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Abstract

We analyzed six apiaries in several natural environments with a Mediterranean ecosystem
in Madrid, central Spain, in order to understand how landscape and management charac-
teristics may influence apiary health and bee production in the long term. We focused on
five criteria (habitat quality, landscape heterogeneity, climate, management and health), as
well as 30 subcriteria, and we used the analytic hierarchy process (AHP) to rank them
according to relevance. Habitat quality proved to have the highest relevance, followed by
beehive management. Within habitat quality, the following subcriteria proved to be most rel-
evant: orographic diversity, elevation range and important plant species located 1.5 km
from the apiary. The most important subcriteria under beehive management were honey
production, movement of the apiary to a location with a higher altitude and wax renewal.
Temperature was the most important subcriterion under climate, while pathogen and Var-
roa loads were the most significant under health. Two of the six apiaries showed the best
values in the AHP analysis and showed annual honey production of 70 and 28 kg/colony.
This high productivity was due primarily to high elevation range and high orographic diver-
sity, which favored high habitat quality. In addition, one of these apiaries showed the best
value for beehive management, while the other showed the best value for health, reflected
in the low pathogen load and low average number of viruses. These results highlight the
importance of environmental factors and good sanitary practices to maximize apiary health
and honey productivity.

Introduction

Recent considerations about possible environmental factors contributing to the global decline
in bee populations have implicated an array of causes, among which pests, pathogens, pesti-
cides, nutrition and management have become the most important [1-4]. Poor nutrition
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strongly influences honey bee immunocompetence [5] and therefore longevity, physiology and
resistance or tolerance to disease [6]. Long-term consumption of a polyfloral diet can safeguard
colony survival [7,8] and help bees remain healthy despite the numerous stresses to which they
are exposed, including pest treatments, transport, honey extraction, loss of honey reserves in
the colony, wax re-use, pollination in monocultures, presence of nearby apiaries, and over-
crowding in the apiary. Adding to these stresses is the likelihood of spatiotemporal shortages of
nutrients due to low food availability, nutrient deficiency in diet, low species richness, shorten-
ing of flowering time due to climate conditions, loss of habitat, land cover changes, agricultural
intensification and lack of pollen and nectar resources [3]. Land-use change, in particular, has
caused extensive loss of nutritional resources in the landscape, making it a major contributor
to the global decline in honey bee populations [4, 9, 10].

Pathogens may also play a central role in honey bee population decline. Viruses are preva-
lent in apiaries around the world, and in some cases they have been associated with colony
mortality [11-16]. However, some pathogens associated with colony mortality, such as bee
viruses, usually persist in colonies at a low level in balance with the host without causing appar-
ent symptoms in the individual or the colony, often referred to as ‘covert’ infection. Under cer-
tain conditions, viral replication is activated and the infection can become ‘overt, leading to
obvious symptoms [17]. This is true also of non-viral pathogens. Nosema ceranae, a gut micro-
sporidium associated with colony collapse [18], has been observed in healthy colonies in
asymptomatic infections [19]. It appears that the regenerative ability of the host digestive epi-
thelium supports a certain level of N. ceranae multiplication, and that when the balance
between pathogen and host is lost, symptoms can become overt. Monitoring these pathogens
may serve as an indicator of colony health status and may predict colony strength and colony
collapse [20-22].

Some factors inside and outside the colony can create a situation of stress. These factors can
play a key role in maintaining or disturbing the pathogen-host balance and therefore triggering
the passage from covert to overt infection. One of these factors is Varroa destructor infection;
this pathogen harms individual bees by feeding on their hemolymph, and it harms the colony
by vectoring several bee viruses and by triggering immunosuppression [23, 24]. Poor nutrition
can increase colony susceptibility to bee viruses, as shown in a study of caged bees with
increased levels of deformed wing virus (DWV) [25], and it can reduce colony tolerance to N.
ceranae [6]. Other important stressors are those related to the exposure of colonies to phytosa-
nitary treatments. Wax is an organic matrix that accumulates the residues from both internal
treatments to control Varroa and from external pesticides brought into the colony as a result of
foraging [26-28]. Pesticides can deplete the immune system [29, 30] allowing pathogens to rep-
licate and have a negative effect in the colony (reviewed in [31]). For example, pesticide expo-
sure has been associated with increased levels of N. ceranae [32] and with immunosuppression
that promotes viral replication [29]. Adverse climate conditions can strongly influence honey
bee activity and resistance to pathogens [33]. In addition, temperature influences the Nosema
biological cycle [34]; the greater temperature resistance of N. ceranae compared to N. apis may
facilitate its persistence in honey bee colonies around the world.

The complex multifactorial processes contributing to bee health and production are difficult
to integrate in a model that would allow us to understand how factors related to the environ-
ment, production management and health, as well as their interactions, influence the produc-
tivity of a given apiary in the medium or long term. In order to accomplish this, the many
relevant factors should be weighted based on relevance and combined appropriately into inte-
grated indicators. In the present study we analyzed six apiaries in different Mediterranean envi-
ronments using geographic information systems (GIS) and a multi-criteria decision analysis
MCDA (analytic hierarchy process (AHP)) to identify the landscape and management factors
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most relevant to apiary health and bee production in the long term, allowing comparisons
among all factors. GIS is useful to analyze spatial data, map relevant habitat features and find-
ing areas where combinations of these features may worsen the conditions for the species of
interest [35].

Material and Methods
Study area

Six apiaries of Apis mellifera iberiensis, a non-endangered nor protected bee species, dedicated
to honey production were studied (numbered 1-6). The apiaries were located in the northeast
part of the Community of Madrid (Fig 1).

These apiaries were selected to represent a range of environments in order to capture natu-
ral variations in honey bee survival. Apiaries 1, 2, 4 and 6 were static, remaining in the same
location all year round. Apiaries 3 and 5 were transhumant, changing from one location (3a,
5a) to another at a higher altitude (3b, 5b) to take advantage of different nutritional resources
in late spring. Permission to visit the apiaries, record data and take samples was obtained
directly from beekeepers and no specific permits from public authorities were required to
perform these activities. GPS coordinates were recorded for each apiary location under confi-
dentiality agreement, so location information is publicly available only at the municipality level
(Fig 1).

Factors analyzed

We considered 29 factors to characterize apiaries, belonging to five different categories: a) habi-
tat quality, b) landscape heterogeneity, c) weather conditions, d) beehive management and e)
health.

a) Characterization of habitat quality. Habitat quality was assessed over a 7.06 km® terri-
tory extending to a radius of 1,500 m around each apiary based on GPS coordinates.

Habitat quality was assessed in terms of 9 factors: Number of land cover types (H1); Num-
ber of important vegetable species for bees (H2); Harvestable area unfragmented by infrastruc-
tures (H3); Distance to permanent watercourses (H4); Distance to roads (H5); Distance to
power lines and antennas (H6); Elevation range (H7); Orographic diversity (slope surface)
(H8) and Crop surface (H9). These factors were defined through a literature review, surveys to
beekeepers and maps of the study area: the forestry map of the Community of Madrid [36] and
the topographical map of Spain [37] using GIS tools (ArcGIS 10, ESRI). GIS was used to visual-
ize data and to develop a spatial analysis of each study area.

In the case of habitat quality we collected supplementary information about 9 additional
apiaries, also located in the Community of Madrid, to obtain a more precise calculation of the
habitat quality factors. The factor concerning to number of land cover types (H1) was evaluated
using the forestry map, that describes 81 land cover types, 74 of which correspond to land
cover vegetation (birches, oaks, heathers, kermes oaks, junipers, beeches and conifers, among
others). It was felt that more than 10 land cover types was the best situation for this factor.
Therefore, the number of important vegetable species for bees in the study area (H2) was iden-
tified through an exhaustive literature search (floristic catalogues [38] among others), field
work, surveys to beekeepers and spatial visualization using the forestry map [35]. Composition
of each species (i. e. crude protein (%), lipids and nutritional value, among others) was used in
order to classify factor H3. It was considered that the availability of > 12 important vegetable
species presented in each area supposed the most favorable condition for bees (S1 Table).

As for fragmentation of the study area by infrastructures (H3), the absence of major roads,
industrial estates, large bodies of water or urban areas around the study area was considered
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Fig 1. Location of apiaries in the study area and land cover types.
doi:10.1371/journal.pone.0164205.9001

the best situation. Also, considering the distance to rivers and streams (H4), apiaries closed to
those (< 50 m) were considered the best areas for bees (S1 Table).

Regarding distance to roads (H5) and distance to power lines and antennas (H6), the
absence of primary and secondary roads and high and low voltage lines, repeater and antennas
whitin 1500 m of each apiary were considered the best situations (S1 Table). Both factors were
evaluated through the topographical map.

