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Abstract

The objective of this study was to identify genomic regions and metabolic pathways associ-

ated with dry matter intake, average daily gain, feed efficiency and residual feed intake in

an experimental Nellore cattle population. The high-density SNP chip (Illumina High-Den-

sity Bovine BeadChip, 777k) was used to genotype the animals. The SNP markers effects

and their variances were estimated using the single-step genome wide association method.

The (co)variance components were estimated by Bayesian inference. The chromosome

segments that are responsible for more than 1.0% of additive genetic variance were

selected to explore and determine possible quantitative trait loci. The bovine genome Map

Viewer was used to identify genes. In total, 51 genomic regions were identified for all ana-

lyzed traits. The heritability estimated for feed efficiency was low magnitude (0.13±0.06).

For average daily gain, dry matter intake and residual feed intake, heritability was moderate

to high (0.43±0.05; 0.47±0.05, 0.18±0.05, respectively). A total of 8, 17, 14 and 12 windows

that are responsible for more than 1% of the additive genetic variance for dry matter intake,

average daily gain, feed efficiency and residual feed intake, respectively, were identified.

Candidate genes GOLIM4, RFX6, CACNG7, CACNG6, CAPN8, CAPN2, AKT2, GPRC6A,

and GPR45 were associated with feed efficiency traits. It was expected that the response

to selection would be higher for residual feed intake than for feed efficiency. Genomic

regions harboring possible QTL for feed efficiency indicator traits were identified. Candidate

genes identified are involved in energy use, metabolism protein, ion transport, transmem-

brane transport, the olfactory system, the immune system, secretion and cellular activity.

The identification of these regions and their respective candidate genes should contribute

to the formation of a genetic basis in Nellore cattle for feed efficiency indicator traits, and

these results would support the selection for these traits.
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Introduction

Costs associated with animal feeding can be up to 50% of the total cost in beef cattle production
systems, and there is growing interest concern in adopting strategies to reduce these costs [1].
So improving feed efficiencywould increase both sustainability and profitability in the beef cat-
tle industry. Selection for feed efficiency indicator traits in beef cattle can reduce production
cost, decrease use of natural resources, and reduce impacts on the environment, optimizing
production efficiency [2].

Feed efficiency (Kg gain/ Kg feed intake) showed a moderate positive correlation with
weight gain and mature weight [3]. Thus, selection to improve feed efficiency could increase
mature weight and increase energymaintenance requirements [4]. Also, residual feed intake
(RFI), as proposed by Koch et al. [5], defined as the difference between actual feed intake and
the feed intake required to meet maintenance requirements and growth, offers advantages over
G:F since there is no correlation with performance traits [2, 6, 7, 8, 9].

Heritability estimates for RFI have been reported as moderate by many authors, ranging
from 0.30 to 0.45 [3, 10, 11, 12, 13], suggesting that this trait can be improved by selection.
However, RFI is difficult and expensive to measure, which often limits its implementation a
selection criteria in beef cattle breeding programs. Recently, genome wide association studies
(GWAS), using a high-density genotyping array, have been applied aiming to discover genomic
regions associated with feed efficiency traits [11, 14, 15, 16]. It is important to highlight that
most of these studies have been implemented with taurine breeds (Bos taurus), and there are
few studies for indicine breeds (Bos indicus) under tropical conditions.

Therefore, in order to identify genomic regions associated with feed efficiency indicator
traits, as well as to elucidate the genetic basis of them, it is important to encourage genomic
studies with zebu animals, since zebu breeds are prevalent in herds under tropical and subtrop-
ical conditions. The objective of this study was to identify genomic regions and metabolic path-
ways associated with dry matter intake (DMI), average daily gain (ADG), feed efficiency (G:F)
and residual feed intake (RFI) in an experimental Nellore cattle population.

Material and Methods

Data

This study was approved by ethics committee of the Faculty of Agrarian and Veterinary Sci-
ences, Sao Paulo State University (UNESP).

The data set used in this study was provided by the APTA Beef Cattle Center—Institute of
Animal Science (IZ), Sertãozinho, São Paulo, Brazil. Phenotypic information is animals born
from 2004 to 2012. These animals belong to three experimental lines of Nellore cattle, which
have been selected since 1978 for yearling weight: selection line (NeS) is a closed herd selected
for higher yearling weight; traditional line (NeT) is submitted to the same selection criterion as
NeS but, eventually, receives animals from NeS; and a control line (NeC) selected for average
of yearling weight [17]. The analyzed data was obtained by feed efficiency tests performed
from 2005 to 2013, consisting of 541 males and 355 females. Some of these animals (n = 683)
were restricted to individual troughs, which offered daily feed and refusal was controlled, while
the others (n = 213) were held in two collective pens equipped with the GrowSafe1 feeding
system.

