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Abstract

Web spammers aim to obtain higher ranks for their web pages by including spam contents

that deceive search engines in order to include their pages in search results even when they

are not related to the search terms. Search engines continue to develop new web spam

detection mechanisms, but spammers also aim to improve their tools to evade detection. In

this study, we first explore the effect of the page language on spam detection features and

we demonstrate how the best set of detection features varies according to the page lan-

guage. We also study the performance of Google Penguin, a newly developed anti-web

spamming technique for their search engine. Using spam pages in Arabic as a case study,

we show that unlike similar English pages, Google anti-spamming techniques are ineffective

against a high proportion of Arabic spam pages. We then explore multiple detection features

for spam pages to identify an appropriate set of features that yields a high detection accu-

racy compared with the integrated Google Penguin technique. In order to build and evaluate

our classifier, as well as to help researchers to conduct consistent measurement studies, we

collected and manually labeled a corpus of Arabic web pages, including both benign and

spam pages. Furthermore, we developed a browser plug-in that utilizes our classifier to

warn users about spam pages after clicking on a URL and by filtering out search engine

results. Using Google Penguin as a benchmark, we provide an illustrative example to show

that language-based web spam classifiers are more effective for capturing spam contents.

1 Introduction

Web spamming (or spamdexing) is a process for illegitimately increasing the search rank of a

web page with the aim of attracting more users to visit the target page by injecting synthetic

content into the page [1, 2]. Web spamming can degrade the accuracy of search engines greatly

if this content is not detected and filtered out from the search results [3–5]. In general, spam-

mers aim to illegally enhance the search engine ranks of their spam pages, which might lead to

user frustration, information pollution, and distortion of the search results, thereby affecting

the entire information search process.
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Black hat search engine optimization (SEO) techniques are generally used to create web

spam pages. For example, in content-based web spamming, spammers stuff spam keywords

into the target page by listing them in the HTML tags (e.g., META tags) or by using an invisible

font. In addition, scraper techniques are used where the spam content is simply a replica of

another popular site [6–8]. These deception techniques are refused by search engines because

they can lead to misleading search results [9].

Some web ranking algorithms give higher ranks to pages that can be reached from other

web pages that are highly ranked, so the black hat SEO method exploits this feature to increase

the ranks of spam pages [5, 10–13]. For example, in the cookie stuffing method, the user’s

browser receives a third-party cookie after visiting a spam page with an affiliate site so the

cookie stuffer is credited with a commission after visiting the affiliate site and completing a

particular qualifying transaction. Moreover, by utilizing a page cloaking mechanism, a search

engine crawler can receive different content from the spam page compared with that displayed

on the end-user’s browser, where the aim is delivering advertisements or malicious content to

the user, which is partially or completely irrelevant to that searched for by the user. Another

link-based tactic is link farms where a set of pages are linked with each other.

Site mirroring is another black hat SEO method, which exploits the fact that many search

engines grant higher ranks to pages that contain search keywords in the URL. Thus, spammers

can create multiple sites with various URLs but similar content. Further, web spammers can

create pages that redirect the user’s browser to a different page that contains the spam content

in order to evade detection by search engines [10].

Existing web spam detection approaches use link (e.g., [14]) and content (e.g., [1, 15–18])

information to capture spam pages. For example, Facebook and Twitter filter out messages

containing known spam content so they are not posted [19, 20].

Due to the success of email anti-spam tools based on machine learning, we consider that

these techniques might also be effective for detecting web spamming. Typically, high detection

accuracy and a low false positive rate are the main properties required for detection tools

based on machine learning methods. This is particularly important for detecting spam pages

and ensuring that benign web sites are not penalized.

Search engines enhance their anti-spamming techniques continuously. For example, Goo-

gle developed their latest algorithm (called Penguin) in 2012 and they have continued updating

it to lower the search engine ranks of web sites that use black hat SEO or that violate Google

Webmaster Guidelines [21, 22]. Google’s latest web spam report urges publishers to verify the

contents of their pages via the Search Console. In fact, Google sent over 4.3 million emails to

webmasters during 2015 alone to warn them of identified spam-like content and to give them

a chance of reconsideration [23].

The effectiveness of the Google Penguin algorithm is affected by the text language used in

the page examined [24]. Several web spam detection features have been proposed but to the

best of our knowledge, the effect of the language on these detection features has not been

examined previously. In addition, to the best of our knowledge, the performance of the Google

Penguin algorithm at detecting web spam pages that contain text in languages other than

English has not been evaluated.

This study significantly extends our earlier conference paper [25, 26], where the data set is

expanded and updated, a new release of Google Penguin is explored, new spamming detection

algorithms are introduced, and their results are presented. This study makes the following

main contributions.

1. EFFECTS OF LANGUAGE ON THE DETECTION OF WEB SPAM. We conducted several experiments to

study how the page language affects the detection accuracy and false positive rate, as well as
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showing how and why the distribution of selected detection features differ according to a

given page language. We used English and Arabic as languages in case studies.

2. COLLECTING AN ARABIC WEB SPAM DATA SET. We collected and manually labeled a corpus con-

taining both benign and spam pages with Arabic content. We used this corpus to evaluate

our proposed machine learning-based classifier and we have also made the corpus available

for use by the research community in this domain.