Elevation range (H7) was calculated through the topographical map [37], considering the
contour lines around each apiary and evaluating the maximum and minimum elevations in
each area. The difference between both elevations was used to calculate the elevation range (S1
Table). The higher elevation range in all the studied areas (540 m) was regarded as the most
favorable condition for bees.

Orographic diversity (H8) was calculated as the slope surface through the contour lines.
Slope ranges were defined in each study area, considering slopes < 5° as the worst value and
slopes above to 10° is the best situation. Finally, crop surface (H9) was evaluated using the for-
estry map. The absence of crop surface was considered the best situation for this factor (S1 and
S2 Tables).

Data obtained were normalized to convert heterogeneous factors based on various measure-
ment scales to a common scale. The min-max normalizer linearly rescales every factor to the
[0,1] interval. The values were transformed using the following formula: [x- min (x)]/[max (x)-
min(x)], providing a theoretical value for each apiary. In the case of the non-static apiaries (3
(3a, 3b) and 5 (5a, 5b)), the average of the normalized values obtained became the single value
for each apiary.

b) Characterization of landscape heterogeneity. Suitability of landscape composition
and configuration were assessed using the following factors: Total edge (L1), Mean patch size
(L2), Number of patches (L3) and Patch size standard deviation (L4). These factors were stud-
ied through landscape structural analysis as described [39] using the ArcGIS extension "Patch
Analyst" over an area of 7,06 km” extending to a radius of 1,5 km around each apiary with the
forestry map of the Community of Madrid [36]. Total edge (L1) refers to the sum of perimeters

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 4/18



@° PLOS | ONE

Critical Factors Affecting Bee Production

of all patches within the total area. Mean patch size (L2) refers to all patches within the total
area. Number of patches (L3) refers to total number of patches in the studied area. Patch size
standard deviation (L4) refers to the patch size variability. High values of each factor indicate
optimal situation for an apiary (S3 Table).

Data obtained were normalized to convert heterogeneous factors based on various measure-
ment scales to a common scale. The values were transformed using the normalized min-max,
and rescaled the [0, 1] interval.

¢) Characterization of weather conditions. A literature review was carried out to establish
the influence of temperature, precipitations and wind speed over the bee activity [40-50] (54
Table). In addition, climatic data were collected from April 1 to October 31,2014 (214 days) at
four meteorological stations belonging to the Spanish Meteorological Agency [51]. Climate
data from the nearest meteorological station were taken into account for each apiary. The sta-
tions were located less than 25 km away from the apiaries at an altitude within 100 m of the
apiaries. Given these data collected, 3 factors were assessed: average maximum temperature for
each month (C1), number of days with a wind speed higher than 30 km? (C2) and number of
consecutive days without precipitation (C3). These values were also normalized.

d) Characterization beehive management. Information about apiary characteristics and
beehive management was collected through surveys of beekeepers at the apiaries (S5 and S6
Tables). Data were codified in nine factors: honey production (M1), type of honey (M2), treat-
ment used against Varroa (M3), number of treatments (M4), risk of treatment (M5), renewal
of wax (M6), origin of wax (M7), movement of the apiary to another location (M8) and pres-
ence of extensive livestock in the natural area (M9). The best and the worst situation of each
factor were determined and then ranges were defined. Annual honey production (M1) across
the six apiaries ranged from 15 kg/colony to 70 kg/colony. This last value is considered an
excellent production.

In addition, we considered other characteristics to define the best situation for apiaries, 1. e.
a greater number of honey produced types (M2), the use of ethereal oils or organic acids
against varroa instead of pesticides (M3) or a reduced number of pesticide treatments through-
out the year (M4) (S5 Table).

Also, the hazard posed by anti- Varroa treatments (M5) was assessed by taking into account
the bee-toxicity data, degradation products and their ability to accumulate in beeswax of the
treatment agents used as well as the frequency of wax renewal. Toxicity data on the main active
substances were taken from the Ecotox Database of the US Environmental Protection Agency,
the Hazardous Substance Data Bank (TOXNET database) and the research literature. The lipo-
philic capacity of the substances was used to determine their potential to accumulate in bees-
wax. Each parameter was assigned a score from 0 to 3 (S6 Table). The higher the score was, the
more likely it was that the substance would accumulate in wax. An adequate wax renewal (M6)
was defined as wax change in all frames of every hive every 2-3 years.

In addition, a high wax quality (light colour) with an adequate origin (i.e. traceable, good
manufacturing practices, etc.) (M7), a move of the apiary to take advantage of nutritional
resources (M8) and absence of extensive livestock in the surroundings of the apiary (M9) were
considered excellent conditions (S5 Table).

Results were also normalized.

e) Characterization of health. Processing and molecular analysis of honey bee samples.
The study period was from May to November 2014. Honey bees were collected from each api-
ary twice during the beekeeping season: May-June 2014, referred to hereafter as “spring-sum-
mer sampling”; and August-September 2014, referred to as “summer-autumn sampling”

During sampling, adult bees (foragers) and brood were taken from each colony, refrigerated
during transport and frozen at -80°C. Ten whole bees or brood (larvae and pupae) were
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homogenized separately in 2 ml PBS (pH 7.2) using a mortar and pestle. Adult and brood
samples from each colony were analyzed for the presence and load of six viruses and one
microsporidium (collectively referred to hereafter as “pathogens”) by amplification of patho-
gen-specific nucleic acid, followed by absolute quantification. The following pathogens were
analyzed: acute bee paralysis virus (ABPV), Israeli acute paralysis virus (IAPV), Kashmir bee
virus (KBV), sacbrood bee virus (SBV), deformed wing virus (DWV), black queen cell virus
(BQCV) and N. ceranae. Viral RNA was extracted from 150 ul of homogenate using the RNA
IT kit (Macherey-Nagel) according to the manufacturer’s instructions. N. ceranae DNA was
extracted by crushing frozen pellets of the homogenates and using the DNA Isolation kit
(Roche) according to the manufacturer’s instructions. Quantitative polymerase chain reaction
(qPCR) with or without prior reverse transcription (RT) were carried out using SYBR Green
dye, primers and PCR conditions previously described [52-56].

During both samplings, each colony was carefully inspected for the presence of Varroa
destructor by opening a small piece of the brood comb and searching for the presence of the
mite. Though we were unable to collect data on Varroa load at the start of the study period,
beekeepers at all apiaries indicated that colonies co-existed with the mite. Varroa was quanti-
fied in at least five colonies per apiary in October-November 2014 using the quantification-
after-treatment method [57].

Pathogen presence and load were used as indicators of colony health status. Specifically,
three factors related to N. ceranae and viruses were evaluated in each apiary during both sam-
plings: pathogen load (Hel), pathogen frequency (He2) and pathogen coinfection (He3). To
measure Hel, samples of adults and brood were analyzed separately for each colony. The
greater pathogen load was log;o-transformed and defined as the pathogen load for that colony
and pathogen. These pathogen loads were normalized and the mean value for all pathogens
was taken to be Hel for each apiary and sampling. He2 was calculated for each sampling by
averaging the frequencies of colonies per apiary that were positive for each pathogen. He3 was
calculated for each sampling by averaging the numbers of pathogens present in the same api-
ary. Colonies in which a pathogen was not detected in either adults or brood were considered
negative for that pathogen. In addition to these three pathogen-related factors, Varroa load
(He4) was also evaluated in each apiary during both samplings. He4 was calculated as the num-
ber of mites counted per colony after acaricide treatment.

Multi-criteria decision analysis: Analytic hierarchy process (AHP)

There are several decision processes to compare alternatives that are different in their potential
impact or outcome, to synthesize information: ad hoc decision-making, comparative risk
assessment (CRA) or multi-criteria decision analysis (MCDA), portfolio decision analysis
(PDA) among others [58, 59] can be useful to carry out this comparison.

MCDA establishes priorities among the actions or factors considered, based on a hierarchy
of objectives and criteria, each weighted, on the basis of value judgments and technical rele-
vance to fixed goals [35]. Complex MCDA methods are multi-attribute utility theory (MAUT),
multi-attribute value theory (MAVT) and analytic hierarchy process (AHP) [58].

Selecting an appropriate MCDA method depends on the context. It is based on whether or
not there are multiple objectives. Therefore, the method can be decided depending on the num-
ber of alternatives considered in the study. A compensatory method was developed in the pres-
ent study, since there were no multiple objectives and there was no large number of alternatives.
First, a criteria weighing method (AHP) was carried out to compare pair-wise criteria, and then
a compensatory aggregation method (weighted linear combination) was also carried out to nor-
malize criterion scores to enable comparison of performance on a common scale [35].
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AHP was used to perform multi-criteria decision analysis in order to categorize apiaries
from best to worst based on the values obtained for each of the measured factors. Normalized
values obtained in each evaluated factor were used to carry out AHP. A hierarchical diagram
was developed in which the target was on the first level, criteria on the second, sub-criteria on
the third, and finally the alternatives available for achieving the target. Criteria and sub-criteria
were defined based on the following factors: relative to Habitat quality (H1, H2, H3, H4, H5,
He6, H7, H8 and H9), relative to Landscape heterogeneity (L1, L2, L3 and L4), relative to Cli-
mate conditions (C1, C2 and C3), relative to Beehive management (M1, M2, M3, M4, M5, M6,
M7, M8 and M9) and relative to Health (Hel, He2, He3 and He4). The best alternative among
all possibilities (6 apiaries) was obtained.