After weaning, animals were kept in the test for during 83±15 days, preceded by 28 days of
adaptation, for evaluation the feed intake and average daily gain (ADG). Animals were weighed
every 14 days after 12 hours of fasting. The diet was formulated with 67% of total digestible
nutrients (TDN) and 13% of crude protein (CP), allowing ADG of 1.0 kg/day.
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Traits

In order to ensure ad libitum feed intake the food supply was adjusted daily, allowing refusals
varying from 5–10% of offer. The following feed intake data was not considered in the analyses:
for days when animals were handled outside of the facilities for a number hours, during failure
(GrowSafe) and when no refusals were found. Diet dry matter percentage was determined
from weekly samples of offer and refusals. The ADG in each test was considered as the linear
regression coefficient of body weight (BW) on days in test (DIT):

yi ¼ aþ b � DITi þ εi

where, yi = BW in ith observation;α = intercept of regression equation corresponding to the ini-
tial BW; β = linear regression coefficient corresponding to ADG;DITi = days in test for ith

observation; and εi = random error associated with each observation.Metabolic weight
(BW0.75) was calculated as: BW 0:75 ¼ aþ b �

DITi
2

� �� �
0:75, with α and β assuming the values

obtained by the equation described above.
Feed efficiency (G:F) was calculated as the ratio of ADG to DMI. The residual feed intake

(RFI) was considered as error of linear regression equation of dry matter intake on average
daily gain and metabolic weight within each contemporary group (CG: sex, year of birth, and
pen), as shown below:

DMI ¼ bT � TGþ bTA � TG � ADGþ bTB � TG � BW 0:75 þ ε

where, βT, βTA, and βTB are regression coefficients of classificatory variable test group (TG)
and of interactions betweenTG and covariates ADG and BW0.75, respectively; and ε is RFI. The
descriptive statistics for DMI, ADG, G:F and RFI are presented in Table 1.

DNA extraction

The extraction of DNA from blood samples was performed using the DNeasy Blood& Tissue
Kit (Qiagen). The DNA purificationwas performed using a column containing silica fragments
(column purification). Firstly, DNA binds to the membrane of the extraction column and then
it was washed until it has high purity. At the end of the protocol, the DNA was eluted with
buffer AE (blood). The amount of scanning and quality of the material obtained was taken
with the use of a spectrophotometer apparatus (NanoDrop 1000, Thermo Scientific,USA,
2008). Quality was measured by absorption ratio A260 / A280. A ratio of less than 1.8 suggests
contamination from protein, and more than 2.0 suggests RNA contamination.

Genotyped Animals

Animals were genotyped using the high-density SNP chip (Illumina High-Density Bovine-
BeadChip 777,000 SNP). Markers with minor allele frequency (MAF) and call rate higher than

Table 1. Descriptive statistics for dry matter intake (DMI), average daily gain (ADG), feed efficiency (G:F) and residual feed intake (RFI).

Trait N1 Mean SD2 Minimum Maximum

ADG (kg BW /day) 896 0.996 0.26 0.18 1.71

DMI (kg DM / day) 896 6.70 1.24 3.65 19.10

G:F (kg BW / kg DM) 896 0.15 0.03 0.05 0.27

RFI (Kg DM / day) 896 0.0015 0.60 -2.28 4.96

1 N: the total number of phenotyped animals.
2 SD: standard deviation.

doi:10.1371/journal.pone.0164390.t001
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5% and 95%, respectively, were considered, as well as samples with a call rate higher than 93%.
After quality control of markers, 438,874 SNPs for 689 animals were available.

Quantitative genetic analyses

The contemporary groups (CGs) included animals born on the same farm in the same year,
and from the same management group as yearlings. The CGs with fewer than 3 records were
eliminated from the analyses to maintain variability in the CGs. Records exceeding 3 standard
deviations above or below the mean of each CG were excluded, to avoid the inclusion of possi-
ble measurement error or outliers. The model included the random additive animal effect, the
fixed effects of CG, calving month, age of animal at beginning of the test (linear effect), and the
dam age as co-variable (linear and quadratic effect). The (co)variance components were esti-
mated using the single step genomic BLUP (ssGBLUP), under Bayesian inference [18]. The
ssGBLUP is a modified version of the animal model (BLUP) with additive relationship matrix
A-1 replaced by H-1 [19]:

H � 1 ¼ A� 1 þ
0 0

0 G� 1 � A� 1

22

" #

where A22 is a numerator relationship matrix for genotyped animals and G is the genomic rela-
tionship matrix created as describedby VanRaden et al. (2009) [20]:

G ¼ ZDZ0q

where Z is the gene matrix containing allele frequency adjustment;D is the matrix that have
the SNP weight (initiallyD = I); and, q is a weighting / standardization factor. According to
Vitezica et al. (2011) [21], such factors can be obtained by ensuring that theG average diagonal
is next to A22 The model can be represented by the following matrix equation:

y ¼ Xβþ Zaþ e

where y is the observations vector; β is the vector of fixed effects; a is the additive direct vector;
X is known as incidencematrix; Z is the incidence genetic random effects additive direct matrix
(the β vector associated with the y vector); e is the residual effect vector. The priori distributions
of vectors y, a and e were given by:

y � MVNðXbþ ZaÞ

a│G � MVNð0;H 
 GÞ

e│R � MVNð0; I 
 RÞ

whereH is the relationship coefficientsmatrix among animals obtained from the single-step
analyzes (single-step); R is the residual variance matrix; I is the identity matrix;G is the genetic
additive variance matrix and
 is the Kronecker product. An inverted qui-square distribution
was used for the prior values of the direct and residual genetic variances. A uniform distribu-
tion was used for the priori for the fixed effects a uniform distribution. A total of 3,342 animals
were considered in the pedigree file. Analyses were performed using GIBBS2F90 [19, 22]. The a
posteriori estimates were obtained using the application POSTGIBBSF90 [22].