3. ANALYSIS OF DETECTION FEATURES AND DEVELOPMENT OF A NOVEL CLASSIFIER. Using Arabic pages

in a case study, we showed how to identify a set of web spam detection features with satis-

factory detection accuracy. Employing supervised machine learning techniques, we then

built a classifier for detecting web pages that contain spam content and showed that it

yielded better accuracy compared with the Google Penguin algorithm.

4. CONSTRUCTION OF A BROWSER ANTI-WEB SPAM PLUG-IN. Using our proposed classifier, we devel-

oped a browser plug-in to warn the user before accessing web spam pages (i.e., after clicking

on a link from the search results). The plug-in is also capable of filtering out spam pages

from the search engine results.

The remainder of this paper is organized as follows. Section 2 presents our analysis of how

the page language affects the detection rate for web spam using a set of classifiers. Section 3

describes the collection and labeling process for our data set. Section 4 illustrates our system

architecture and design. Section 5 explains the feature extraction and selection process. Section

6 presents the proposed classifier and evaluations of its accuracy. Section 7 discusses the mean-

ing and implications of our main findings, and Section 8 presents related research. Finally, we

give our conclusions in Section 9.

2 Effects of the Page Language

2.1 Data Sets

Two web spam data sets were used in this study. First, we used UK-2011 [27], which is a subset

of the WEBSPAM-UK2007 data set [28]. The UK-2011 data set was labeled by volunteers and

each page is flagged as either “spam” or “non-spam.” Second, we used an extended Arabic web

spam data set [29], which included spam and non-spam Arabic pages (this data set was col-

lected and labeled during the period from April 2011 to August 2011).

We used Wahsheh’s web spam detection features [30] (see Table 1). We employed the J48

classifier, which is a Weka (version 3.7.6) implementation of the C4.5 decision tree classifier

(decision trees are statistical machine learning algorithms that utilize a greedy top-down pro-

cess to select attributes at selected nodes in the tree and divide the samples into subsets based

on the values of these attributes). Cross-validation, a model evaluation method used to

improve how a classifier generalizes to an independent data set, was used to ensure that each

instance in the data set had an equal probability of appearing in either the training or testing

sets. We performed a 10-fold cross-validation and we divided the data set into 10 chunks for

training 10 times, where a different chunk was used as the testing set each time. For the deci-

sion tree classifier, the issue of overfitting was addressed by using a pruning technique, where

the less significant tree nodes for classifying the data set instances were removed from the tree

(we set the minimum number of instances to two).

2.2 Results and Analysis

We started our analysis by studying the selected detection features in both data sets. Fig 1 shows

the probability density function (PDF) for different features in both data sets. A random sample
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of 1,500 web pages was used to determine the figure visibility (compared with 3,688 pages in

data set (1) and 9,988 in data set (2)). According to the cumulative distribution function (CDF)

for feature 2 in Fig 1A, almost 60% of the Arabic non-spam pages contained less than 270 words

in their pages, whereas less than 15% of Arabic spam pages had less than 270 words. The figure

shows that Arabic spam pages tended to have more words in their pages compared with Arabic

non-spam pages. In addition, the CDFs for the number of words in Arabic non-spam pages and

English pages were very similar. The same observation can be made based on Fig 1B and 1C, but

there was more variation among them. In fact, most of the features exhibited greater variation

between spam and non-spam pages in the Arabic data set compared with the UK data set. Fur-

thermore, Fig 1B shows that Arabic spam pages tended to have shorter word lengths, where

almost 80% of the Arabic spam pages had an average word length of six characters, whereas only

40% of the Arabic non-spam pages had an average word length of six characters. In terms of the

number of characters per meta-element, as shown in Fig 1C, Arabic spam pages usually had

more characters (80% had more than 400 characters) compared with Arabic non-spam pages

(20% had more than 400 characters). Furthermore, Fig 1D shows that Arabic pages usually had

more images in their pages compared with English pages, particularly in spam pages.

First, we used all 11 detection features to build the classifiers. Most of the Arabic web spam

pages used more obvious spamming tactics compared with those in English, so the DR for

English spam pages was lower than that for those in Arabic. We then selected different sets of

features using the following feature selection algorithms implemented in Weka: CfsSubsetEval,

PrincipalComponents, ConsistencySubsetEval, and FilteredSubsetEval. Brief descriptions of

these algorithms and the results obtained from their execution are shown in Table 2. The

CfsSubsetEval algorithm considers the individual predictive ability of every feature as well as

the features’ degree of redundancy in order to evaluate the value of a subset of features. Princi-

palComponents performs principal components analysis and transforms the data. Based on

the results obtained by these algorithms, we selected the following sets as training scenarios for

the classifier: 1,5,7,11, 1,5,8,9, 1,5,7,10,11, and all 11 features.

Tables 3 and 4 show the performance of each set of features using the classifiers described

above, the performance measurement indices mentioned in Table 5, and the confusion matrix

obtained by the classifier.

Table 1. Feature descriptions used in our study for the effects of the page language on the spam

detection rate. Note that the numbers are per page.