Pair-wise comparisons were performed among factors on the same level. Values were
assigned to each factor relative to the other factors according to the following Likert scale: 1,
equally important; 3, moderately important; 5, strongly important; 7, very strongly important;
or 9, extremely important. Intermediate values (2, 4, 6, 8) were assigned in those cases where
the decision was doubtful. Judgment matrices were developed according to AHP principles
[60]. Subsequently, the same Likert scale was used to perform comparisons of the alternatives
with respect to each sub-criterion. Then, a weighted linear method was also carried out to nor-
malize criterion scores. A normalized matrix was obtained from each of the matrices, and pri-
ority vectors were estimated for each combination. These vectors were multiplied by each other
to obtain the priority vector of each alternative with respect to the target; this vector was
assigned a value between 0 and 1.

The consistency of judgments was checked after obtaining the final priority vector. To do
this, we calculated the Consistency Index (CI = (Apay-n) / (n-1)) and compared it with the Ran-
dom Consistency Index (RCI = CI/ IA).

Results and Discussion

The apiaries were located in the northeast part of Madrid, in a relatively intact natural Mediter-
ranean ecosystem comprised predominantly of oaks in open woods (Apiaries 1, 2, 3b) and
meadows (5). The ecosystem contained abundant pollen- and nectar-rich plants such as laven-
der, rockrose, thyme, rosemary, and heather. Apiaries 4 and 6 were located in humid and
shady areas with abundant oaks and ash groves. Apiary 3a was located in an area with Mediter-
ranean scrub and olive groves.

AHP was used to generate 35 matrices: 29 matrices of alternatives with respect to sub-crite-
ria, 5 matrices of sub-criteria with respect to criteria and 1 matrix of criteria with respect to the
target (Figs 2 and 3 and Table 1).

In this analysis, habitat quality emerged as the most important criterion for evaluating api-
aries (Table 1). Based on the priority vector obtained from each Alternative compared to the
Criteria, the most important subcriteria in the evaluation were Important vegetable species for
bees (H2), Orographic diversity (H8), Number of patches (L3), Temperature (C1), Honey pro-
duction (M1), Colony movement (M8), Varroa load (He4) and Pathogen load (Hel) (Fig 2).
Based on the priority vector obtained from each Alternative compared to the Objective, Apiary
6 obtained the highest quality value, followed by Apiaries 5 and 3 (Fig 3). All resulting matrices
were considered consistent because their RC values were lower than the maximal RC percent-
age (RC <0.10).

Habitat quality based on 9 factors was good at all the apiary locations (Table 1). Vegetation
was abundant at 6 of the 8 locations, and 7 apiaries were located within 300 m of watercourses.
On the other hand, 6 apiaries were also near roads. Three of the locations were below 300 m
above sea level, and 5 locations featured low orographic diversity, with <5 km? of surface area
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having a slope >5°. Infrastructures fragmented the territory at five locations (1, 4, 6, 3b, 5a).
These infrastructures, which in our study area included main roads, urban areas and large res-
ervoirs, divide habitats into smaller parcels, reducing the biodiversity and natural habitat avail-
able [4, 61-63].
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Fig 3. Results of the analytic hierarchy process (AHP).
doi:10.1371/journal.pone.0164205.9003
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Table 1. Development and results of the analytic hierarchy process (AHP).

Priority vector obtained from each Alternative (Apiaries) compared to the Priority vector obtained from
Criteria each Criterion compared to
the Objectives
Apiary | Habitat Landscape Climate | Management | Health Criteria
Quality Heterogeneity b b af o
. . riority vector obtained from eac
Al 0.07 0.09 0.10 0.08 0.14 X Habitat Quality 052 | _ Alternative (Apiaries) compared to the
A2 0.22 0.09 0.10 0.06 0.03 Landscape 0.04 Objectives
A3 0.09 0.19 0.42 0.27 0.27 Heterogeneity
A4 0.09 0.42 0.10 0.10 0.06 Climate 0.12
A5 0.19 0.10 0.25 0.37 0.11 Management 0.21
A6 0.31 0.09 0.03 0.09 0.38 Health 0.12

doi:10.1371/journal.pone.0164205.t001

AHP analysis assigned the lowest habitat quality (0.07) to Apiary 1. Several factors were
responsible: nearby presence of a built-up area, presence of power lines 690 m from the apiary,
and low elevation range (190 m). The low elevation range leads to homogeneous vegetation,
with a reduced number of patches (21), reflected in its low landscape heterogeneity (0.09) [64].
Greater elevation variability in an area means the possibility of a larger number of habitats [65,
66]. As a result, many studies have used elevation range as an indicator of landscape heteroge-
neity [67, 68]. Apiary 1 had an intermediate health value (0.14). The Hel value was 0.45 at
both samplings, though increases in the loads of N. ceranae and DWV were detected. In addi-
tion, He2 and He3 worsened from the first to second sampling. The increase of DWV load
following the Varroa trend along the period of study is in line with previous work [69, 70].
Depopulation and winter mortality has also been attributed to this Varroa-DWV interaction
[16, 20, 71], and we observed a slight increase in varroosis symptoms and a population reduc-
tion at the second sampling. Ascospherosis was observed in both samplings, which is probably
related to the stress produced by high Varroa loads [72, 73].

The location of Apiary 2 showed high habitat quality (0.22), likely reflecting the high num-
ber of important vegetable species for bees (H2), even though the low elevation range (240 m)
reduces the potential of vegetation succession. Indeed, like the location of Apiary A1, the loca-
tion of Apiary 2 showed a relatively small number of patches (30) and low landscape heteroge-
neity (0.09). The health value of location 2 (0.03) was the lowest of all apiaries, reflecting the
fact that Hel, He2 and He3 increased from the first to second sampling. This deterioration in
health status is consistent with a high Varroa load (mean of 1,319 mites per colony) and the
presence of varroosis symptoms and deformed wings in all colonies sampled at the second
sampling. The high Varroa load by itself may even explain the increased pathogen load, since
the mite can immunosuppress honey bees [23] as well as serve as a vector of bee viruses, espe-
cially DWYV, which replicates inside the mite [74, 75]. During the second sampling all colonies
studied presented DWV loads above 10° GEC/bee as well as overt symptomatology. These
characteristics may predispose the colony to collapse during overwintering [15, 16]. Another
factor contributing to the poor health state at Apiaries 1 and 2 may be climate: temperatures in
July 2014 were unusually warm (>35°C) and the summer featured long periods without pre-
cipitation (45 days). This may have shortened the period of bloom around Apiaries 1 and 2 at
these altitudes, which likely means that the bee populations did not have sufficient nutritional
resources and were therefore more susceptible to infection [4]. This may also explain why these
two apiaries showed the lowest annual honey production (15 kg/colony) of all six apiaries. Sev-
eral studies have established a relationship between poor weather conditions and poor honey
production [76, 77]. Another factor that may explain the poor health status at Apiaries 1 and 2
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is the pesticides used to control Varroa destructor. Apiary 1 used Checkmite (coumaphos) and
renewed wax every 2-3 years. In contrast, Apiary 2 alternated Apistan (t-fluvalinate) and Api-
var (amitraz), and did not renew wax annually. This likely favored the accumulation of these
compounds or their degradation products in the colonies, threatening bee health [78]. Several
studies indicate that exposure to sublethal concentrations of these compounds affects the bee
immune system [2, 79, 80].

In this way, habitat, climate and Varroa-related factors may help explain the deterioration
in health status and appearance of overt symptomatology in Apiaries 1 and 2. Indeed, Apiary 1
presented the lowest value of global quality (0.1). Interestingly, Apiary 2 presented the third
lowest value (0.14), perhaps reflecting its high habitat quality (0.22) (Table 1).

Apiaries 3 and 4 had relatively low habitat quality (0.09) with respect to the other apiaries
(Table 1). This likely reflects the lower orographic diversity and low elevation range (3a = 150
m; 4 = 190 m). In addition, an urbanized area next to Apiary 4 reduced the surface area of avail-
able resources for honey bee colonies. On the other hand, both locations had high landscape
heterogeneity. The location around Apiary 3a had numerous patches (80) featuring 9 land
cover types; 63 of the patches were patches of vegetation. The location around Apiary 4 also
had numerous patches (67), 62 of which were patches of vegetation. Thus, the success of Apiar-
ies 3a and 4 will likely depend on other factors such as climate and management.

