig 1C; p< 0.01) and slightly increased community diversity (Fig 1D; p = 0.24) compared to
the microbiota of Exa-BeforeTreat. These findings demonstrate that antibiotic treatment plays
an important role on the community structure of the microbiota in patients of CF with pulmo-
nary exacerbation. However, the community richness and diversity of Exa-AfterTreat micro-
biota returned to levels similar to those of Exa-BeforeTreat microbiota (Fig 1C and 1D),
indicating that the effects of antibiotic treatment on the structure of microbiota are transient.

Data Mining of CF Lung Microbiota
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Fig 2. Unweighted UniFrac PCoA plot of healthy and CF microbiota. Distance comparisons were made

for microbiota of: (a) Uninfected control (NIC) and CF baseline, (b) NIC and Exacerbated CF, (c) NIC and

After Treatment of Exacerbated CF, (d) NIC and On Treatment of Exacerbated CF, (e) NIC and Before

Treatment of Exacerbated CF, (f) CF baseline and Exacerbated CF, (g) Before, During and After Treatment

Data Mining of CF Lung Microbiota
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These results demonstrate that the notable decrease in community richness in CF-Exa micro-
biota due to antibiotic treatment was transient, as the architecture of the community returned
to Exa-Before after the withdrawal of antibiotics.

To depict the divergence of microbiota caused by antibiotic treatment further, beta diversity
indices were analyzed (Fig 2G and 2H). The Unweighted UniFrac-PCoA showed that CF-Exa
microbiota could not be discriminated from one another in the community structure (Fig 2G).
Moreover, no visible differences were observedbetweenCF-Base microbiota and treatment-
related CF-Exa microbiota (Fig 2H). These results demonstrate that the notable effects on com-
munity richness caused by antibiotic treatment were transient and did not result in the visible
divergence in community structures observed in treatment-related microbiota.

Antibiotic treatment causes limited effects on the dominant opportunistic

bacteria but significant effects on the commensal bacteria

Next, OTUs of CF microbiota were compared to further evaluate the impact of antibiotic treat-
ment on the bacterial composition of CF-Exa microbiota (Fig 3B). The Exa-AfterTreat micro-
biota covered all of the OTUs of the Exa-BeforeTreat and the Exa -DuringTreat microbiota,
59.9% (3394/5663) of which were distinct from the other two groups. Of the 3394 distinct tax-
onomies in Exa-AfterTreat microbiota, 1.7% (58/3394) and 66.7% (2263/3394) were shared
with NIC (Fig 3C) and CF-Base (Fig 3D) microbiota. The rest (1671/3394, 49.2%) of the Exa-
AfterTreat microbiota were unique. These results indicate that the withdrawal of antibiotics in
CF patients with pulmonary exacerbation correlated with the proliferation of various taxono-
mies in CF-Exa microbiota.

To further assess the differences in bacterial composition among CF exacerbation micro-
biota, OTUs of the microbiota from treatment-related stages of CF with pulmonary exacerba-
tion were compared (Fig 4). Only the OTUs with relative abundances more than 0.5% were
shown. Antibiotic treatment dramatically reduced the number of OTUs with high relative
abundance (Fig 4). The relative abundances of the Staphylococcus, Gemella, Actinomyces, Mor-
axellaceae, and Fusobacterium genera were notably reduced, whereas those of, the Prevotella
and Streptococcus genera were increased, and those of the Pseudomonas and Alcaligenaceae
genera were not affected. After the withdrawal of antibiotics, the richness of the OTUs with
high relative abundances was either restored or greater than that of Exa-BeforeTreat micro-
biota (Fig 4). Specifically, the relative abundances of Staphylococcus, Gemella, Actinomyces, and
Moraxellaceae were restored (Fig 4). These results demonstrate that antibiotic treatments had
no notable effect on the relative abundance of the dominant opportunistic bacteria, but they
significantly reduced the relative abundance of commensal bacteria.