The analyses were originated from chain lengths of 1,000,000 interactions, where the first
200,000 interactions were discarded. For parameter estimation, the samples were stored at each
100 cycles, building samples with 80,000 information. The data convergence was verifiedwith

Genomic Regions Associated with Feed Efficiency Indicator Traits in Nellore Cattle

PLOS ONE | DOI:10.1371/journal.pone.0164390 October 19, 2016 4 / 19



the interactions versus evaluation graphic of sampled values and using the criteria proposed by
Geweke; Heidelberger, Welch; and Raftery, Lewis [23–25] through analysis package Bayesian
Output Analysis (BOA) in the software R 2.9.0 (The R Development Core Team, 2009).

Genome-wide association analysis

Genome-wide association analysis for each trait was performed using the single-step GWAS
(ssGWAS) methodology [26]. The same linear animal model used to estimate the (co)variance
components was applied. The effects were decomposed in genotyped (ag) and ungenotyped
(an) animals, as describe by Wang et al. [26], considering the effect of genotyped animals as:

ag ¼ Zu;

where Z is a matrix that relates genotypes of each locus and u is a vector of marker effects, and
the variance of animal effects was assumed as:

varðagÞ ¼ varðZuÞ ¼ ZDZ
0

s2

u ¼ G�s2

a;

whereD is a diagonal matrix of weights for variances of markers (D = I for GBLUP), σ2
u is the

genetic additive variance captured by each SNP marker when no weights are present, and G� is
the weighted genomic relationship matrix.

The ratio of covariance of genetic effects (ag) and SNPs (u) is:

var
ag
u

" #

¼
ZDZ0 ZD0

DZ0 D

" #

s2

u;

sequentially:

G� ¼
varðagÞ

s2
a

¼
varðZuÞ

s2
a

¼ ZDZ0l

where λ is a variance ratio or a normalizing constant. According to VanRaden et al. [20],

l ¼
s2
u

s2
a

¼
1

XM

i¼1
2pið1 � piÞ

;

whereM is the number of SNP and pi is the allele frequency of the second allele in the ith SNP.
According to Stranden e Garrick [27], the markers effects can be described by:

û ¼
s2
u

s2
a

DZ0G�� 1âg ¼ DZ
0½ZDZ0�� 1âg ;

The estimated SNP effects can be used to estimate the variance of each individual SNP effect
[28] and apply a different weighting for each marker, such as:

ŝ2

û;i ¼ û
2

i 2pið1 � piÞ

The following iterative process describedby Wang et al. [26] was used consideringD to esti-
mate the SNP effects:

1. D = I,

2. To calculate the matrixG = ZDZ’q

3. To calculate GEBVs for all animals in data set using ssGBLUP;
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4. To calculate the SNP effect: û ¼ λDZ0G�� 1âg ;

5. To calculate the variance of each SNP:di ¼ û2
i 2pið1 � piÞ, where I is the ith marker;

6. To normalize the values of SNPs to keep constant the additive genetic variance;

7. Exit, or loop to step 2.

The effects of markers were obtained by 2 iterations from step 2 to 7. The percentage of
genetic variance that is responsible for ith region was calculated as describedby Wang et al. [26]:

Var ðaiÞ
s2
a

¼ �100 ¼

Var
X10

j¼1
Zjûj

� �

s2
a

� 100

where ai is the genetic value of the ith region that consists of contiguous 10 consecutive SNPs,
σ2

a is the total genetic variance, Zj is the vector of gene content of the jth SNP for all individual,
and ûj is the marker effect of the jth within the ith region. The results were presented by the pro-
portion of variance expressed by each window of 10 SNPs. In addition, the genes located at
±500 Kb of each window were considered.

Search for genes

The chromosome segments that are responsible for more than 1.0% of additive genetic vari-
ance were selected to explore and determine possible quantitative trait loci. The bovine genome
Map Viewer was used for identification of genes, available at "National Center for Biotechnol-
ogy Information" (NCBI - http://www.ncbi.nlm.nih.gov) [29] in UMD3.1 version bovine
genome and Ensembl Genome Browser (http://www.ensemble.org/index.html) [30]. The clas-
sification of genes for biological function, identification of metabolic pathways and enrichment
of genes was performed on the website “The Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) v. 6.7” (http://david.abcc.ncifcrf.gov/) [31] and GeneCards (http://
www.genecards.org/) [32].

Results and Discussion

Genetic parameter estimates

The (co)variance components and heritability estimates for DMI, ADG,G:F and RFI are
showed in Table 2. The criteria used to diagnose the chain convergence indicated convergence
of all estimated parameters. Thus, the burn-in period considered was sufficient to reach the

Table 2. Heritability (h2) and (co)variance parameters estimate for dry matter intake (DMI), average daily gain (ADG), feed efficiency (G:F) and

residual feed intake (RFI).

Trait σ2
a σ2

e Mean h2 Median h2 SD HPDl HPDu

DMI 0.01 0.014 0.47 0.47 0.05 0,37 0.57

ADG 0.01 0.014 0.43 0,43 0.05 0.33 0.53

G:F 6.01x10-5 0.0004 0.13 0.13 0.06 0.03 0.23

RFI 0.06 0.28 0.18 0.18 0.05 0.07 0.27

σ2
a = additive genetic variance.

σ2
e = residual variance.

HPDl = lower limit for 95% of high probability density.

HPDu: upper limit for 95% of high probability density.

doi:10.1371/journal.pone.0164390.t002
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convergence in all parameter estimates. The posteriormarginal distributions of heritability
estimates for feed efficiency indicator traits showed accurate values, tending to normal distri-
bution. The symmetric distributions of central tendency statistics of analyzed traits indicated
that the analyses are reliable.