Apiary 3 was moved to another location at a higher altitude (h = 1,055 m) in late spring as a
result of the changing weather. The second location (3b) provided a better natural environment
with a high elevation range (H7 = 490 m), absence of power lines and antennas (H6) and crops
in the vicinity (H9). On the other hand, this second location lay on the edge of a large water-
course, which reduced the useable area within the total of 7.06 km”. Even so, habitat quality
was higher than at the first location. Apiary 3 presented one of the highest health values in this
study (0.27), reflecting better values for Hel, He2 and He3, especially for N. ceranae, IAPV and
—in contrast to Apiaries 1 and 2—DWYV. The lower loads of DWV and IAPV may be related
to the low Varroa load [70, 81], as Apiary 3 presented the lowest He4 of all six apiaries (mean
of 126 mites per colony), and only one of ten colonies examined presented symptoms of var-
roosis in the second sampling. Other factors contributing to the high health status of Apiary 3
are the timely renewal of wax (all frames changed every 2-3 years), control of wax origin and
use of ecological anti- Varroa treatment (oxalic acid). This apiary was rated as an intermediate
alternative by AHP.

Apiary 4, located in a wooded area with high humidity and little sunshine, did not change
its location during the season. Its health value was lower at the second sampling (0.06) than the
first, and it ranked fifth at the end of the study period. This was probably because Hel wors-
ened, primarily because of increases in loads of SBV and DWYV, both of which are transmitted
by Varroa [70, 82]. Indeed, this apiary contained abundant Varroa (mean of 1067 mites per
colony) and showed symptoms in 8 of the 10 colonies studied. Ascospherosis was not observed,
even though the excessive humidity and cold temperatures at location 4 are expected to pro-
mote it as previously described [83, 84]. This may reflect efficient management, such as fre-
quent wax renewal, which still allowed high annual honey production (20 kg/colony).
Nevertheless, AHP ranked this apiary among the worst alternatives (0.11).

Like Apiary 3, Apiary 5 was moved to a new, more favorable location at a higher altitude
(1,150 m). As a result, the apiary was not exposed to the high temperatures (>35°C) and pro-
longed drought (>49 days without precipitation) that normally take place at the first location
during the summer months. Extreme weather events such as storms, floods, and droughts neg-
atively affect bees [4, 85, 86]. Changing the location of Apiary 5 also allowed the bees to take
advantage of the different flowering periods. Hel, He2 and He3 were lower at this second loca-
tion, which had a health value of 0.11, placing it second among the apiaries in this respect. On
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the other hand, He4 was high: a mean of 1,023 mites per colony were present and varroosis
symptoms were observedin 7 of the 9 colonies studied. It is possible that the anti- Varroa treat-
ment used at that apiary (thymol) was inefficient, leaving higher-than-expected residual load
of Varroa and associated viruses at the second sampling. The beekeeper at Apiary 5 controlled
wax origin and limited its re-use. The combination of good habitat quality at high altitude as
well as adequate management probably contributed to its excellent annual honey production
(70 kg/colony). AHP ranked this apiary as one of the best alternatives (0.22).

The harsh climate conditions at Apiary 6, located at an altitude of 1,220 m, were attenuated
by the humidity of a mountain stream close to the apiary and the surrounding oak forest con-
taining scrub, pine, blackberry bush, wild rose and riverside vegetation with ash trees. This
environment helped compensate for the scarce rainfall during the summer, which may help
explain why the apiary showed a good health value (0.38) with low values of Hel, He2 and
He3. He4 was also probably low, since symptoms of mite presence were observed in only two
of ten colonies during the second sampling, though mite abundance could not be quantified.
Even though three acaricides were used at Apiary 5 to control Varroa (coumaphos, amitraz
and t-fluvalinate), the apiary still showed a high health value, which together with high habitat
quality (0.31) and adequate wax replacement and traceability, probably favored good health
status, similar to the case of Apiary 5. Apiary 6 showed high annual honey production (28 kg/
colony) and was ranked by AHP in first place among the six apiaries analyzed.

A deterioration in health status from the first to second sampling was observed at the two
apiaries (1, 2) that were located throughout the year at altitudes <1,000 m with elevation
ranges of only 100-200 m. In contrast, health factors improved from the first to second sam-
pling when the apiary was located at higher altitude (Apiary 6, 1,220 m), or when the apiaries
were moved to higher altitudes (Apiaries 3 and 5, from 800 to 1,100 m). Altitude was probably
not the only explanation for the health improvement: locations around Apiaries 3b, 5 and 6
showed high environmental quality because of an elevation range of 450-490 m in the apiary
area, which favored diverse vegetation cover.

One of our main concerns was the number of apiaries included in the final analysis, as we
selected another 9 apiaries to have more reproducible results. However, we failed to obtain bee-
keepers’ permission to collect data about landscape heterogeneity, weather conditions, beehive
management and health, so only habitat factors could be studied. However, we think that our
results show important trends in the factors that should be prioritized in future studies. Our
analysis of these six apiaries suggests that the combination of poor habitat quality, inadequate
management, adverse climate conditions and health factors such as Varroa and pathogen loads
may be decisive for the survival of colonies. These factors likely exert their negative effects
mainly during summer-autumn, since most colony losses occur in winter [87-89]. Our results
are consistent with research identifying pathogen load in summer-autumn as a predictor of
winter losses [20] and colony strength [22]. Expert assessment of 39 possible causes of the
decline in commercial honey bee colonies in the California almond industry highlighted two
likely causes: the combination of Varroa mites and viruses, which reduce survival probability;
and nutrient deficiency, which can cause population decline at the colony level and which by
itself may be sufficient to explain large-scale colony collapse [90]. All apiaries in the present
study showed the co-presence of Varroa and multiple viral infections. Further study is needed
to examine whether and how this co-presence, together with environmental conditions, influ-
ences colony survival during winter. Perhaps the best way to ensure colony survival year-round
is to take into account the ‘ecosystem health’ concept: an environment with sufficient habitat
quality and various floral resources that bloom at non-overlapping times of the year.

Various factors in colony management may improve bee health status and honey productiv-
ity. Goulson et al. [4] proposed measures such as preventing competition between neighboring
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honeybee colonies, decreasing prophylactic use of aggressive anti-parasite and pathogen treat-
ments, and avoiding fragmented habitats, which can ensure high flower diversity in the bee
diet. Those authors [4] and others [33] also recommended various methods to reduce colony
exposure to agrochemicals: extending distance to crops, shortening monofloral periods, evalu-
ating synergistic effects between pesticides used inside and outside the hive, and implementing
controls on the movement of all commercial bees. All these measures would help reduce
chronic exposure of bees to numerous stressors, and they would improve the availability of
nutritional resources. In these ways, such approaches might bolster bee resistance to disease,
ensuring sustainable bee production.

The present study has highlighted some critical environmental factors that can support
larger population of bees around the colony. When the apiary goal is honey production, the
most important factors are a flower-rich field, diversity of patches of natural and seminatural
areas, and absence of nearby crops to reduce exposure to pesticides. If the apiary purpose is
pollination services, the most important factor is the reduction of extended pollination periods
in these crops. Regional maps of habitat suitability may be useful for identifying good apiary
locations for maximizing bee production, even before health problems appear. One strategy for
reducing bee losses is to increase the influence of protective factors relative to the influence of
stressors, but this must be done on a regional scale to be effective.

The analytical process used MCDA (AHP and weighted linear combinations) to evaluate all
factors considered was selected with the kind of data herein and the aim of our analysis in
mind, so that we could identify key factors for honey bee colonies, and classify colonies accord-
ing to these key factors. Other models have been also used with different data sets. Remarkably,
Convertino & Valverde 2013 [59] developed a Portfolio decision model (PDM) that integrated
predictions by combining a MCDA with a Pareto optimization model to evaluate the impor-
tance of the factors and combinations between them in space and time. The model also
included global sensitivity and uncertainty analyses.

Our study is mainly descriptive, we have evaluated several locations (each apiary) taking
into account only data collected in the apiculture period 2014, namely we did not develop a
temporal analysis. Also climatic data were collected during the apiculture period 2014, without
presenting a great variability over that period. Thus, in the present study sensitivity analyses
have not been included since we did not expect much variability in our data. However, we rec-
ommend carrying out a similar study considering a higher number of apiaries and years to
develop a spatiotemporal model and to confirm the decision model, including in this case
global sensitivity and uncertainly analyses.

Conclusions

Although environmental evaluation of the six apiaries (eight locations) in the present study
suggests that all locations are adequate, case-by-case evaluation using AHP identified several
environmental, climate, management and health factors that may affect the ability of colonies
to resist pathogens and maintain good health status. Long periods with scarce rainfall and
excessive re-use of wax may reduce bee resistance to pathogens in apiaries showing low health
status in late summer. Our study findings help lay the foundation for future work exploring
these factors and their interactions in greater detail in order to guide strategies for maximizing
bee and honey production.

