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Abstract
Progestins used in contraception and hormone replacement therapy are synthetic com-

pounds designed to mimic the actions of the natural hormone progesterone and are classed

into four consecutive generations. The biological actions of progestins are primarily deter-

mined by their interactions with steroid receptors, and factors such as metabolism, pharma-

cokinetics, bioavailability and the regulation of endogenous steroid hormone biosynthesis

are often overlooked. Although some studies have investigated the effects of select proges-

tins on a few steroidogenic enzymes, studies comparing the effects of progestins from dif-

ferent generations are lacking. This study therefore explored the putative modulatory

effects of progestins on de novo steroid synthesis in the adrenal by comparing the effects of

select progestins from the respective generations, on endogenous steroid hormone pro-

duction by the H295R human adrenocortical carcinoma cell line. Ultra-performance liquid

chromatography/tandem mass spectrometry analysis showed that the fourth-generation

progestins, nestorone (NES), nomegestrol acetate (NoMAC) and drospirenone (DRSP),

unlike the progestins selected from the first three generations, modulate the biosynthesis of

several endogenous steroids. Subsequent assays performed in COS-1 cells expressing

human 3βHSD2, suggest that these progestins modulate the biosynthesis of steroid hor-

mones by inhibiting the activity of 3βHSD2. The Ki values determined for the inhibition of

human 3βHSD2 by NES (9.5 ± 0.96 nM), NoMAC (29 ± 7.1 nM) and DRSP (232 ± 38 nM)

were within the reported concentration ranges for the contraceptive use of these progestins

in vivo. Taken together, our results suggest that newer, fourth-generation progestins may

exert both positive and negative physiological effects via the modulation of endogenous

steroid hormone biosynthesis.
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Introduction

Synthetic progestogens (progestins), were developed to have similar progestogenic properties,
but greater bio-availabilities, half-lives and potencies than the rapidly metabolized natural pro-
gestogen, progesterone (Prog) [1, 2]. Progestins are mostly derived from parent compounds
such as Prog and testosterone (reviewed in [3]), with those structurally related to Prog referred
to as 17α-hydroxyprogesterone (17OH-Prog) and 19-norprogesterone derivatives, and those
related to testosterone known as 19-nortesterone derivatives. A variety of these structurally
diverse compounds are available, and are classified into four consecutive generations. Like
Prog, these progestins mediate their biological effects by binding to the progesterone receptor
(PR), and are used in many applications in female reproductive medicine including contracep-
tion and hormone replacement therapy (HRT) [4, 5] (reviewed in [3, 6]). A number of side-
effects have however been reported with their clinical use and include weight gain, acne,
increased risk of invasive breast cancer, cardiovascular disease (CVD) and modulation of
immunity in the female genital tract (reviewed in [6]).

To date it has been suggested that the mechanism underlying most of these adverse effects
are most likely due to some progestins interacting with steroid receptors other than the PR [7–
13]. Thus, the newer, fourth-generation progestins were developed to be “purer” progestogens
by having stronger affinities for the PR. Although these progestins may also bind to other ste-
roid receptors, their activities are similar to the natural PR ligand, Prog, in that they are devoid
of estrogenic, androgenic, glucocorticoidand mineralocorticoidactivity, with some, like Prog,
eliciting anti-androgenic and/or anti-mineralocorticoideffects [5, 14] (reviewed in [3, 6]).
However, some recent studies indicate that these newer generation progestins also display
adverse effects. For example, the risk of developing venous thromboembolism (VTE) has been
shown to increase with the use of combined oral contraceptives (COC) containing the fourth-
generation progestin drospirenone (DRSP) [15–17].