The heritability estimated for G:F showed low magnitude. Grion et al. [12] and Ceacero
et al. [33] found low heritability for the same trait (0.17 ± 0.07, 0.14 ± 0.06, respectively). For
DMI and ADG, the estimated heritability was moderate to high. Baldi et al. [34] in a study with
Nellore animals and modeling the weights with random regression models, found lower herita-
bility estimates for average daily gain during the performance test (0.21). Similar heritability
estimates (0.47) to those obtained in the present study for DMI was reported by Bolormaa et al.
[11] with taurine and zebu animals. The heritability obtained for RFI showed moderate magni-
tude. Recently, Grion et al. [12], working with Nellore animals obtained a higher RFI heritabil-
ity estimate (0.33± 0.10). Bolormaa et al. [11] also reported higher heritability estimates for RFI
(0.36), in a study with nine herds of Bos Taurus, Bos indicus, and crossbreeds. Also, Silva et al.
[35] reported similar heritability estimates for ADG (0.39±0.08) and DMI (0.43±0.08) in a
study using the same experimental population. The results of this study pointed out that there
is genetic variability in selecting for feed efficiency indicator traits in Nellore cattle. Thus, it is
important to known whether there are more genes involved to better understand the genetic
architecture of these traits.

The known genes found in the regions that accounted for more than 1.0% of additive
genetic variance are presented in tables according to the studied trait. The results indicated a
total of 8, 17, 14 and 12 different windows with known genes that are responsible for more
than 1.0% of the genetic variance for DMI, ADG,G:F, and RFI, respectively.

Genomic regions

For DMI, eight genomic regions that are responsible for more than 1.0% of the additive genetic
variance were found (Table 3; Fig 1). The window that is responsible for the most part of addi-
tive genetic variance for DMI was located in chromosome BTA4 where one candidate gene,
calledNXPH1, was found associated with the DMI. The RFX6,GPRC6A, FAM162B, KPNA5
and ZUFSP genes were identified in the window located in chromosome BTA9 at the 34 Mb
position that is responsible for 3.40% of the additive genetic variance. The RFX6 gene is related
to the regulation of transcription. Results of a study in rats have suggested that this gene acts
on the differentiation of cells in insulin production [36].

In the associated window located in BTA15 at the 46 Mb position theOR2D2,OR2D3 and
OR10A4 genes associated with DMI were found, which have been reported to play roles of
olfactory receptors, coupled to G proteins, to recognize and mediate the olfactory signals in
humans and rats [37, 38]. The ZNF214,ZNF215 and NLRP14 genes were found in the same
chromosome. TheNLRP14 gene encodes a protein with activity related to the immune system
of the animal [39]. Three genomic regions located on chromosome BTA18 were found associ-
ated with DMI. Among the genes found in those regions, the CACNG7 and CACNG6 genes are
associated with calcium channels [40].

The results of gene enrichment analysis and functional clusters showed that genes associ-
ated to DMI are involved in functions related to ion transport (Table A in S1 Tables). The
metabolic pathways (Table 4) showed that those significant genes (p-value< 0.05) encode
for a protein domain known as a zinc finger that acts as a structural element in proteins.
Zinc is essential for several biochemical and cellular signaling pathways, participating in
DNA and RNA synthesis and division and cell activation. Also, Zinc is essential for immune
response [41].
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For ADG, seventeen genomic regions located in 14 different chromosomes are responsible
for more than 1.0% of the additive genetic variance (Table 5; Fig 2). In the window located in
BTA1 at position 75 Mb, two candidate genes associated with ADG (MB21D2 and FGF12)
were found. The OR52J3 and OR51A7 genes found in a window in BTA15 encode olfactory

Table 3. Genomics regions associated with dry matter intake (DMI) in Nellore cattle, percentage of

additive genetic variance and candidate genes.

Genomic region % additive genetic variance Candidate genes

BTA4: 18.396.753–18.454.503 1.14 NXPH1

BTA9: 34.179.212–34.214.753 3.40 RFX6, GPRC6A,

FAM162B, KPNA5,

ZUFSP

BTA11: 38.855.270–38.866.761 1.67 EFEMP1, CCDC85A

BTA15: 46.004.031–46.020.475 1.28 RBMXL2, NLRP14,

ZNF214, ZNF215,

OR2D3, OR2D2,

OR6A2

BTA18: 30.155.178–30.173.492 1.03 CDH8

BTA18: 59.395.113–59.459.056 1.16 LOC 100847180,

LOC100336734,

LOC515089,

LOC787858

BTA18: 62.231.299–62.270.553 1.04 CACNG6, CACNG7,

VSTM1, NLRP9, EPN1,

CCDC106, ZNF581,

ZNF580, ZNF784,

ZNF865, ZNF524, FIZ1

BTA22: 22.890.737–22.906.113 3.91 LRRN1, CRBN, TRNT,

IL5RA, CNTN4

doi:10.1371/journal.pone.0164390.t003

Fig 1. Manhattan plot of additive genetic variance expressed by windows of 10 adjacent SNPs for DMI.

doi:10.1371/journal.pone.0164390.g001
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receptors. The CAPN8, CAPN2 and TP53BP2 genes are located in BTA16, where the first two
encode subunits of the calpain enzyme. Calpain is an enzyme related to the tenderness of beef
after slaughter [42]. Ten genes were located in the window, in BTA18 at position 49 Mb, that
are responsible for the greatest proportion of additive variance (6.07%) of ADG. Among these
genes, three of them (MAP3K10,CNTD2 and AKT2) encode kinases protein, which belongs to
the largest family of proteins in eukaryotes. These genes also play an important part in intracel-
lular communication, regulation and signal transduction, and catalyzed the phosphorylation of
proteins by ATP transfer [43].