Supporting Information

S1 Table. Description and evaluation of 9 factors used to evaluate Habitat quality. Hetero-
geneous values with different scales. H1: Number of land cover types; H2: Number of
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important vegetable species for bees; H3: Unfragmented area usable (km?); H4: Distance to
permanent watercourses (m); H5: Distance to roads (m) (*primary roads; **secondary roads);
He: Distance high voltage power lines”, low voltage power lines™™ and antennas™*" (m); H7:
Difference in altitude (m); H8: Orographic diversity (km?); H9: Crop surface (km?).

(TIF)

S2 Table. Description and evaluation of 9 factors used to evaluate Habitat quality to the
additional apiaries. Heterogeneous values with different scales. H1: Number of land cover
types; H2: Number of important vegetable species for bees; H3: Unfragmented area usable
(km?); H4: Distance to permanent watercourses (m); H5: Distance to roads (m) (*primary
roads; **secondary roads); H6: Distance high voltage power lines™, low voltage power lines™™
and antennas*** (m); H7: Difference in altitude (m); H8: Orographic diversity (km?); H9:
Crop surface (km?).

(TIF)

$3 Table. Description and evaluation of 4 factors used to evaluate Landscape heterogeneity.
Heterogeneous values with different scales. L1: Total edge; L2: Mean patch size; L3: Number
of patches; L4: Patch size standard deviation.

(TIF)

S4 Table. Evaluation of climatic factors related to bee’s activity. PO = Poor conditions;
AC = Adverse conditions; OC = Optimal conditions.
(TIF)

S5 Table. Evaluation and development of beehive management factors. Heterogeneous val-
ues with different scales. M1: Annual honey production (kg/colony); M2: Number of honey
produced types; M3: Anti- Varroa treatment; M4: N° of treatments/year; M6:% renewal of wax;
M?7: wax origins; M8: Movement of the apiary; M9: Presence of livestock.

(TIF)

S6 Table. Characteristicsand toxicological data of anti-Varroa destructor treatments used
at the apiaries (M5). (0) Non-condition, (1) Low, (2) Moderate, (3) High. (*)N-2,4-dimethyl-
phenyl-methylformanidine (more toxic and persistent) and 2,4-dimethyl-formanilide (na), 2,4
dimethylaniline mutagenic and carcinogenic (na). (**) Chlorferon; coumaphoxon, 6-hydroxyl-
3-methylbenzofuran; Diethyl-3-acetoxy- phenylphosphorothioate. na = data not available.
(TIF)

Acknowledgments

The authors would like to thank the Comunidad de Madrid and the beekeepers association
"Asociacion de Apicultores de la Comunidad de Madrid" (APISCAM) for their cooperation.
The authors are also grateful to Deborah Kukielka for critical review of the manuscript and
Rocio Sanchez for excellent technical support.

Author Contributions

Conceptualization: A MVR MC MJM JMSV EFC.
Formal analysis: IA MVR MC MJM.

Funding acquisition: JMSV MJM.

Investigation: IJA MVR MC MJM.

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 13/18


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164205.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164205.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164205.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164205.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0164205.s006

@° PLOS | ONE

Critical Factors Affecting Bee Production

Methodology: EFC.

Project administration: JMSV MJM.

Supervision: MC.

Validation: EFC.

Writing - original draft: IA MVR.

Writing - review & editing: IA MVR.

References

1.

10.

11.

12

13.

14.

15.

16.

17.

Decourtye A, Mader E, Desneux N. Landscape enhancement of floral resources for honey bee in agro-
ecosystems. Apidologie. 2010; 41: 264-277.

Berry AJ, Hood WM, Pietravalle S, Delaplane K. Field-level sublethal effects of approved bee hive
chemicals on honey bees (Apis mellifera). PLoS One. 2013; doi: 10.1371/journal.pone.0076536 PMID:
24204638

Senapathi D, Carvalheiro L, Biesmeijer J, Dodson C, Evans R, Mckerchar MR, et al. The impact of
over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R.
Soc. B. 2015; 282: 20150294. Available: http://dx.doi.org/10.1098/rspb.2015.0294 doi: 10.1098/rspb.
2015.0294 PMID: 25833861

Goulson D, Nicholls E, Botias C, Rotheray E. Bee declines driven by combined stress from parasites,
pesticides, and lack of flowers. Science 2015; 347 (6229): 1255957. Available: http://science.
sciencemag.org/content/347/6229/1255957 .full doi: 10.1126/science.1255957 PMID: 25721506

Alaux C, Ducloz F, Crauser D, Le Conte Y. Diet effects on honeybee immunocompetence. Biol. Lett.
2010; 12 (1). doi: 10.1098/rshl.2009.0986 PMID: 20089536

Di Pasquale G, Salignon M, Le Conte Y, Belzunces LP, Decourtye A, Kretzschmar A, et al. Influence
of Pollen Nutrition on Honey Bee Health: Do Pollen Quality and Diversity Matter? PLoS One. 2013; 8
(8): €72016. doi: 10.1371/journal.pone.0072016 PMID: 23940803

Eischen FA, Graham RH. Feeding overwintering honey bee colonies infected with Nosema ceranae,
In Proceedings of the American Bee Research Conference. Am. Bee J. 2008; 148: 555.

Brodschneider R, Crailsheim K. Nutrition and health in honey bees. Apidologie. 2010; 41: 278-294.
doi: 10.1051/apido/2010012

Gallant A, Euliss N, Browning Z. Mapping large-area landscape suitability for honey bees to assess the
influence of land-use change on sustainability of national pollination services. PLoS One. 2014; 9 (6):
€99268. doi: 10.1371/journal.pone.0099268 PMID: 24919181

Naug D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol.
Conserv. 2009; 142: 2369-2372. doi: 10.1016/j.biocon.2009.04.007

Bekesi L, Ball BV, Dobos-Kovacs M, Bakonyi T, Rusvai M. Occurrence of acute paralysis virus of the
honey bee (Apis mellifera) in a Hungarian apiary infested with the parasitic mite Varroa jacobsoni. Acta
Vet. Hung. 1999; 47: 319-324. doi: 10.1556/AVet.47.1999.3.5 PMID: 10497825

Berenyi O, Bakonyi T, Derakhshifar I, Koglberger H, Nowotny N. Occurrence of six honeybee viruses
in diseased Austrian apiaries. Appl. Environ. Microbiol. 2006; 72: 2414-2420. doi: 10.1128/AEM.72.4.
2414-2420.2006 PMID: 16597939

Todd JH, De Miranda JR, Ball BV. Incidence and molecular characterization of viruses found in dying
New Zealand honey bee (Apis mellifera) colonies infested with Varroa destructor. Apidologie. 2007;
38: 354-367.

Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, et al. A metagenomic survey
of microbes in honey bee colony collapse disorder. Science. 2007; 318: 283-287. doi: 10.1126/
science.1146498 PMID: 17823314

Highfield AC, El Nagar A, Mackinder LC, Noel LM, Hall MJ, Martin SJ, et al. Deformed wing virus impli-
cated in overwintering honeybee colony losses. Appl. Environ. Microbiol. 2009; 75: 7212-7220. doi:
10.1128/AEM.02227-09 PMID: 19783750

Schroeder DC, Martin SJ. Deformed wing virus: the main suspect in unexplained honeybee deaths
worldwide. Virulence 2012; 3: 589-591. doi: 10.4161/viru.22219 PMID: 23154287

Hails RS, Ball BV, Genersch E. Infection strategies of insect viruses. In: Aubert M., Ball B.V., Fries I.
et al, editors. Virology and the honey bee. European Comission; 2008. pp. 255-276. (Eur 21937 EN).