Feature No. Feature Description

1 existing amount of visible and clickable text in a hyperlink (i.e., anchor text)

2 number of words

3 average word length

4 number of words in the title elements (because spammers tend to use unrelated characters

to enhance the page rank

5 page compression rate

6 number of unique words

7 number of characters in the meta-element (because spammers tend to utilize keyword

stuffing to enhance the page rank)

8 number of words in the meta element (because spammers tend to utilize keyword stuffing to

enhance the page rank)

9 longest word (because spammers tend to utilize long words to increase the page rank)

10 shortest word (because spammers tend to utilize long words to increase the page rank)

11 number of images

doi:10.1371/journal.pone.0164383.t001
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Fig 1. Cumulative distribution function (CDF) for different features in both data sets.

doi:10.1371/journal.pone.0164383.g001

Table 2. Results obtained after applying the feature selection algorithms to both data sets.

Attribute evaluator Search method Selected features

Arabic data set English data set

CfsSubsetEval GreedyStepwise 1,5,7,10,11 1,2,3,5,6,7,8,11

PrincipalComponents Ranker 1,2,3,4,5,6,7,8,9 1,2,3,4,5,6,7,8

ConsistencySubsetEval GreedyStepwise 1,5,8,9 1,2,3,5,6,8,9,11

FilteredSubsetEval GreedyStepwise 1,5,7,11 1,2,3,5,6,7,8,11

doi:10.1371/journal.pone.0164383.t002
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2.3 Limitations in Existing Data Sets

We found that the distributions of a selected set of features varied according to the underlying

language used in the page examined. In addition, for both data sets, the results obtained by the

classifiers showed that only a few common features yielded similar results. However, the signif-

icance of several of the remaining features varied according to the language used in the page

Table 3. Performance of the decision tree classifier using different sets of features (where S = spam and NS = non-spam).

Data set Set of features DR ER TP FP Precision Recall F-measure

S NS S NS S NS S NS S NS

English 1,5,7,11 77.22 22.78 0.79 0.75 0.25 0.21 0.78 0.76 0.79 0.75 0.79 0.76

1,5,8,9 79.74 20.26 0.81 0.78 0.22 0.19 0.81 0.79 0.81 0.78 0.81 0.78

1,5,7,10,11 78.41 21.59 0.8 0.77 0.24 0.20 0.79 0.77 0.80 0.77 0.80 0.77

All 11 features 88.13 11.87 0.89 0.87 0.13 0.11 0.88 0.88 0.89 0.87 0.89 0.87

Arabic 1,5,7,11 99.52 0.48 1 0.99 0.01 0 0.99 1 1 0.99 1 1

1,5,8,9 99.23 0.77 0.99 0.99 0.01 0.01 0.99 0.99 0.99 0.99 0.99 0.99

1,5,7,10,11 99.52 0.48 1 0.99 0.01 0 0.99 1 1 0.99 1 1

All 11 features 99.21 0.79 0.99 0.99 0.01 0.01 0.99 0.99 0.99 0.99 0.99 0.99

doi:10.1371/journal.pone.0164383.t003

Table 4. Confusion matrix obtained by the decision tree classifier using different sets of features (where S = spam, NS = non-spam).

Data set Set of features S NS

S NS S NS

English 1,5,7,11 79.03 20.97 24.83 75.17

1,5,8,9 81.43 18.57 22.17 77.83

1,5,7,10,11 80.08 19.92 23.47 76.53

All 11 features 89.34 10.66 13.24 86.76

Arabic 1,5,7,11 99.7 0.3 0.66 99.34

1,5,8,9 99.28 00.72 0.82 99.18

1,5,7,10,11 99.7 0.3 0.66 99.34

All 11 features 99.44 0.56 1.02 98.98

doi:10.1371/journal.pone.0164383.t004

Table 5. Performance measurement indices.

Measurement Indices Description

Detection rate (DR) Ratio of the number of correctly classified samples relative to the total number of

samples.

Error rate (ER) Ratio of the number of incorrectly classified samples relative to the total number

of samples.

True positive (TP) for

class x

Ratio of the number of correctly classified samples in class x relative to the total

number of samples.

False positive (FP) for

class x

Ratio of the number of incorrectly classified samples in class x relative to the

total number of samples.

Precision for class x Ratio of the number of correctly flagged samples in class x relative to the total

number of samples in class x.

Recall for class x Ratio of the number of correctly flagged samples in class x relative to the total

number of correctly classified samples.

F-measure for class x The harmonic mean of precision and recall for class x.

doi:10.1371/journal.pone.0164383.t005
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examined. The effect of language was due partly to the use of a similar set of web spamming

techniques for a given language.

It is important to note that these data sets are fairly old and they do not represent the cur-

rent techniques of new spammers. In addition, given that the original contents of the web

pages of the two data sets were not available, we could not examine other spam detection fea-

tures (i.e., other than those of the 11 features provided within the two data sets). Furthermore,

the method used to collect the web pages in these data sets did not consider specific search

engines as the main goal of spammers in order to obtain higher ranks for their web pages in

the search engine results and increase the number of hits. To overcome these limitations, we

decided that a new data set must be collected carefully and made available.

3 Building an Arabic web spam corpus

In order to overcome the limitations described in the previous section, we followed a three-

step process to collect a data set of Arabic pages, including both benign and spam web pages.

First, we collected the top Arabic search keywords for the period from January 2004 to October

2012 on the Google Trends website. We then queried the Google search engine using the col-

lected search keywords. The URLs of the top 50 result pages for each search keyword were

then stored, thereby obtaining a total of 8,168 distinct domain names. Fig 2 shows the percent-

ages of the URLs collected for each category in Google Trends. We note that the number of

search keywords in a given category affected the corresponding percentage.