The enrichment analyses for ADG revealed functional clusters related to the catabolism of
macromolecules, transcription, protein kinase and binding nucleotides (Table B in S1 Tables).
The gene enrichment and metabolic pathways showed that those significant genes (p<0.05)
are related to endocytosis (extracellular transport) and merger of myoblasts, which are precur-
sor cells of muscle fibers, and formation of syncytia (multinucleated cells) (Table 6).

Several genes were found in the 14 genomic regions that are responsible for more than 1%
of the additive genetic variance of G:F (Table 7, Fig 3). The GOLIM4 and SERPINI1 genes were
found in the window located in BTA1 at position 100 Mb. The GOLIM4 gene encodes an inte-
gral membrane protein localized in the Golgi apparatus, which is the main organelle in the
secretory pathway in eukaryotic cells [44]. In chromosome BTA4 at position 26 Mb, the candi-
date genes PRPS1L1 andHDAC9 were found. TheHDAC9 gene is a histone deacetylase
enzyme, which is related the transcription factor. The position 78 Mb (BTA7) made an impor-
tant contribution to the additive genetic variance for G:F (7.74%), but no candidate gene was
found in this genomic region. The RASEF and FRMD3 genes were found in the window located
in BTA8 at position 77 Mb. The RASEF gene encodes the GTP binding protein and binding
calcium ions involved in the regulation of membrane traffic.

The associated candidate genesNREP, YTHDC2, and KCNN2 were found at the window at
2 Mb (BTA10). The KCNN2 gene is related to the activity in calcium/potassiumchannels. The
Ca/K channels are present in the cytosolmodulate tissue concentrations regulating the poten-
tial membrane and when present in the liver it is believed that they play a role in the response
to metabolic stress [45]. Nine genes were found in the window located at the position 1.7 Mb in
BTA11 (ACOXL, BUB1, TPC3,NPHP1,MALL,MRPS5, ZNF514,ZNF2 and PROM2). At the
position 9 Mb in the same chromosome (BTA11), seven other candidate genes were listed:

Table 4. Enriched GO terms and KEGG pathways from DAVID software for DMI.

Category Term Count % p-value *FDR (%)

INTERPRO Zinc finger, C2H2-type 3 1.20 0.017 13.64

INTERPRO Zinc finger, like C2H2 3 1.20 0.018 14.28

UP_SEQ_FEATURE repeat:LRR 5 2 0.77 0.035 26.74

SMART ZnF_C2H2 3 1.20 0.35 20.40

UP_SEQ_FEATURE repeat:LRR 4 2 0.77 0.038 29.00

UP_SEQ_FEATURE repeat:LRR 3 2 0.77 0.044 32.47

UP_SEQ_FEATURE repeat:LRR 1 2 0.77 0.047 34.14

UP_SEQ_FEATURE repeat:LRR 2 2 0.77 0.047 34.14

SP_PIR_KEYWORDS leucine-rich repeat 2 0.77 0.080 45.78

GOTERM_MF_FAT Metal ion binding 6 2.33 0.087 54.00

GOTERM_MF_FAT Cation binding 6 2.33 0.091 55.60

GOTERM_MF_FAT Ion binding 6 2.33 0.095 57.00

*FDR (%) = False Discovery Rate.

doi:10.1371/journal.pone.0164390.t004
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MRPS9,GPR45, TGFBRAP1,FHL2, TACR1, POLE4 andHK2. The GPR45 gene belongs to a
family of receptors present in G proteins, and some studies in humans and mice have demon-
strated that the GPR gene family is responsible for and is functional in the brain [46].

The SF3B3, COG4, FUK, ST3GAL2, and AARS genes were identified in BTA18, close to
the 1700 kb region. The COG4 gene is responsible for in the Golgi apparatus, performing
functions related to secretion [44]. In the same chromosome at position 60 Mb two genes
were identified:ZNF677 and ZNF729. Both of them encode type Zinc Fingers binding pro-
teins, which is characterized by the coordination and stabilization of zinc ions in several pro-
cesses of ion exchange [16].

Seven candidate genes for G:F were found in BTA20 at the position 71 Mb: CEP72, SLC9A3,
EXOC3, PDCD6, SDHA, CCDC127, and LRRC14B. In humans the SLC9A3 gene has the func-
tion of pH regulation, eliminating the acids produced by the metabolism and has proton anti-
porter activity, and solute carrier family 9 is involved in the exchange of sodium ions and
protons, because comprises Na+/H+ exchanger proteins [47]. The window located at 5.6 Mb
(BTA21) presented five candidate genesGABRG3,VIMP, CHSY1, LRRK1, and ALDH1A3.
BTA22 presented six associated candidate genes FRMD4B, LMOD3, ARL6IP5,UBA3, TMF1,

Table 5. Genomics regions associated with average daily gain (ADG) in Nellore cattle, percentage of

additive genetic variance and candidate genes.