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 14/18


http://dx.doi.org/10.1371/journal.pone.0076536
http://www.ncbi.nlm.nih.gov/pubmed/24204638
http://dx.doi.org/10.1098/rspb.2015.0294
http://dx.doi.org/10.1098/rspb.2015.0294
http://dx.doi.org/10.1098/rspb.2015.0294
http://www.ncbi.nlm.nih.gov/pubmed/25833861
http://science.sciencemag.org/content/347/6229/1255957.full
http://science.sciencemag.org/content/347/6229/1255957.full
http://dx.doi.org/10.1126/science.1255957
http://www.ncbi.nlm.nih.gov/pubmed/25721506
http://dx.doi.org/10.1098/rsbl.2009.0986
http://www.ncbi.nlm.nih.gov/pubmed/20089536
http://dx.doi.org/10.1371/journal.pone.0072016
http://www.ncbi.nlm.nih.gov/pubmed/23940803
http://dx.doi.org/10.1051/apido/2010012
http://dx.doi.org/10.1371/journal.pone.0099268
http://www.ncbi.nlm.nih.gov/pubmed/24919181
http://dx.doi.org/10.1016/j.biocon.2009.04.007
http://dx.doi.org/10.1556/AVet.47.1999.3.5
http://www.ncbi.nlm.nih.gov/pubmed/10497825
http://dx.doi.org/10.1128/AEM.72.4.2414-2420.2006
http://dx.doi.org/10.1128/AEM.72.4.2414-2420.2006
http://www.ncbi.nlm.nih.gov/pubmed/16597939
http://dx.doi.org/10.1126/science.1146498
http://dx.doi.org/10.1126/science.1146498
http://www.ncbi.nlm.nih.gov/pubmed/17823314
http://dx.doi.org/10.1128/AEM.02227-09
http://www.ncbi.nlm.nih.gov/pubmed/19783750
http://dx.doi.org/10.4161/viru.22219
http://www.ncbi.nlm.nih.gov/pubmed/23154287

@° PLOS | ONE

Critical Factors Affecting Bee Production

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Higes M, Martin-Hernandez R, Garrido-Bailon E, Gonzalez-Porto AV, Garcia-Palencia P, Meana A,
et al. Honeybee colony collapse due to Nosema ceranae in professional apiaries. Environ. Microbiol.
Rep. 2009; 1: 110-113. doi: 10.1111/j.1758-2229.2009.00014.x PMID: 23765741

Fernandez JM, Puerta F, Cousinou M, Dios-Palomares R, Campano F, Redondo L. Asymptomatic
presence of Nosema spp. in Spanish commercial apiaries. J. Invertebr. Pathol. 2012; 111: 106-110.
doi: 10.1016/j.jip.2012.06.008 PMID: 22820066

Dainat B, Evans JD, Chen YP, Gauthier L, Neumann P. Predictive markers of honey bee colony col-
lapse. PLoS One. 2012; 7: e32151. doi: 10.1371/journal.pone.0032151 PMID: 22384162

Dainat B, Neumann P. Clinical signs of deformed wing virus infection are predictive markers for honey
bee colony losses. J. Invertebr. Pathol. 2013; 112: 278-280. doi: 10.1016/}.jip.2012.12.009 PMID:
23270875

Budge GE, Pietravalle S, Brown M, Laurenson L, Jones B, Tomkies V, et al. Pathogens as Predictors
of Honey Bee Colony Strength in England and Wales. PLoS One. 2015; 10: e0133228. doi: 10.1371/
journal.pone.0133228 PMID: 26186735

Yang X, Cox-Foster D. Impact of an ectoparasite on the immunity and pathology of an invertebrate:
Evidence for host immunosuppression and viral amplification. PNAS. 2005; 102 (21): 7470-7475. doi:
10.1073/pnas.0501860102 PMID: 15897457

Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G, Varricchio P, et al. Synergistic parasite-
pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS
Pathogens 2012; 8 (6): €1002735 doi: 10.1371/journal.ppat.1002735 PMID: 22719246

DeGrandi-Hoffman G, Chen Y, Huang E, Huang MH. The effect of diet on protein concentration, hypo-
pharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Phy-
siol. 2010; 56: 1184—1191. doi: 10.1016/}.jinsphys.2010.03.017 PMID: 20346950

Al'Naggar Y, Codling G, Vogt A, Naiem E, Mona M, Seif A. Organophosphorus insecticides in honey,
pollen and bees (Apis mellifera L.) and their potencial hazard to bee colonies in Egypt. Ecotoxicol.
Environ. Saf. 2015; 114: 1-8. doi: 10.1016/j.ecoenv.2014.12.039 PMID: 25574845

Codling G, Al Naggar Y, Giesy J, Robertson A. Concentrations of neonicotinoid insecticides in honey,
pollen and honey bees (Apis mellifera L.) in central Saskatchewan, Canada. Chemosphere. 2016;
144:2321-2328. doi: 10.1016/j.chemosphere.2015.10.135 PMID: 26606186

Hladik M, Vandever M, Smalling K. Exposure of native bees foraging in an agricultural landscape to
current-use pesticides. Sci. Total Environ. 2016; 542: 469—-477. doi: 10.1016/j.scitotenv.2015.10.077
PMID: 26520270

Di Prisco G, Cavaliere V, Annoscia D, Varricchio P, Caprio E, Nazzi F, et al. Neonicotinoid clothianidin
adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. PNAS.
2013; 110 (46): 18466—18471. doi: 10.1073/pnas.1314923110 PMID: 24145453

Brandt A, Gorenflo A, Siede R, Meixner M, Blichler R. The neonicotinoids thiacloprid, imidacloprid, and
clothianidin affect the immunocompetence of honey bees (Apis mellifera L.). J. Insect Physiol. 2016;
86: 40—47. doi: 10.1016/j.jinsphys.2016.01.001 PMID: 26776096

Sanchez-Bayo F, Goulson D, Pennacchio F, Nazzi F, Goka K, Desneux N. Are bee diseases linked to
pesticides?—A brief review. Environ. Int. 2016; 89: 7-11. doi: 10.1016/j.envint.2016.01.009 PMID:
26826357

Pettis J, VanEngelsdorp D, Johnson J, Dively G. Pesticide exposure in honey bees results in increased
levels of the gut pathogen Nosema. Naturwissenchaften. 2012; 99: 153—158. doi: 10.1007/s00114-
011-0881-1 PMID: 22246149

Simioni L, Mussury R, Mauad M, Dresh D, Pereira F, Scalon P. Plant-pollinator interactions in Crambe
abyssinica Hochst. Associated with environmental variables. Ann Brazilian Acad Sci. 2015; 87 (1):
137-145. doi: 10.1590/0001-3765201520130365 PMID: 25806981

Martin-Hernandez R, Meana A, Garcia-Palencia P, Marin P, Botias C, Garrido-Bailon E. Effect of tem-
perature on the biotic potencial of honeybee microsporidia. Appl. Environ. Microbiol. 2009; 75 (8):
2554-2557. doi: 10.1128/AEM.02908-08 PMID: 19233948

Greene R, Devillers R, Luther JE, Eddy BG. GIS- Based Multicriteria Decision Analysis. Geogr. Com-
pass. 2011; 412-432.

CAM. Consejeria de Medio Ambiente y Ordenacién del Territorio. Mapa de terreno Forestal de la
Comunidad de Madrid a escala 1:10.000. 2009. Database: Servicio de Publicaciones de la Comunidad
de Madrid. Spain.

CNIG. Centro Nacional de Informacion Geografica. Mapa Topografico Nacional a escala 1:25.000.
Spain. 2006. Database: CNIG [internet]. Accessed: http://centrodedescargas.cnig.es/
CentroDescargas/index.jsp

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 15/18


http://dx.doi.org/10.1111/j.1758-2229.2009.00014.x
http://www.ncbi.nlm.nih.gov/pubmed/23765741
http://dx.doi.org/10.1016/j.jip.2012.06.008
http://www.ncbi.nlm.nih.gov/pubmed/22820066
http://dx.doi.org/10.1371/journal.pone.0032151
http://www.ncbi.nlm.nih.gov/pubmed/22384162
http://dx.doi.org/10.1016/j.jip.2012.12.009
http://www.ncbi.nlm.nih.gov/pubmed/23270875
http://dx.doi.org/10.1371/journal.pone.0133228
http://dx.doi.org/10.1371/journal.pone.0133228
http://www.ncbi.nlm.nih.gov/pubmed/26186735
http://dx.doi.org/10.1073/pnas.0501860102
http://www.ncbi.nlm.nih.gov/pubmed/15897457
http://dx.doi.org/10.1371/journal.ppat.1002735
http://www.ncbi.nlm.nih.gov/pubmed/22719246
http://dx.doi.org/10.1016/j.jinsphys.2010.03.017
http://www.ncbi.nlm.nih.gov/pubmed/20346950
http://dx.doi.org/10.1016/j.ecoenv.2014.12.039
http://www.ncbi.nlm.nih.gov/pubmed/25574845
http://dx.doi.org/10.1016/j.chemosphere.2015.10.135
http://www.ncbi.nlm.nih.gov/pubmed/26606186
http://dx.doi.org/10.1016/j.scitotenv.2015.10.077
http://www.ncbi.nlm.nih.gov/pubmed/26520270
http://dx.doi.org/10.1073/pnas.1314923110
http://www.ncbi.nlm.nih.gov/pubmed/24145453
http://dx.doi.org/10.1016/j.jinsphys.2016.01.001
http://www.ncbi.nlm.nih.gov/pubmed/26776096
http://dx.doi.org/10.1016/j.envint.2016.01.009
http://www.ncbi.nlm.nih.gov/pubmed/26826357
http://dx.doi.org/10.1007/s00114-011-0881-1
http://dx.doi.org/10.1007/s00114-011-0881-1
http://www.ncbi.nlm.nih.gov/pubmed/22246149
http://dx.doi.org/10.1590/0001-3765201520130365
http://www.ncbi.nlm.nih.gov/pubmed/25806981
http://dx.doi.org/10.1128/AEM.02908-08
http://www.ncbi.nlm.nih.gov/pubmed/19233948
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp
http://centrodedescargas.cnig.es/CentroDescargas/index.jsp

@° PLOS | ONE

Critical Factors Affecting Bee Production

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Morales R. Catalogue of the vascular plants from Madrid Community (Spain). Bot. Complut. 2003; 27:
31-70.