We identified multiple types of pages with malware and phishing content, where each URL

was examined using six security scanners (these scanners were provided by selected antivirus

vendors): 1) Sucuri SiteCheck scanner; 2) McAfee SiteAdvisor scanner; 3) Google Safe Brows-

ing scanner; 4) Norton scanner; and 5) Sophos scanner (with Yandex ranking). The scanners

examined every visible web page in the entire domain of a given URL. This scanning process

was beneficial for studying the relationships between existing vulnerabilities, malicious con-

tent, and web spam [31]. The scanning results were then stored into a database (see Fig 3).

Finally, the URLs were labeled manually by several raters. Each link was classified into one

of four categories: i) spam class; ii) borderline class; iii) benign class; and iv) unknown class.

The raters were given a set of guidelines for labeling web spam pages (e.g., see [32]). A web

application was utilized by the raters to view and rate the data set’s links so every link was clas-

sified by at least one rater. Fig 4A shows the distribution of classes (i.e., non-spam, borderline,

and spam) according to the raters. It should be noted that almost 26% of the Google search

results were flagged as either the spam class (10%) or borderline class (16%), although the new

update to the Penguin algorithm has been in place for several months.

Many spammers aim to compromise the machines of users and there was a clear correlation

between spamming and the existence of web vulnerabilities, as shown in Fig 4B and 4C. We

note that 15% of the positive URLs results obtained from the Sucuri scanner (i.e., containing

malware and flagged as malicious) were manually labeled as spam, whereas 9% of the negative

web pages were labeled as spam. Similarly, the percentage of URLs flagged as borderline repre-

sented (1) 13% of the Sucuri scanner-negative URLs and (2) 30% of the Sucuri scanner-posi-

tive URLs. However, the percentage of non-spam URLs represented more than 78% of the

negative URLs and 55% of the positive URLs. Similar observations can be made for the sites

scanned by the McAfee tool, as shown in Fig 4C, which indicates that spamming seems to be a

preferred tool for attackers.

Fig 5A, 5B and 5C illustrate the distributions of our three classes among Google Trends cat-

egories. The distribution is divided into two sets: malicious and benign, as found in the URL

classification by the Sucuri scanner. The arts & entertainment, beauty & fitness, and online
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communities categories were most common for web spammers. Furthermore, we note that the

numbers of positive and negative URLs according to the Sucuri scanner were proportional to

those in the spam and borderline classes, unlike the non-spam category class.

4 System Architecture and Design

The system comprises two major components: (i) a back-end server and (ii) a browser plug-in.

The plug-in represents the connection between the back-end server and the browser (see

Fig 2. Percentages of the collected URLs in each Google Trends category.

doi:10.1371/journal.pone.0164383.g002
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Fig 6). After the browser plug-in captures the URL (either clicked on or entered in the web

browser address bar by the user), the URL is sent by the plug-in to the back-end server, which

then extracts the values of the detection features from the URL and flags it as either benign or

spam.

The page will be blocked by the plug-in if it is flagged as a spam page and it will display a

pop-up dialog box to warn the user of spam content. The user has the option to proceed and

browse the spam page. The plug-in maintains a cache with a blacklist and whitelist, so only

Fig 3. Process flow employed for collecting and building our web spam corpus.

doi:10.1371/journal.pone.0164383.g003
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new URLs are examined by the back-end server. A database containing all the requests

received from the plug-ins is also maintained by the back-end server, which serves as a local

cache lookup mechanism to speed up the retrieval process.

The plug-in was implemented for the Chrome browser using standard web techniques,

such as HTML, CSS, and JavaScript, and JavaScript Object Notation (JSON) is used for light-

weight data interchange with the browser and the back-end server. The back-end server uses

Apache tomcat as a web server, MySQL as a database server, and JavaServer Pages (JSP) as a

server-side programming technology. In the back-end server, jsoup is used as a Java library to

deal with HTML and xml document parsing and feature extraction. Most computations are

performed on the server side, which maintains a cache containing both the blacklist and white-

list, so the waiting time tends to be very short compared with the loading time for the pages

examined. Furthermore, the back-end server can easily be scaled up or down to serve the num-

ber of requests. The back-end server can also be used to collect crash reports from the plug-in,

which may help to improve new releases.

5 Feature Selection and Extraction

Feature selection and extraction are crucial steps in the construction of a classifier. Several pre-

vious studies have proposed the detection of features that minimize the intra-class variability

and maximize the inter-class variability (e.g., [33–38]). In general, the use of raw data for clas-

sification leads to classifiers with complex structures, thereby resulting in poor performance.

In addition to some known features from previous studies, we propose novel detection fea-

tures that have not been used before to the best of our knowledge, as shown in Table 6. We cal-

culated the CDF for the second feature in Fig 7A, the fifth feature in Fig 7B, the sixth feature in

Fig 7C, and feature 7 in Fig 7D, thereby helping us to understand the nature of each feature,

and thus the contribution of the features to the classifier’s accuracy.

As shown in Fig 7A, 70% of the web spam and borderline pages had�18 links, whereas the

benign pages had� 10 links. Fig 7B shows that 90% of the benign web pages had� 8 meta

tags compared with� 37 meta tags in the borderline and spam pages.