Genomic region % additive genetic variance Candidate genes

BTA1: 75.584.269–75.618.069 1.35 MB21D2, FGF12

BTA3: 85.425.169–85.443.413 1.04 NFIA

BTA5: 14.731.575–14.763.359 1.35 SLC6A15, TSPAN19,

LRRIQ1

BTA5: 15.830.784–15.847.523 1.94 RASSF9, NTS, MGAT4C

BTA5: 17.563.565–17.596.734 1.06 CEP290, TMTC3

BTA6: 118.707.394–118.729.013 1.11 CCDC96, TADA2B,

GRPEL1, SORCS2,

PSAPL1

BTA10: 12.891.097–12.898.777 1.22 SLC24A1, DENND4A,

RAB11A, MEGF11,

DIS3L, TIPIN

BTA12: 22.039.454–22.083.431 1.20 SLC25A15, MRPS31,

FOXO1

BTA12: 25.358.539–25.400.371 1.21 CCNA1, SPG20, CCDC169,

SOHLH2, DCLK1

BTA14: 56.996.809–57.030.553 1.03 KCNV1, SYBU, EBAG9,

PKHD1L1, ENY2,

NUDCD1, TRHR

BTA15: 50.448.739–50.491.730 1.93 OR52J3, OR51A7

BTA16: 27.811.695–27.823.039 1.18 CAPN8, CAPN2, TP53BP2

BTA17: 58.907.025–58.919.312 2.19 SRRM4, SUDS3, TAOK3

BTA18: 49.844.762–49.864.296 6.07 LEUTX, DYRK1B, FBL,

PSMC4, FCGBP, MAP3K10,

TTC9B, CNTD2, AKT2,

PLD3

BTA21: 58.239.214–58.254.496 2.15 LGMN, GOLGA5,

CHGA, ITPK1

BTA25: 23.226.474–23.258.055 2.98 LCMT1, AQP8, ZKSCAN2

BTA27: 32.802.856–32.822.191 1.56 ZNF703, ERLIN2, PROSC,

BRF2, RAB11FIP1, GOT1L1,

ADRB3, EIF4EBP1

doi:10.1371/journal.pone.0164390.t005
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and EOGT. In BTA27 the associated genomic region did not show any gene because it is an
intergenic region.

The results of gene enrichment and functional analysis reported clusters related to nucleo-
tides, Golgi apparatus, protein transport and acetylation (Table C in S1 Tables). The metabolic
pathways linked to carbohydrate metabolism, such as six-carbon polysaccharides fructose and
mannose. These polysaccharides are intermediates in the glucose degradation process and gly-
colytic pathway, which are the main energy source for all cell types from mammals, being
responsible for the ATP supply in aerobic and anaerobic conditions [48] (Table 8).

Fig 2. Manhattan plot of additive genetic variance expressed by windows of 10 adjacent SNPs for ADG.

doi:10.1371/journal.pone.0164390.g002

Table 6. Enriched GO terms and KEGG pathways from DAVID software for ADG.

Category Term Count % p-value *FDR (%)

GOTERM_BP_FAT Syncytium formation by plasma membrane fusion 2 0.32 0.009 12.17

GOTERM_BP_FAT Myoblast fusion 2 0.32 0.009 12.17

GOTERM_BP_FAT Syncytium formation 2 0.32 0.013 15.90

SP_PIR_KEYWORDS Activator 4 0.70 0.015 16.41

GOTERM_BP_FAT Myotube differentiation 2 0.32 0.019 22.90

SP_PIR_KEYWORDS Transport 8 1.30 0.036 34.11

GOTERM_MF_FAT Transcription activator activity 3 0.50 0.042 38.72

KEGG_PATHWAY Endocytosis 3 0.50 0.078 52.81

GOTERM_CC_FAT Nuclear chromatin 2 0.32 0.082 60.41

GOTERM_BP _FAT Vascular process in circulatory system 2 0.32 0.100 73.91

GOTERM_BP_FAT Regulation of tube size 2 0.32 0.100 73.91

GOTERM_BP_FAT Regulation 2 0.32 0.100 73.91

*FDR (%) = False Discovery Rate.

doi:10.1371/journal.pone.0164390.t006
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A total of 12 SNP windows distributed in BTA1, BTA4, BTA7, BTA8, BTA10, BTA18,
BTA21, and BTA24 are responsible for more than 1% of the additive variance for RFI (Fig 4).
Mujibi et al. [49], in a study of crossbreed beef cattle, reported 11 SNP windows associated with
RFI. Santana et al. [16] found two SNP windows (located in BTA8 and BTA21) associated with
RFI in a Nellore cattle population using two different densities of SNP markers.

Many candidate genes identified in regions associated with RFI are coding proteins involved
in the ion transportation system. This system can consume more than 10% of the total energy
used by ruminants. Thus, animals with a reduced energy expenditure on this of this system can
redirect energy to spend on other processes, which may influence feed efficiency [16]. In the
present study, the window located at 121 Mb (BTA1) is responsible for 5.67% of the additive
genetic variance for RFI. This window harbored the ZIC1 e ZIC4 genes, which are related to
ion transport, since codifiedprotein subunits which depend on zinc ions for stability. Other
genes are also related to ion transportation system, such as GPR98, KCNV2 (acting on potas-
sium channels) and ZDHHC7.