Rempel RS, Kaukinen D, Carr AP. Patch Analyst and Patch Grid. Ontario Ministry of Natural
Resources. Ontario: Thunder Bay, ed. Centre for Northern Forest Ecosystem Research; 2012.

Vicens N, Bosch J. Weather-dependent pollinator activity in an apple orchard, with special reference to
Osmia cornuta and Apis mellifera 45 (Hymenoptera: Megachilidae and Apidae). Environ. Entomol.
2000; 29: 413-420.

Adjare S. Beekeeping in Africa. Food and Agricultural Organization services of the United Nations
(FAO). 1990; 68 (6). Rome. ltaly.

Puskadija Z., Stefanic E., Mijic A., Zdunic Z., Paradzikovic N., Florijancic T., Opacak A. Influence of
weather conditions on honeybee visits (Apis mellifera carnica) during sunflower (Helianthus annuus L.)
blooming period. In: Agriculture Scientific and professional review. 2007; 13: 230-233.

Rader R, Reilly J, Bartomeus I, Winfree R. Native bees buffer the negative impact of climate warming
on honey bee pollination of watermelon crops. Glob. Chang. Biol. 2013; doi: 10.1111/gcb.12264 PMID:
23704044

Winston M. The biology of the honey bee. Harvard University Press, Cambridge, MA. 1987.

Monzén V. Biologia de Osmia cornuta L (Hymenoptera; Megachilidae) y su utilizacion como poloniza-
dor de pera (Pyrus communis). Thesis. Universidad de Barcelona, Espafa, Bellaterra. 1998;112p.

Roberts S, Harrison J. Mechanisms of thermal stability during flight in the honeybee Apis mellifera. J.
Exp. Biol. 1999; 202: 1523—-1533. PMID: 10229698

Bezabih G. Contribution of managed honeybees (Apis mellifera scutellata Lep.) to sunflower
(Helianthus annuus L.) seed yield and quality. Thesis. In the Faculty of Natural and Agricultural Sci-
ences. University of Pretoria. 2010.

Abou-Shaara H, Al-Ghamdi A, Mohamed A. Tolerance of two honey bee races to various temperatura
and relative humidity gradients. Environ. Exp. Biol. 2012; 10: 133-138.

Brittain C, Kremen C, Klein AM. Biodiversity buffers pollination from changes in environmental condi-
tions. Glob. Chang. Biol. 2013; 19: 540-547. doi: 10.1111/gcb.12043 PMID: 23504791

Tuell J, Isaacs R. Weather During Bloom Affects Pollination and Yield of Highbush Blueberry. J. Econ.
Entomol. 2010; 103(3): 557-562. doi: 10.1603/EC09387 PMID: 20568598

AEMET. Agencia Estatal de Meteorologia. 2014. Available: http://www.aemet.es/es/
serviciosclimaticos/datosclimatologicos/valoresclimatologicos. Accessed: 05 October 2014.

Stoltz D, XueRen S, Boggis C, Sisson G. Molecular diagnosis of Kashmir bee virus infection. J. Apic.
Res. 1995; 34 (3): 153—160. doi: 10.1080/00218839.1995.11100900 PMID: 15579317

Kukielka D, Esperon F, Higes M, Sanchez-Vizcaino JM. A sensitive one-step real-time RT-PCR
method for detection of deformed wing virus and black queen cell virus in honeybee Apis mellifera. J.
Virol. Methods. 2008; 147, 275-281. doi: 10.1016/j.jviromet.2007.09.008 PMID: 17964669

Kukielka D, Sanchez-Vizcaino JM. One-step real-time quantitative PCR assays for the detection and
field study of Sacbrood honeybee and Acute bee paralysis viruses. J. Virol. Methods. 2009; 161: 240—
246. doi: 10.1016/j.jviromet.2009.06.014 PMID: 19559729

de Miranda JR, Cordoni G, Budge G. The Acute bee paralysis virus-Kashmir bee virus-Israeli acute
paralysis virus complex. J. Invertebr. Pathol. 2010; 103 (1): 30—47. doi: 10.1016/}.jip.2009.06.014
PMID: 19909972

Forsgren E, Fries |. Comparative virulence of Nosema ceranae and Nosema apis in individual Euro-
pean honey bees. Vet. Parasitol. 2010; 170: 212-217. doi: 10.1016/j.vetpar.2010.02.010 PMID:
20299152

Dietemann V, Nazzi F, Martin SJ, Anderson DL, Locke B, Delaplane KS, et al. Standard methods for
varroa research. J. Apic. Res. 2013; 52: 1-54. doi: 10.3896/IBRA.1.52.1.09

Linkov I, Satterstrom FK, Steevens J, Ferguson E, Pleus RC. Multi-criteria decision analysis and envi-
ronmental risk assessment for nanomaterials. J. Nanopart. Res. 2007; 9: 543-554. doi: 10.1007/
s11051-007-9211-0

Convertino M, Valverde LJ Jr. Portfolio Decision Analysis Framework for Value-Focused Ecosystem
Management. PLos ONE. 2013; 8 (6): e65056. doi: 10.1371/journal.pone.0065056 PMID: 23823331

Saaty T. The analytic hierarchy process. 15ed. McGraw-Hill, New York; 1980. doi: 10.1002/
0470011815.b2a4a002

Fahrig L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003; 34: 487—
515. doi: 10.1146/annurev.ecolsys.34.011802.132419

Winfree R, Aguilar R, Vazquez DP, LeBuhn G, Aizen M. A meta-analysis of bees’ responses to anthro-
pogenic disturbance. Ecology. 2009; 90: 2068—-2076. PMID: 19739369

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 16/18


http://dx.doi.org/10.1111/gcb.12264
http://www.ncbi.nlm.nih.gov/pubmed/23704044
http://www.ncbi.nlm.nih.gov/pubmed/10229698
http://dx.doi.org/10.1111/gcb.12043
http://www.ncbi.nlm.nih.gov/pubmed/23504791
http://dx.doi.org/10.1603/EC09387
http://www.ncbi.nlm.nih.gov/pubmed/20568598
http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos
http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos
http://dx.doi.org/10.1080/00218839.1995.11100900
http://www.ncbi.nlm.nih.gov/pubmed/15579317
http://dx.doi.org/10.1016/j.jviromet.2007.09.008
http://www.ncbi.nlm.nih.gov/pubmed/17964669
http://dx.doi.org/10.1016/j.jviromet.2009.06.014
http://www.ncbi.nlm.nih.gov/pubmed/19559729
http://dx.doi.org/10.1016/j.jip.2009.06.014
http://www.ncbi.nlm.nih.gov/pubmed/19909972
http://dx.doi.org/10.1016/j.vetpar.2010.02.010
http://www.ncbi.nlm.nih.gov/pubmed/20299152
http://dx.doi.org/10.3896/IBRA.1.52.1.09
http://dx.doi.org/10.1007/s11051-007-9211-0
http://dx.doi.org/10.1007/s11051-007-9211-0
http://dx.doi.org/10.1371/journal.pone.0065056
http://www.ncbi.nlm.nih.gov/pubmed/23823331
http://dx.doi.org/10.1002/0470011815.b2a4a002
http://dx.doi.org/10.1002/0470011815.b2a4a002
http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132419
http://www.ncbi.nlm.nih.gov/pubmed/19739369

@° PLOS | ONE

Critical Factors Affecting Bee Production

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Wojcik VA, Buchman S. Pollinator conservation and management electrical transmission and roadside
rights-of-way: A review. J. Pollinat. Ecol. 2012; 7(3): 16—26.

Marin AL, Toro LJ, Uribe SI. Conectividad structural del paisaje en la Cuenca alta de rio San Juan, Sur-
oeste Antioquefio, Colombia. Boletin de Ciencias de la Tierra. 2008; 23: 43-54.

Moreno-Rueda G, Pizarro M. Relative influence of habitat heterogeneity, climate, human disturbance,
and spatial structure on vertebrate species richness in Spain. Ecol. Res. 2009; 24 (2): 335-344. doi:
10.1007/s11284-008-0509-x

Mwangi PK. The influence of landscape heterogeneity on amphibian species richness in Malaga prov-
ince, Spain. M.Sc. Thesis. Geo-information Science and Earth Observation Enschede, The Nether-
lands. 2010.