This raises the possibility that a mechanism other than off-target steroid receptor-mediated
effectsmay be involved. One possibility, and an area of research that has received little atten-
tion, is the influence of progestins on adrenal steroid biosynthesis. It is well documented that
abnormal hormone levels due to the modulation of adrenal steroidogenesis are associated with
numerous undesirable conditions [18–21] (reviewed in [22]). The limited number of studies
that have in fact investigated the effects of progestins on adrenal steroid biosynthesis in
humans have primarily focussed on the first-generation progestin, medroxyprogesterone
acetate (MPA), and showed a reduction in the serum levels of the endogenous glucocorticoid
cortisol [23–26], the endogenous androgen precursors androstenedione (A4) and dehydroepi-
androsterone sulphate (DHEA-S) [25], and the endogenous androgen testosterone [27]. Recent
studies examining the effects of progestins developed after the first generation, such as levonor-
gestrel (LNG), nomegestrol acetate (NoMAC) and DRSP, also showed decreased concentra-
tions of androgens and their precursors [28–30]. The biosynthesis of steroid hormones are
dependent on the function of steroidogenic enzymes, which consists of substrate-selective cyto-
chrome P450 enzymes (CYP’s) and hydroxysteroid dehydrogenases (HSD’s) (Fig 1) (reviewed
in [22, 31–33]). Interestingly, only a few studies have examined the influence of progestins on
the activity of these enzymes, and most of the studies focus on the effects of MPA. For example,
MPA has been shown to inhibit the activity of both human [34] and rat [35, 36] 3β-hydroxys-
teroid dehydrogenase (3βHSD), while suppressing the activity of rat, but not human, cyto-
chrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) [34, 36, 37]. Although some studies
have investigated the effects of other progestins, such as norethisterone (NET) and LNG, on
the activity and/or mRNA expression of steroidogenic enzymes, these studies are limited to rat
[38] and fish [39] models. Considering that different species express different enzyme isoforms,
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which have different functions and substrate specificities [40–42], it is probable that the effects
of progestins in animal models will not reflect their actions on human enzymes. It is thus
clear that studies investigating the effects of progestins on human steroidogenic enzymes are
needed, and more so, a direct comparative study of the influence of progestins from the differ-
ent generations.

Fig 1. The biosynthesis of human steroid hormones consists of multiple reactions which are catalysed by specific steroidogenic

enzymes (grey boxes). The conversion of 17α-hydroxyprogesterone (17OH-Prog) to androstenedione (A4) by CYP17A1 is shown as a

dashed box as 17OH-Prog is a poor substrate for the 17,20-lyase activity of human CYP17A1 [22, 31].

doi:10.1371/journal.pone.0164170.g001
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The present study thus directly compared the effects of select progestins from different gen-
erations on the biosynthesis of steroids by the H295R human adrenocortical carcinoma cell
line, which expresses all the steroidogenic enzymes required for the biosynthesis of progesto-
gens, mineralocorticoids,glucocorticoids and adrenal androgen [43–46]. The comparison
included the first-generation progestins MPA and NET acetate (NET-A), the second-genera-
tion progestin LNG, the third-generation progestin gestodene (GES) and the fourth-generation
progestins nestorone (NES), NoMAC and DRSP (Fig 2). Specifically, we used ultra-perfor-
mance liquid chromatography/tandem mass spectrometry (UPLC–MS/MS) to measure not
only the end products of the progestogenic, mineralocorticoid,glucocorticoidand androgenic
pathways, but also to identify the steroid intermediates which are affected by the progestins.
Furthermore, we also determinedwhether the progestins themselves are metabolized in the
H295R cell line. Our results indicate that fourth-generation progestins modulate endogenous
steroid biosynthesis due to the inhibition of human 3βHSD2 and/or CYP17A1 activity. More-
over, we determined inhibition constant (Ki) values for 3βHSD2 in the nanomolar range for
NES, NoMAC and DRSP, with the mechanisms of inhibition best fitted to the experimental
data indicating that NES and DRSP are non-competitive inhibitors of 3βHSD2, while NoMAC
is a competitive inhibitor of this enzyme.

Materials and Methods

Test compounds and standards

MPA, NET-A, LNG, GES, NES, NoMAC, DRSP, pregnenolone (Preg), Prog, 17OH-Preg,
17OH-Prog, 16OH-Prog, deoxycorticosterone (DOC), corticosterone (CORT), 11-dehydro-
corticosterone (11-DHC), aldosterone (Ald), deoxycortisol, cortisol, cortisone, dehydroepian-
drosterone (DHEA), A4, testosterone, forskolin (FSK) and trilostane, were obtained from
Sigma–Aldrich, South Africa, while 11β-hydroxyandrostenedione (11OH-A4) was purchased
from Steraloids, USA. All test compounds, as well as FSK, were prepared in dimethylsulfoxide
(DMSO), and added to the culturing medium at a final concentration of 0.2% DMSO. The deu-
terated internal standards, d2-testosterone, d9-Prog, d9-17OH-Prog and d4-cortisol were pur-
chased from Cambridge Isotope Laboratories (Maryland, USA).