Consistency of the results across studies despite variables

To verify that the results above were not affected by the cross-sectional data enrolled in this
study, CF-Exa microbiota from individual studies were analyzed separately using the same
close reference OTU picking strategy described above (Fig 5). Analyses of the microbiota data
from SRP025173 demonstrated that the relative abundances of the opportunistic bacteria,
Pseudomonas and Staphylococcus, were slightly affected by antibiotic treatments but were
restored after the withdrawal of antibiotics, whereas the relative abundances of the commensal

of Exacerbated CF, (h) CF baseline and Before, During, After Treatment of Exacerbated CF. Each point

represents a sample from the studies listed in Table 1. The color for each sample group can be found on the

figure.

doi:10.1371/journal.pone.0164510.g002
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bacteria, Streptococcus and Prevotella, were significantly reduced and were not restored after
the withdrawal of antibiotic treatment (Fig 5A). Analyses of the microbiota data from PC02
demonstrated that the relative abundances of the opportunistic bacteria Pseudomonas and Bur-
kholderia were higher in microbiota after antibiotic treatments compared to those before treat-
ment (Fig 5B). Although the presence of the opportunistic bacteria Staphylococcus was
diminished following antibiotic treatments, new opportunistic bacteria including Burkholderia
appeared with higher relative abundance. Moreover, the relative abundances of the commensal
bacteria were significantly reduced following treatment (Fig 5C). These results confirm that
antibiotic treatments significantly affect the levels of commensal bacteria but do not impact the
dominant opportunistic bacteria following the withdrawal of antibiotics.

To verify the consistency of results across studies despite inherent variables, beta diversity
measurements of Clinically Stable, Exacerbated, and NIC samples were compared using query
of study assessments of the 16s rRNA region (Fig 6). No significant differences were observed
across these studies (Fig 6A) or in the 16s rRNA regions (Fig 6B) in the Clinically Stable (Fig
6A and 6B), Exacerbated (Fig 6C and 6D), and NIC (Fig 6E and 6F) samples. These results
highlight the consistency of the results in this and other studies.

Fig 3. Venn diagrams for the microbiota of healthy individuals and patients in the various CF subgroups.

Comparisons were made for: (a) Uninfected control (NIC), CF baseline, and Exacerbated CF; (b) Before, During

and After Treatment of Exacerbated CF; (c) NIC and Before, During, After Treatment of Exacerbated CF; (d) CF

baseline and Before, During, After Treatment of Exacerbated CF. The number inside each circle represents the

amounts of OTUs observed.

doi:10.1371/journal.pone.0164510.g003
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Discussion

This study analyzed a large cohort of lung microbiota samples from CF patients and healthy
individuals from cross-sectional studies to compare the community structures and to evaluate
the impact of antibiotic treatment on lung microbiota. A sophisticated methodology for han-
dling cross-sectionalmicrobiota studies was used to ensure the reliability of the acquired results
[38–39]. Overall our results demonstrate that antibiotic treatments for CF exacerbation have
limited effects on opportunistic bacteria but dramatic effects on commensal bacteria. These
findings highlight the critical need to reevaluate and optimize the current strategy of antibiotic
treatments used to treat CF patients with pulmonary exacerbations.

Healthy microbiota in the airway mucosa is essential to properly shape the immune
response. Changing a well-balanced “healthy” microbiota to an unhealthy restrictedmicrobiota
renders the airway mucosa increasingly susceptible to pathogens such as Pseudomonas and
consequent lung injury [44, 45, 46]. Thus, comparing the differences betweenCF and NIC
microbiota to evaluate the dynamic changes in CF lung microbiota is important for under-
standing the resilience of the polymicrobial ecosystem to intense antibiotic treatments. Unlike
previous studies (Table 1), this study enrolled uninfected healthy lung microbiota to serve as a
reference for comparison betweenCF and NIC microbiota. We also evaluated the effects of
antibiotic treatments on CF lung microbiota. Consistent with the results of other chronic lung
diseases (i.e., chronic obstructive pulmonary disease [16], asthma [12], interstitial pneumonia
[47], etc.), the structure of the bacterial community in the NIC microbiota was completely dif-
ferent from that found in the CF microbiota. CF microbiota had greater community richness
and lower diversity compared to NIC microbiota, indicating that the colonization of opportu-
nistic bacteria had important effects on the community structure of the lung microbiota. These
differences were further supported by beta diversity analyses and were consistent with previous
reports [48], demonstrating that CF microbiota is distinct from NIC microbiota.