Similarly, Fig 7C and 7D show clearly that for features 6 and 7, the benign web pages were

sufficiently easy to distinguish from both borderline and spam web pages. For instance, 90% of

the benign pages had 12 unique words from Google Trends compared with 25–30 words in

both the borderline and spam pages. Furthermore, 90% of the benign web pages had 70

Fig 4. Distribution of the URL categories in the data set.

doi:10.1371/journal.pone.0164383.g004
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Fig 5. Distribution of positive and negative URLs for different manually labeled categories.

doi:10.1371/journal.pone.0164383.g005
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repeated words from Google Trends compared with 170–230 words in both the borderline

and spam web pages. Features 6 and 7 were actually critical for distinguishing between spam

and borderline URLs. In almost 50% of cases, the borderline and spam web pages differed

from each other by 50–60 words (see Fig 7D). We also calculated the PDF for the same fea-

tures, as shown in Fig 8.

Fig 9A shows that 6% of the spam pages had one hidden iframe, whereas this was the case

for only 2% of the borderline and benign pages. It should be noted that although some detec-

tion features might not prove useful in isolation, employing multiple features for detection

could result in better detection performance when distinguishing between benign and spam

pages because these features may complement each other (see Fig 9B and 9C).

Fig 6. System sequence diagram.

doi:10.1371/journal.pone.0164383.g006
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Table 6. Descriptions of the detection features.

Feature

No.

Feature Name Description Return

value

Time

comp.

1 Hidden iframes Number of inline frames used to embed other documents within the current HTML document Integer O(n)

2 Number links Number of hyperlinks Integer O(n)

3 Doorway pages Indicates whether the page redirects visitors without their knowledge Boolean O(n)

4 Meta refresh Indicates whether the page contains meta-refresh, which is used to automatically refresh the

page after a given time interval and redirect it

Boolean O(n)

5 Meta tag Number of meta tags comprising part of the page’s header and that provide metadata about the

page

Integer O(n)

6 Word_Stuffing_n Number of unique words from Google Trends in the page Integer O(n2)

7 Word_Stuffing_r Number of repeated words from Google Trends in the page Integer O(n2)

doi:10.1371/journal.pone.0164383.t006

Fig 7. Cumulative distribution function (CDF) for features 2, 5, 6, and 7 in the spam, borderline, and non-spam categories.

doi:10.1371/journal.pone.0164383.g007
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Fig 10 shows the PDFs for some selected combinations of detection features where the dif-

ference between non-spam and spam pages was significant. In Fig 10A, we note that there is

one obvious peak where the PDF for the non-spam pages was much greater than that for the

spam pages (the x-axis represents feature F2 and the y-axis represents feature F5, as in Table 6;

the non-spam class is shown in red and the spam class in green). Fig 10B shows the delta values

(i.e., |Pn − Ps|(F2, F5)). Similarly, in Fig 10C, when the values of features F2 and F6 were rela-

tively small, there was a clear peak where the PDF for the non-spam pages was greater than

that for the spam pages. Fig 10D shows the delta values (i.e., |Pn − Ps|(F2, F6)). Similar observa-

tions can be made based on Fig 10E and 10F.

Fig 8. Probability density function (PDF) for features 2, 5, 6, and 7 in the spam, borderline, and non-spam categories.

doi:10.1371/journal.pone.0164383.g008
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6 Classification and Evaluation

We tested four machine learning algorithms by using multiple variations to build our classifier,

as follows. First, we tested decision trees (C4.5, logistic model tree, random forest, and Logit-

Boost). Second, we tested Bayes Network, which is a probabilistic graphical model that repre-

sents the relationships and conditional dependencies between a set of random variables using

a graphical model. Third, we tested a support vector machine (SVM), a statistical-based algo-

rithm that separates classification classes using a set of hyperplanes. Fourth, we tested a multi-

layer neural network, which comprises a set of interconnected processing units (the weights of

these interconnections are calibrated during the training phase to obtain the required

knowledge).

Understanding the similarity between spam and borderline web pages is important for the

prior training of classification models (see Section 5). To build our classifiers, we considered

the following scenarios: (i) two-class classification with only two classes: class 1 for spam and

borderline web pages, and class 2 for benign pages; and (ii) three-class classification where we

had three classes: spam pages, borderline pages, and benign pages.

The classifiers were configured using Weka (version 3.7.6) for both scenarios [39]. The

parameters settings for the three algorithms are shown in Table 7. We performed 10-fold

cross-validations for each of the classifiers by using a subset of the observations to establish the

classifier and to identify whether the classifier correctly flagged the eliminated observations.

To address the overfitting problem for the decision tree classifier, we utilized a pruning tech-
nique to reduce the size of the tree by eliminating tree nodes with low significance for classify-

ing instances. Pruning techniques are used for reducing the complexity of classifiers, which in

turn helps to reduce the time required to execute the classifier in the browser plug-in. For the

other classifiers, a validation threshold was used to stop the training process when the algo-

rithm detected overfitting and misclassification increased in the validation set. In order to deal

with an imbalanced data set, we used the Synthetic Minority Oversampling Technique

(SMOTE), which is an oversampling technique for the minority in an imbalanced data set

based on the use of “synthetic” examples. The letter “S” is used at the end of the abbreviations

in the tables to indicate whether SMOTE was applied to the data set or not.