Plasmids

The plasmids expressing human 3βHSD2 (pCDNA6-hHSD3β2-V5), CYP17A1 (pIRES-hCY-
P17A1-V5-X-hCYPB5-6HIS), and CYP21A2 (pCDNA6-hCYP21A2-V5) were generous gifts
from Prof Wiebke Arlt (Institute of Metabolism and Systems Research, University of Birming-
ham, UK). Plasmid DNA was purified using the NucleoBond1 Xtra Maxi kit (Machery-Nagel
GmbH, Germany) according to the manufacturer’s instructions.

Cell culture

The human H295R adrenocortical carcinoma cell line was a generous gift from Prof William E.
Rainey (University of Michigan, Medical School, Molecular and Integrative Physiology, USA),
and was cultured as previously described [47]. The COS-1 monkey kidney cell line was pur-
chased from the American Type Culture Collection (ATCC) and cultured as previously
described [12]. To ensure that only mycoplasma-negative cells were used in experiments, cell
cultures were regularly tested for mycoplasma infection using Hoechst staining [48].
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Steroid biosynthesis and progestin metabolism in the H295R cell line

H295R cells were seeded into 12-well plates at 4 x 105 cells per well, and two days later treated
with DMSO (vehicle control) or 1 μM MPA, NET-A, LNG, GES, NES, NoMAC or DRSP, in
the absence and presence of 10 μM FSK. As a negative control, medium containing the test

Fig 2. Chemical structures of the endogenous steroids progesterone (Prog) and testosterone, the synthetic MR

antagonist spironolactone, and the progestins used in this study : Medroxyprogesterone acetate (MPA), nestorone (NES),

nomegestrol acetate (NoMAC), norethisterone/norethindrone acetate (NET-A), levonorgestrel (LNG), gestodene (GES) and

drospirenone (DRSP). The inserts (1st, 2nd, 3rd and 4th) denote the four consecutive generations of progestins.

doi:10.1371/journal.pone.0164170.g002
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compounds were added to 12-well plates (no cells) and incubated at 37°C in an atmosphere of
90% humidity and 5% CO2. After 48 hours, the medium (500 μl) was removed and steroids
extracted using a 10:1 volume of dichloromethane to culture medium as describedpreviously
[47]. Briefly, 15 ng of the internal standards, d2-testosterone, d4-cortisol, d9-Prog and d9-
17OH-Prog, were added to the samples, vortexed for 10 minutes and centrifuged at 3 000 rpm
for 5 minutes. The dichloromethane phase containing the steroids were transferred to clean
test tubes and dried at 50°C under nitrogen. The dried steroid residue was resuspended in
200 μl 50% methanol, vortexed for 2 minutes and stored at -20°C prior to analysis by UPLC–
MS/MS. The cells were washed with 1x PBS, lysed with passive lysis buffer (0.2% (v/v) Triton,
10% (v/v) glycerol, 2.8% (v/v) TRIS-phosphate-EDTA and 1.44 mM EDTA) and the total pro-
tein concentration determined using the Bradford protein assay method [49]. All experiments
were performed in parallel under the same experimental conditions.

H295R cell viability

The colorimetricMTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was
used, and performed essentially as previously described in [50] with the following modifications.
Briefly, H295R cells were plated into 96-well plates at a cell density of 1 × 104 cells per well, and
treated for 48 hours with DMSO (vehicle control) or 1 μM test compound in the absence or
presence of 10 μM FSK. Four hours prior to the end of the incubation period, the medium was
aspirated and replaced with 150 μl DMEM/F12 supplemented with 0.1% cosmic calf serum
(HyClone1 Thermo Scientific Inc., USA), 100 IU/ml penicillin and 100 μg/ml streptomycin
(Sigma-Aldrich, South Africa) and 0.01% gentamycin (Gibco, Paisley, UK) and 5 mg/ml of the
MTT solution (Sigma-Aldrich, South Africa). At the end of the incubation period, the medium
was aspirated and the crystals resuspended in 200 μl solubilisation solution (DMSO). The plates
were covered with foil and incubated at room temperature for 5 minutes with agitation, followed
by the absorbance measurement at 550 nm using a BioTek1 PowerWave 340 spectophotometer.