A total of eight candidate genes was found in BTA4, of which three of them are linked to the
perception of food:TAS2R3 and TAS2R4, which are related to taste through taste receptors,
and OR9A, which encodes odor receptors. In another region of BTA4 (118 Mb) six candidates
genes were found. The LMBR1 gene, located at 118 Mb (BTA4), has the function to encode
membrane proteins. In addition, other candidate genes encodes proteins with biological func-
tions associated with many cellular processes such as transcription (POLR3G and TBPL2), cel-
lular secretion (KTN1 and GOLIM4), and transport across membranes (TMEM178B and

Table 7. Genomic regions associated with feed efficiency (G:F) in Nellore cattle, percentage of additive genetic variance and candidate genes.

Genomic region % additive genetic variance Candidate genes

BTA1: 100.014.690–100.024.850 1.06 GOLIM4, SERPINI1

BTA4: 26.970.205–27.013.467 1.40 PRPS1L1, HDAC9

BTA7: 78.617.232–78.676.806 7.74 -

BTA8: 77.932.482–77.966.961 1.10 RASEF, FRMD3,

UBQLN1, GKAP1

BTA8:103.636.023–103.659.024 3.71 SUSD1, PTBP3, HSDL2,

KIAA1958, INIP, SNX30,

SLC46A2

BTA10: 2.532.364–2.549.937 2.33 NREP, YTHDC2, KCNN2

BTA11: 1.706.353–1.734.496 2.56 ACOXL, BUB1, TPC3,

NPHP1, MALL, MRPS5,

ZNF514, ZNF2, PROM2

BTA11: 9.544.481–9.586.492 1.07 MRPS9, GPR45,

TGFBRAP1,

FHL2, TACR1, POLE4, HK2

BTA18: 1.701.547–1.715.218 1.36 SF3B3, COG4, FUK,

ST3GAL2, DDX19A, AARS

BTA18: 60.373.325–60.390.691 1.08 ZNF677, ZNF729

BTA20: 71.942.837–71.992.748 1.03 CEP72, SLC9A3, EXOC3,

PDCD6, SDHA,

CCDC127, LRRC14B

BTA21: 5.696.944–5.706.720 1.14 GABRG3, VIMP, CHSY1,

LRRK1, ALDH1A3

BTA22: 32.257.185–32.272.017 1.38 FRMD4B, LMOD3,

ARL6IP5,

UBA3, TMF1, EOGT

BTA27: 17.329.309–17.350.208 1.02 -

doi:10.1371/journal.pone.0164390.t007
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AGK). No candidate gene was found at the position 18 Mb (BTA21) that is responsible for
2.18% of additive genetic variance for RFI (Table 9).

The results of enrichment pathway analysis indicated that genes associated with RFI (p
<0.05) are related to sensory receptors that operate in food taste perception and receptors cou-
pled to G proteins (Table 10). The enrichment by functional cluster for RFI showed that those
genes are linked to cell membranes that are related to the thermodynamic equilibrium of cells.
(Table D in S1 Tables). The most common mechanism to maintain the thermodynamic equi-
librium of cells is ion exchange activity, maintaining cell differentiation potential through the
sodium-potassiumpump. For adequate pump operation, in order to maintain thermodynamic
equilibrium, energy is needed (ATP to keep the sodium-potassiumpump equilibrium). This
process requires approximately 25% of the basal energy expenditure of an individual [50].

The GOLIM4 and SERPINI1 genes, located in BTA1, have been linked to more than one
trait, such as G:F and RFI. It was observed that few SNP windows located nearby in the same
chromosome were associated with more than one trait like in BTA8, where two SNP windows
were associated with RFI and G:F. Seven genes related the zinc finger protein domain located
in BTA18 were found in several nearby SNP windows associated with G:F and DMI. These
results could be due to pleitropic effects, which means that the expression of different traits
could be influenced by the same set of genes which acts in a coordinated manner to contribute
to feed efficiency.

It is important to highlight that the results obtained in this study are also supported by pre-
vious studies. Rolf et al. [14] working with an Angus population, reported genomic regions
associated with DMI, RFI and ADG close to those obtained in this study for the same traits.
Bolormaa et al. [11] reported seven genomic regions near (at a maximum distance of 3 Mb)
those identified in this study for RFI. Recently, Karisa et al. [51] reported a candidate gene
(CYP2B) associated with RFI in BTA18 (49 Mb), at the same position that the present study

Fig 3. Manhattan plot of additive genetic variance expressed by windows of 10 adjacent SNPs for G:F.

doi:10.1371/journal.pone.0164390.g003
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identified candidate genes for ADG. Recently, in a study with a Nellore cattle population, De
Oliveira et al. [52] reported differently located candidate genes for feed efficiency traits than
found in this study (HRH4,ALDH7A1,APOA2, LIN7C,CXADR,ADAM12 andMAP7). How-
ever, the genes described in that study have similar gene ontology (immune system, energy and
ion metabolism) to the genes reported in the present study.

The large number of genomic regions associated with feed efficiency traits obtained in this
study should support a better understanding the genetic and physiological mechanisms that
determine growth, feed intake and feed efficiency in zebu animals. The results demonstrate the
probability that these traits have their expression controlled by many QTL with small individ-
ual effects, confirming their polygenic nature. The identification of relevant genes might be a
difficult task, since the additive genetic variance contribution from each region or SNP window
for many traits was lower than expected. Thus, strategies such as genomic selection that take
into consideration the variability among all markers might be a more adequate alternative to
improve these traits.

In recent years there has been growing concern about the contribution of the beef industry
to climate change. Livestock in particular has been identified as a major contributor to global
warming according to the FAO report [53]. Climate change and variability impacts on live-
stock productivity, and especially on the economic and political behavior of international

Table 8. Enriched GO terms and KEGG pathways from DAVID software for G:F.