The results obtained after training the classifier in the three-class scenario are shown in

Table 8, which demonstrate that decision trees performed the best, followed by the Bayesian

network, multilayer neural network, and SVM classifiers. In particular, the random forest

(RFT-S) decision tree scores were better than those produce by all of the other algorithms,

with the highest precision (value of 84%), F-measure (value of 84%), and ROC (value of 95%)

Fig 9. Distributions of features 1, 3, and 4 in the spam, borderline, and non-spam categories.

doi:10.1371/journal.pone.0164383.g009
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Fig 10. Probability density functions Pn and Ps for different combinations of features, where n denotes non-spam pages (in

red) and s denotes spam pages (in green).

doi:10.1371/journal.pone.0164383.g010
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scores. The LMT-S decision tree scores were second best with precision and F-measure values

of 79%, and ROC = 89%.

However, we note that the detection accuracy was relatively low due partly to two main

causes: (1) the URLs in the spam and borderline classes (27% of the data set) were actually sim-

ilar; and (2) the fact that spammers use clever tactics to evade detection by Google Penguin.

For mitigation purposes, we only established the classification models for the two-class sce-

nario. Table 9 shows that the performance of decision tree was better than that of the other

classifiers (particularly the RFT-S algorithm where DR = 87% and ROC = 93%). Similarly, the

BayesNet-S classifier was ranked second, where DR = 86% and ROC = 93%, followed by the

multilayer neural network and SVM classifiers.

Tables 10 and 11 show the confusion matrices (i.e., error matrix) for the three-class and

two-class classifiers, respectively. In each confusion matrix, the first row represents the actual

class and the second row represents the predicted class or that classified by a given classifier.

Thus, for the RFT-S algorithm, the number of correctly detected spam instances (i.e., TPs) was

87, the number of spam instances mistakenly flagged as borderline was seven, and the number

Table 7. Parameters used in the decision tree, Bayesian network, support vector machine (SVM), and multilayer neural network methods (see Part

II of the WEKA Manual for descriptions of the various algorithms used in our study [40]).

Parameter Classification Model

Decision Tree Bayesian

Network

SVM Multilayer Neural

Network

Training Tool Weka 3.7.6

Algorithm J48

(C4.5)

Logistic Model

Tree

Random

Forest

LogitBoost Bayesian

Network

SMO (SVM) Multilayer perceptron

trained with gradient

descent method

(MLP-GD)

Abbreviation J48 LMT RFT LBT BayesNet SMO-P SMO-R MLP-GD10 MLP-GD20

Classifier Decision

stump

Simple estimator

Search Algorithm Simulated

annealing

Gradient descent

Confidence Factor 0.25

Number of trees 10

Maximum depth 1

Minimum number of

instances per leaf

2

Pruning Yes

Validation technique Cross-validation with 10 folds

Training time 500 epochs

Learning rate 0.3

Momentum 0.2

Data normalization Yes Yes

Number of hidden layers 1

Neurons in the hidden layer 10 20

Activation function sigmoid

Validation threshold 20

Complexity parameter (c) 1

Kernel function Poly. RBF

Balancing approach Synthetic Minority Oversampling TEchnique (SMOTE)

others kept as default

doi:10.1371/journal.pone.0164383.t007
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of spam instances mistakenly flagged as non-spam was five. Similarly, the number of correctly

detected non-spam instances (i.e., true negatives) was 85, the number of non-spam instances

mistakenly flagged as borderline was nine, and the number of non-spam instances mistakenly

flagged as spam was five.

7 Further Discussion

In this study, we used two public data sets (see Section 2) to show that spammers who target

different languages behave differently and develop their own new tactics to influence the

results obtained by search engine ranking algorithms. In fact, this issue has been recognized by

search engine companies and they are considering the development of ranking algorithms that

are global and language-independent as far as possible in their new releases.

Table 9. Classification accuracy for two classes.

Algorithm Performance Measurement Indices—Two Classes

DR ER TP FP Precision Recall F-measure ROC

Spam Non-spam Spam Non-spam Spam Non-spam Spam Non-spam Spam Non-spam Spam Non-spam

J48 84.00 16.01 0.61 0.93 0.07 0.39 0.77 0.86 0.61 0.93 0.68 0.89 0.86 0.86

0.84 0.30 0.84 0.84 0.83 0.86

J48-S 84.30 15.70 0.85 0.84 0.16 0.15 0.84 0.85 0.85 0.84 0.84 0.84 0.89 0.89

0.84 0.16 0.84 0.84 0.84 0.89

LMT 83.65 16.35 0.61 0.93 0.07 0.40 0.61 0.86 0.61 0.93 0.67 0.89 0.86 0.86

0.84 0.31 0.83 0.84 0.83 0.86

LMT-S 84.60 15.40 0.85 0.84 0.16 0.15 0.84 0.85 0.85 0.84 0.85 0.85 0.89 0.89

0.85 0.15 0.85 0.85 0.85 0.89

RFT 83.41 16.59 0.69 0.89 0.11 0.31 0.71 0.88 0.69 0.89 0.70 0.89 0.87 0.87

0.83 0.26 0.83 0.83 0.83 0.87

RFT-S 87.13 12.87 0.89 0.85 0.15 0.11 0.86 0.89 0.89 0.85 0.87 0.87 0.93 0.93

0.87 0.13 0.87 0.87 0.87 0.93

LBT 82.57 17.43 0.59 0.92 0.08 0.41 0.73 0.85 0.59 0.92 0.65 0.88 0.87 0.87

0.83 0.32 0.82 0.83 0.82 0.87

LBT-S 80.61 19.39 0.81 0.80 0.20 0.19 0.81 0.81 0.81 0.80 0.81 0.81 0.87 0.87

0.81 0.19 0.81 0.81 0.81 0.87

BayesNet 83.35 16.65 0.63 0.91 0.09 0.38 0.74 0.86 0.63 0.91 0.68 0.89 0.87 0.87

0.83 0.30 0.83 0.83 0.83 0.87

BayesNet-S 86.69 13.31 0.83 0.91 0.09 0.18 0.9 0.84 0.83 0.91 0.86 0.87 0.93 0.93