Many studies have long searched for a correlation between certain lung microbes and the
severity of CF disease. To date, only the loss of microbial diversity has been associated with

Fig 4. Rank abundance of the dominant bacteria in the microbiota of healthy individuals and patients in

the various CF subgroups. Relative abundance of each genus in the three groups (Uninfected control (NIC), CF

baseline, and Exacerbated CF) was shown. Only the bacterial genus with relative abundances higher than 3%

were shown. Symbol representation of each genus was listed at the right side of the figure.

doi:10.1371/journal.pone.0164510.g004

Data Mining of CF Lung Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0164510 October 14, 2016 11 / 17



Data Mining of CF Lung Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0164510 October 14, 2016 12 / 17



severe lung disease in CF [49]; this notion was further supported by the results of the present
study. However, the driving force for this decreasedmicrobial diversity remains unclear
because there are many complexities involved in the progression of CF disease including lung
function, patient age, and antibiotic treatment. Antibiotic treatment, rather than lung function
or patient age, was reported to be the primary cause of the decrease in microbiota diversity
noted in CF patients who declined from clinically stable to exacerbated states [50]. Neverthe-
less, indistinguishable bacterial community structures were observedbetweenCF patients
deemed as clinically stable and those categorized as exacerbated [18, 51]. However, heavy doses
of antibiotics are commonly used to control exacerbated CF states rather than maintain clini-
cally stable states [33]. Thus, the correlation between antibiotic treatments and CF disease pro-
gression is weak.

Fig 5. Dynamic variance of the relative abundances for the various bacteria in microbiota of

exacerbated CF generated from individual studies. The relative abundances of the top two opportunistic

and commensal bacteria are shown. The blank, zebra crossing, and solid column represent the Before,

During and After Treatment of Exacerbated CF, respectively. (a) Data from SRP025173, (b) PC02, and (c)

SRP044880. Detailed information for these three studies is listed in Table 1. * refers to statistically significant

as p < 0.05, ** refers to statistically highly significant as p < 0.01.

doi:10.1371/journal.pone.0164510.g005

Fig 6. Beta-diversity consistency across studies and 16s rRNA regions. Samples of (a-b) CF baseline, (c-d)

Exacerbated CF, and (e-f) Uninfected control (NIC) were compared with queries of studies (a, c, e) and 16s rRNA

regions (b, d, f).

doi:10.1371/journal.pone.0164510.g006
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Although intense empiric antibiotic treatment is commonly used to control CF with pulmo-
nary exacerbation, its effects on CF-Exa microbiota must be evaluated to further optimize this
strategy [27, 33, 52]. Here, we evaluated healthy and CF clinically stable microbiota as refer-
ences, which revealed that the most obvious effect of antibiotic treatments on CF-Exa micro-
biota was the significant reduction in community richness (Fig 1). These results are consistent
with previous reports [33, 50]. However, there was no reduction in the opportunistic bacteria
targeted by the antibiotics. The relative abundance of Pseudomonas was not significantly
affected by antibiotic treatment (Fig 4), which is also consistent with previous reports [18, 51],
Thus, since Pseudomonas is the major opportunistic bacteria found in CF patients with pulmo-
nary exacerbation,more effective antibiotics targeting Pseudomonas species are required to
control these bacteria. Interestingly, the relative abundance of Staphylococcus, another impor-
tant opportunistic bacteria, was dramatically reduced by antibiotic treatment but these abun-
dance levels returned to their original levels after the withdrawal of antibiotics. This
noteworthy phenomenon has also been reported in a previous study [22] and demonstrates the
limitations of current antibiotic therapies. These drawbacks highlight the need to reevaluate
and optimize current antibiotic treatments for CF patients with pulmonary exacerbation.
Because large overdoses of antibiotics have been commonly prescribed for treating CF to
ensure a curative effect, it is reasonable to conclude that the varied outcomes of antibiotics
should not be the key factor responsible for the differences observed in this study. Furthermore,
the concordance of results between individual data and combined data enrolled in this study
(Fig 5) also support this speculation. That our results are consistent with previous studies (Fig
5) also suggests that the methods and results of this study are highly reliable.

In summary, this study employed microbiota data from a collection studies to analyze the
differences between the microbiota of uninfected healthy individuals and CF patients and to
evaluate the impact of antibiotic treatments for CF. CF-Exa microbiota had comparable rich-
ness but lower diversity compared to NIC microbiota. Antibiotic treatments for CF patients
with pulmonary exacerbation slightly reduced the presence of opportunistic bacteria, but
markedly reduced the abundance of commensal bacteria and allowed the proliferation of
untargeted opportunistic bacteria. Thus, this study highlights the deleterious influences of anti-
biotic treatment to microbiota of CF exacerbation, which emphasizes the need to optimize
empiric antibiotic treatments.
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