Rodriguez MA, Belmontes JA, Hawkins BA. Energy, water and large-scale patterns of reptile and
amphibian species richness in Europe. Acta Oecol. 2005; 28: 65-70. doi: 10.1016/j.actao.2005.02.
006

Allouche O, Kalyuzhny M, Moreno-Rueda G, Pizarro M, Kadmon R. Area-heterogeneity tradeoff and
diversity of ecological communities. PNAS. 2012; 109(43): 17495-17500. doi: 10.1073/pnas.
1208652109 PMID: 23045670

de Miranda JR, Bailey L, Ball BV, Blanchard P, Budge GE, Chejanovsky N, et al. Standard methods for
virus research in Apis mellifera. J. Apic. Res. 2013; 52: 1-56.

de Miranda JR, Genersch E. Deformed wing virus. J. Invertebr. Pathol. 2010; 103(1): 48—61. doi: 10.
1016/}.jip.2009.06.012 PMID: 19909976

Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. Global honey bee viral
landscape altered by a parasitic mite. Science. 2012; 336: 1304—1306. doi: 10.1126/science.1220941
PMID: 22679096

VanEngelsdorp D, Meixner MD. A historical review of managed honey bee populations in Europe and
the United States and the factors that may affect them. J. Invertebr. Pathol. 2010; 103: 80-95. doi: 10.
1016/.jip.2009.06.011 PMID: 19909973

Hedtke K., Jensen PM, Jensen AB, Genersch E. Evidence for emerging parasites and pathogens influ-
encing outbreaks of stress-related diseases like chalkbrood. J. Invertebr. Pathol. 2011; 108: 167-173.
doi: 10.1016/}.jip.2011.08.006 PMID: 21906600

Ongus JR, Peters D, Bonmatin JM, Bengsch E, Vlak JM, van Oers MM. Complete sequence of a
picorna-like virus of the genus Iflavirus replicating in the mite Varroa destructor. J. Gen. Virol. 2004;
85: 3747-3755. doi: 10.1099/vir.0.80470-0 PMID: 15557248

Yue C, Genersch E. RT-PCR analysis of Deformed wing virus in honeybees (Apis mellifera) and mites
(Varroa destructor). J. Gen. Virol. 2005; 86: 3419-3424. doi: 10.1099/vir.0.81401-0 PMID: 16298989

Mattila H, Otis G. Influence of pollen diet in spring on development of honey bee (Hymenoptera: Api-
dae) colonies. J. Econ. Entomol. 2006; 99(3): 604—613. doi: 10.1093/jee/99.3.604 PMID: 16813288

Medina-Cuéllar S, Portillo-Vazquez M, Garcia Alvarez-Coque JM, Terrazas-Gonzélez G, Alba-
Nevarez L. Environmental influence on the productivity of the second honey harvest in aguascalientes
from 1998 to 2010. Chapingo. Serie ciencias forestales y del ambiente. 2014; 20 (2): 159-165.

Mullin C, Frazier M, Frazier J, Ashcraft S, Simonds R., vanEngelsdorp D, et al. High levels of miticides
and agrochemicals in North American apiaries: implications for honey bee health. PLoS One. 2010; 5
(3): €9754. doi: 10.1371/journal.pone.0009754 PMID: 20333298

Johnson R, Dahlgren L, Siegfried B, Ellis M. Acaricide, Fungicide and Drug Interactions in Honey Bees
(Apis mellifera). PLoS One. 2013; 8 (1): €54092. doi: 10.1371/journal.pone.0054092 PMID: 23382869

Loucif-Ayad W, Aribi N, Smagghe G, Soltani N. A scientific note on the impact of acaracides on the
nutritional biochemistry of Apis mellifera. Apidologie. 2010; 41: 135-137.

Di Prisco G, Pennacchio F, Caprio E, Boncristiani HF, Evans JD, Chen Y. Varroa destructoris an effec-
tive vector of Israeli acute paralysis virus in the honeybee, Apis mellifera. J. Gen. Virol. 2011; 92: 151—
155. doi: 10.1099/vir.0.023853-0 PMID: 20926637

Shen M, Yang X, Cox-Foster D, Cui L. The role of varroa mites in infections of Kashmir bee virus
(KBV) and deformed wing virus (DWV) in honey bees. Virology. 2005; 342: 141-149. doi: 10.1016/j.
virol.2005.07.012 PMID: 16109435

Puerta F, Flores J, Bustos M, Padilla F, Campano F. Chalkbrood development in honeybee brood
under controlled conditions. Apidologie. 1994; 25: 540-546. doi: 10.1051/apido:19940604

Flores J, Ruiz J, Ruz J, Puerta F, Bustos M, Padilla F, et al. Effect of temperature and humidity of
sealed brood on chalkbrood development under controlled conditions. Apidologie. 1996; 27: 185—
1922. doi: 10.1051/apido: 19960401

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 17/18


http://dx.doi.org/10.1007/s11284-008-0509-x
http://dx.doi.org/10.1016/j.actao.2005.02.006
http://dx.doi.org/10.1016/j.actao.2005.02.006
http://dx.doi.org/10.1073/pnas.1208652109
http://dx.doi.org/10.1073/pnas.1208652109
http://www.ncbi.nlm.nih.gov/pubmed/23045670
http://dx.doi.org/10.1016/j.jip.2009.06.012
http://dx.doi.org/10.1016/j.jip.2009.06.012
http://www.ncbi.nlm.nih.gov/pubmed/19909976
http://dx.doi.org/10.1126/science.1220941
http://www.ncbi.nlm.nih.gov/pubmed/22679096
http://dx.doi.org/10.1016/j.jip.2009.06.011
http://dx.doi.org/10.1016/j.jip.2009.06.011
http://www.ncbi.nlm.nih.gov/pubmed/19909973
http://dx.doi.org/10.1016/j.jip.2011.08.006
http://www.ncbi.nlm.nih.gov/pubmed/21906600
http://dx.doi.org/10.1099/vir.0.80470-0
http://www.ncbi.nlm.nih.gov/pubmed/15557248
http://dx.doi.org/10.1099/vir.0.81401-0
http://www.ncbi.nlm.nih.gov/pubmed/16298989
http://dx.doi.org/10.1093/jee/99.3.604
http://www.ncbi.nlm.nih.gov/pubmed/16813288
http://dx.doi.org/10.1371/journal.pone.0009754
http://www.ncbi.nlm.nih.gov/pubmed/20333298
http://dx.doi.org/10.1371/journal.pone.0054092
http://www.ncbi.nlm.nih.gov/pubmed/23382869
http://dx.doi.org/10.1099/vir.0.023853-0
http://www.ncbi.nlm.nih.gov/pubmed/20926637
http://dx.doi.org/10.1016/j.virol.2005.07.012
http://dx.doi.org/10.1016/j.virol.2005.07.012
http://www.ncbi.nlm.nih.gov/pubmed/16109435
http://dx.doi.org/10.1051/apido:19940604
http://dx.doi.org/10.1051/apido:19960401

@° PLOS | ONE

Critical Factors Affecting Bee Production

85.

86.

87.

88.

89.

90.

Abou-Shaara H. The foraging behaviour of honey bees, Apis mellifera: a review. Vet. Med. 2014; 59
(1): 1-10.

Polatto L, Chaud-Netto J, Alves-Junior V. Influence of abiotic factors and floral resource availability on
daily foraging activity of bees. J. Insect Behave. 2014; 27: 593-612. doi: 10.1007/s10905-014-9452-6

Genersch E, Von Der OHE W, Kaatz H, Schroeder A, Otten C, Biichler R, et al. The German bee moni-
toring project: a long term study to understand periodically high winter losses of honey bee colonies.
Apidologie. 2010; 41: 332-352. doi: 10.1051/apido/2010014

Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines:
trends, impacts and drivers. Trends Ecol. Evol. 2010; 25: 345-353. doi: 10.1016/j.tree.2010.01.007
PMID: 20188434

Chauzat M. P., Laurent M., Riviere M. P., Saugeon C., Hendrikx P., & Ribiere-Chabert M. (2014). EPI-
LOBEE: A pan-European epidemiological study on honey bee colony losses 2012—2013. Sophia Anti-
polis, France: European Union Reference Laboratory for Honeybee Health (EURL).

Staveley J, Law S, Fairbrother A, Menzie C. A Causal Analysis of Observed Declines in Managed
Honey Bees (Apis mellifera). Hum. Ecol. Risk Assess. 2014; 20(2): 566—591. doi: 10.1080/10807039.
20183.831263 PMID: 24363549

PLOS ONE | DOI:10.1371/journal.pone.0164205 October 11,2016 18/18


http://dx.doi.org/10.1007/s10905-014-9452-6
http://dx.doi.org/10.1051/apido/2010014
http://dx.doi.org/10.1016/j.tree.2010.01.007
http://www.ncbi.nlm.nih.gov/pubmed/20188434
http://dx.doi.org/10.1080/10807039.2013.831263
http://dx.doi.org/10.1080/10807039.2013.831263
http://www.ncbi.nlm.nih.gov/pubmed/24363549