0.87 0.13 0.87 0.87 0.87 0.93

SMO-P 80.97 19.03 0.42 0.96 0.04 0.58 0.80 0.81 0.42 0.96 0.55 0.88 0.69 0.69

0.81 0.43 0.81 0.81 0.79 0.69

SMO-P-S 76.60 23.40 0.71 0.82 0.18 0.29 0.80 0.74 0.71 0.82 0.75 0.78 0.77 0.77

0.77 0.23 0.77 0.77 0.77 0.77

MLP-GD10 82.39 17.61 0.67 0.88 0.12 0.33 0.69 0.88 0.67 0.88 0.68 0.88 0.86 0.86

0.82 0.27 0.82 0.82 0.82 0.86

MLP-GD10-

S

79.93 20.07 0.77 0.83 0.17 0.23 0.82 0.78 0.77 0.83 0.79 0.81 0.87 0.87

0.80 0.20 0.80 0.80 0.80 0.87

MLP-GD20 82.65 17.35 0.68 0.88 0.12 0.32 0.69 0.88 0.68 0.88 0.69 0.88 0.86 0.86

0.83 0.26 0.83 0.83 0.83 0.86

MLP-GD20-

S

80.25 19.75 0.77 0.83 0.17 0.23 0.82 0.79 0.77 0.83 0.80 0.81 0.87 0.87

0.80 0.20 0.80 0.80 0.80 0.87

doi:10.1371/journal.pone.0164383.t009
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In most web spam data sets, however, search engine ranking algorithms were not consid-

ered when the data sets were constructed. In this study, we constructed a new data set to

address this issue (see Section 3). Our data set was carefully selected to contain highly ranked

Web pages according to the Google Penguin ranking algorithm. However, this data set led to a

concern about the effectiveness of the Google anti-spamming algorithm against spam pages

containing Arabic content as well as other non-English languages. In particular, when the data

set was examined using six security scanners, the results showed that a significant number of

Table 10. Confusion matrix for three-class classifiers.

Classes Spam Borderline Non-spam

Classified as Spam Borderline Non-spam Spam Borderline Non-spam Spam Borderline Non-spam

Algorithms J48 34.55 24.81 40.64 12.3 42.1 45.6 2.22 4.86 92.92

J48-S 78.47 14.19 7.34 15.84 71.60 12.56 6.02 9.05 84.93

LMT 29.22 28.01 42.77 9.96 42.55 47.49 1.39 4.19 94.42

LMT-S 78.34 14.21 7.45 14.56 73.16 12.28 6.11 8.88 85.01

RFT 42.92 24.05 33.03 12.57 48.74 38.69 2.72 6.69 90.59

RFT-S 87.31 7.65 5.04 11.54 79.48 8.98 5.74 9.18 85.08

LBT 26.64 32.57 40.79 9.43 46.49 44.08 1.24 5.41 93.35

LBT-S 49.07 41.2 9.73 21.78 63.11 15.11 8.3 16.36 75.34

BayesNet 24.2 30.75 45.05 8.17 45.51 46.32 1.02 4.89 94.09

BayesNet-S 70.56 20.12 9.32 26.97 58.97 14.06 2.72 3.84 93.44

SMO-P 0.46 14.61 84.93 0.18 22.62 77.2 0.02 1.15 98.83

SMO-P-S 17.38 57.89 24.73 5.09 66.26 28.65 3.13 16.92 79.95

MLP-GD10 21.46 40.64 37.9 7.99 49.01 43 1.26 6.13 92.61

MLP-GD10-S 55.93 30.92 13.15 33.34 48.79 17.87 11.56 12.71 75.73

MLP-GD20 22.07 38.51 39.42 9.16 47.57 43.27 1.28 5.93 92.79

MLP-GD20-S 53.97 32.64 13.39 30.54 51.57 17.89 8.78 14.55 76.67

doi:10.1371/journal.pone.0164383.t010

Table 11. Confusion matrix for two-class classifiers.

Classes Spam Non-spam

Classified as Spam Non-spam Spam Non-spam

Algorithms J48 60.59 39.41 7.00 93.00

J48-S 84.77 15.23 16.17 83.93

LMT 60.47 39.53 7.43 92.57

LMT-S 85.43 14.57 16.23 83.77

RFT 68.83 31.17 10.97 89.03

RFT-S 89.16 10.84 14.91 85.09

LBT 58.84 41.16 8.30 91.70

LBT-S 80.82 19.18 19.60 80.40

BayesNet 62.51 37.49 8.63 91.37

BayesNet-S 82.54 17.46 91.15 90.85

SMO-P 42.07 57.93 4.06 95.94

SMO-P-S 71.09 28.91 17.88 82.12

MLP-GD10 67.19 32.81 11.76 88.24

MLP-GD10-S 76.63 23.37 16.78 83.22

MLP-GD20 68.32 31.68 11.84 88.16

MLP-GD20-S 77.41 22.59 16.91 83.09

doi:10.1371/journal.pone.0164383.t011
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these sites contained malicious contents, thereby indicating that Google search only removed

some of the reported malicious sites determined by the Web scanners of other anti-virus ven-

dors. Several of these pages were found to also contain Web spam content.