Category Term Count % p-value *FDR (%)

INTERPRO Ribosomal protein S5 domain 2 –type fold 3 0.33 0.0055 0.60

GOTERM_CC_FAT Golgi apparatus part 4 0.44 0.0056 5.61

GOTERM_MF_FAT Adenyl nucleotide binding 9 1.00 0.012 12.92

GOTERM_MF_FAT Purine nucleoside binding 9 1.00 0.013 13.58

GOTERM_MF_FAT Nucleoside binding 9 1.00 0.013 14.00

SMART KRAB 3 0.33 0.015 9.91

GOTERM_MF_FAT Purine nucleotide binding 10 1.10 0.015 16.00

GOTERM_CC_FAT Golgi apparatus 5 0.55 0.020 18.24

GOTERM_CC_FAT Golgi membrane 3 0.33 0.025 23.00

INTERPRO Krueppel-associated box 3 0.33 0.026 25.00

GOTERM_MF_FAT ATP binding 8 0.90 0.029 27.32

GOTERM_MF_FAT Adenyl ribonucleotide binding 8 0.90 0.030 28.34

GOTERM_MF_FAT Ribonucleotide binding 9 1.00 0.035 32.42

GOTERM_MF_FAT Purine ribonucleotide binding 9 1.00 0.035 32.42

GOTERM_MF_FAT Nucleotide binding 10 1.10 0.043 38.43

GOTERM_MF_FAT Solute: hydrogen antiporter activity 2 0.22 0.044 39.36

GOTERM_MF_FAT Solute: cation antiporter activity 2 0.22 0.053 45.14

GOTERM_MF_FAT Endomembrane system 2 0.44 0.060 45.70

KEGG_PATHWAY Fructose and mannose metabolism 2 0.22 0.070 47.70

INTERPRO Zinc finger, C2H2/integrase, DNA-binding 2 0.33 0.075 57.10

SMART ZnF_C2H2 3 0.33 0.083 44.81

GOTERM_BP_FAT Ion transport 5 0.55 0.084 65.78

GOTERM_MF_FAT Solute: solute antiporter activity 2 0.22 0.87 63.26

GOTERM_MF_FAT Antiporter activity 2 0.22 0.100 66.76

KEGG_PATHWAY Amino sugar nucleotide sugar metabolism 2 0.22 0.100 59.70

*FDR (%) = False Discovery Rate.

doi:10.1371/journal.pone.0164390.t008
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markets, constituting the main current threat to beef exports in many countries. The ability to
become a supplier country of reliable and safe food to the world should be combined with envi-
ronmental sustainability. The results obtained in this study show that it is possible to improve
beef cattle feed efficiency, trough selection using genomic information, and reach additional

Fig 4. Manhattan plot of additive genetic variance expressed by windows of 10 adjacent SNPs for RFI.

doi:10.1371/journal.pone.0164390.g004

Table 9. Genomic regions associated with residual feed intake (RFI) in Nellore cattle, percentage of

additive genetic variance and candidate genes.

Genomic region % additive genetic variance Candidate genes

BTA1: 100.014.690–100.024.850 2.07 GOLIM4, SERPINI1

BTA1: 121.639.147–121.673.712 5.67 ZIC1, ZIC4

BTA4: 105.904.240–105.916.649 1.03 TMEM178B, AGK,

KIAA1147,

SSBP1, TAS2R3, TAS2R4,

PRSS37, OR9A4

BTA4: 118.565.156–118.604.811 1.70 EN2¸CNPY1, RBM33,

SHH, RNF32, LMBR1

BTA7: 92.477.585–92.509.554 2.81 POLR3G, LYSMD3, GPR98

BTA8: 41.938.966–41.956.731 1.75 KIAA0020, KCNV2

BTA8: 103.619.063–103.646.388 3.07 KIAA1958, INIP

BTA8: 103.659.024–103.677.483 1.19 HSDL2, KIAA1958, INIP

BTA10: 68.372.903–68.395.669 1.05 FBXO34, ATG14,

TBPL2, KTN1

BTA18: 11.032.341–11.066.819 1.20 CRISPLD2, ZDHHC7,

KIAA0513, FAM92B

BTA21: 18.152.308–18.161.649 2.18 -

BTA24: 59.463.065–59.493.043 3.55 CCBE1, PMAIP1, MC4R

doi:10.1371/journal.pone.0164390.t009
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benefits to the environment by reducing greenhouse gas emissions. Finally, the data set used in
this study belongs to a beef cattle research farm, which provides selected sires to commercial
herds in many regions of Brazil. Therefore, the information found in this study will contribute
to the selection for animals with better feed efficiencyand increased environmental and social
sustainability.

Conclusion

The results of this study pointed out that selection for feed efficiency indicator traits is feasible
in Nellore cattle under tropical conditions. It is expected that the response to selectionwould
be higher for RFI than for G:F. Several genomic regions harboring possible QTL for feed effi-
ciency indicator traits were identified. The candidate genes identified are involved in energy
and protein metabolism, ion transport, transmembrane transport, the olfactory system, the
immune system, secretion (Golgi apparatus) and cellular activity (cell multiplication). The
identification of these regions and their respective candidate genes should contribute to the for-
mation of a genetic basis for Nellore feed efficiency indicator traits, and these results would
support the selection for these traits.
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