In a further study (see Sections 5 and 6), we explored the effectiveness of multiple detection

features using our data set and we evaluated different classifiers. Despite that some of our clas-

sifiers obtained a detection rate of 87%, which might be lower than previous reported detection

rates in other studies, we demonstrated that spammers employ clever techniques to avoid

being detected by Google Penguin. We also confirmed the need to build more representative

and realistic data sets that are suitable to the context of the outputs obtained by search engines.

8 Related Work

Numerous previous studies have investigated the prevalence of web spam and various detec-

tion techniques have been proposed using different approaches. Gyongyi and Garcia-Molina

proposed a web spam taxonomy after the web spam problem emerged in the early 2000s [2].

Heymann et al. were the first to survey the detection, demotion, and prevention of web spam

[41]. Recent surveys of existing spam detection techniques and mechanisms have analyzed

their advantages and disadvantages (e.g., [42] and [43]). It should be noted that spam and auto-

mated accounts in social networks have also contributed to the prevalence of web spam (e.g.,

see [44–48]). The detection features used for web spam in previous studies belong to two cate-

gories: (1) those that exploit topology and network-related data; and (2) those that exploit the

web page content.

Gyongyi et al. [1] proposed an algorithm for identifying pages that are likely to be spam and

those that are likely to be reputable (also see [49] and [50] for improved versions of the algo-

rithm). Fetterly et al. [51] utilized statistical analysis to show that there are outliers in the statis-

tical distribution of the linkage structure, page content, and page evolution properties in spam

pages compared with benign web pages. Wu et al. [52] proposed some alternative methods for

propagating trust on the web and utilized distrust to demote web spam. In addition, Castillo

et al. [53] built a machine learning classifier that utilizes both link-based and content-based

detection features, which obtained TP = 88.4% and FP = 6.3%. Svore et al. [33] built a classifier

to identify web spam pages by training a SVM classifier based on a selected set of page

attributes.

Ntoulas et al. [15] proposed a C4.5 decision tree classifier, which could detect 86.2% of the

spam pages examined. Becchetti et al. [37] explored the best combinations of spam detection

features and selected classifiers that achieved high precision (DR = 80.4%) using a small set of

features. Furthermore, Abernethy et al. [54] proposed a machine learning classifier that

employs a variety of SVM for detecting web spam using both the page content and hyperlinks.

Similarly, Becchetti et al. [55] proposed a link-based technique for detecting web spam pages

by using a damping function for rank propagation and an approximate counting technique.

By exploiting textual and extra-textual features in HTML source code, Urvoy et al. [56] investi-

gated multiple HTML style similarity measures and proposed a flexible clustering algorithm

for identifying web spam pages. In addition, Gan and Suel [57] proposed a classifier that uses

the decision tree C4.5 algorithm and many detection features, including content-based and

link-based, which obtained precision of around 88%. Webb et al. [58] identified a relationship

between email and web spam, which they utilized to identify web spam. They also employed

their method to collect a web spam corpus. Lee et al. [59] proposed a simplified swarm optimi-

zation method to solve the complexity problem that affects statistical classification and

machine learning approaches, which increases when there are a large number of web spam

detection features.
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Previous studies also considered linguistic-based detection features and evaluated their

effectiveness at web spam classification (e.g., [36, 60]). However, to the best of our knowledge,

no previous studies have investigated the advantages of using linguistic-based features to

improve web spam detection in a particular language.

9 Conclusion and Future Work

Google continues to improve their Penguin algorithm, but web spammers are also developing

creative evasion mechanisms to increase their web page ranks with the aim of attracting more

users. In fact, we consider that web spam will remain a good method for both phishing attacks

and malware spreading. In this study, we showed that Google anti-spamming methods are

actually ineffective against web spam pages that contain non-English content, which raises a

concern that the insufficient testing of pages with non-English content could potentially

encourage spammers to target these pages.

As an illustrative example, we developed and tested a classifier in the form of a browser

anti-spam plug-in for detecting Arabic spam pages, and we showed that our classifier captured

most of the web spam pages not detected by the Penguin algorithm. We also created a labeled

Arabic web spam data set to evaluate our classifier and to encourage other researchers to build

upon our work.

In future work, we plan to extend our web spam data set, create similar data sets for other

languages, and develop custom classifiers for these languages. Spammers and Google search

engine developers are continually improving their techniques to defeat each other, so future

experimental studies are important for understanding new trends and directions. In recent

years, large-scale spamming campaigns using compromised Web sites have been performed to

corrupt search engine results. These spamming campaigns are an emerging trend that needs to

be investigated. Using Google Penguin as a benchmark, our illustrative example shows that

language-based web spam classifiers are more effective at capturing spam content. We con-

sider that the web spam problem requires a continuous effort from search engines as well as

developers and webmasters based on appropriate vetting of their sites, and end-users should

also report spam content.
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