Steroid conversion assays in transiently transfected COS-1 cells

COS-1 cells were seeded into 10 cm dishes at 2 x 106 cells per dish. On day 2, the cells were
transiently transfected with 7.5 μg of the appropriate expression vector for human 3βHSD2
(pCDNA6-hHSD3β2-V5), CYP17A1 (pIRES-hCYP17A1-V5-X-hCYPB5-6HIS) or CYP21A2
(pCDNA6-hCYP21A2-V5), using the X-tremeGENE 9 DNA transfection reagent (Roche
Molecular Biochemicals, South Africa) in accordance with the manufacturer’s instructions.
After 24 hours, the cells were replated into 24-well plates at a density of 1 × 105 cells per well,
and incubated for 72 hours. To assay for the inhibition of substrate conversion by the proges-
tins, the cells were treated with the appropriate steroid substrate, 1 μM Preg (for 3βHSD2) or
Prog (for CYP17A1 and CYP21A2) or 17OH-Prog (CYP21A2), in the absence or presence of
1 μM MPA, LNG, GES, NES, NoMAC or DRSP. The duration of hormone treatment was
based on optimal substrate conversion assays in COS-1 cells. Following the optimal treatment
time, 500 μl of the medium was removed, the steroids/progestins extracted and the samples
prepared for UPLC-MS/MS analysis as described in above. The cells were washed with 1x PBS,
lysed with passive lysis buffer (0.2% (v/v) Triton, 10% (v/v) glycerol, 2.8% (v/v) TRIS-phos-
phate-EDTA and 1.44 mM EDTA) and the total protein concentration determined using the
Bradford protein assay method [49].

Kinetic analysis in transiently transfected COS-1 cells

COS-1 cells were seeded into 10 cm dishes at 2 x 106 cells per dish. On day 2, the cells were
transiently transfected with 7.5 μg of the expression vector for human 3βHSD2 (pCDNA6-
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hHSD3β2-V5) using the X-tremeGENE 9 DNA transfection reagent (Roche Molecular Bio-
chemicals, South Africa) in accordance with the manufacturer’s instructions. After 24 hours,
the cells were replated into 24-well plates at a density of 5 × 104 cells per well, and incubated
for 48 hours. The cells were subsequently treated with Preg (0.5, 1, 2, 4 and 8 μM) in the
absence or presence of 0.2 or 0.5 μM NES, NoMAC, DRSP or trilostane. The steroid containing
media (500 μl) were removed at specific time intervals and the steroids extracted using a 3:1
volume of tert-Butyl methyl ether (MTBE) to culture medium as previously described [51].
Briefly, the samples were vortexed for 10 minutes, incubated at -80°C for 1–2 hours allowing
the medium (aqueous phase) to freeze, whereafter the MTBE phase containing the steroids
were transferred to clean test tubes and dried at 50°C under nitrogen. The dried steroid residue
was resuspended in 200 μl 50% methanol, vortexed for 2 minutes and stored at -20°C prior to
analysis by UPLC–MS/MS. The cells were washed with 1x PBS, lysed with passive lysis buffer
(0.2% (v/v) Triton, 10% (v/v) glycerol, 2.8% (v/v) TRIS-phosphate-EDTA and 1.44 mM
EDTA) and the total protein concentration determined using the Bradford protein assay
method [49]. The NonlinearModelFit function of Mathematica (http://www.wolfram.com)
was used to estimate the kinetic parameters for 3βHSD2 activity and the inhibition constants
(Ki) for NES, NoMAC, DRSP and trilostane.

Separation and quantification of steroid metabolites and progestins

using UPLC-MS/MS

Steroid metabolites and progestins were separated using a high strength silica (HSS) T3 column
(2.1 mm × 50 mm, 1.8 μm) coupled to an ACQUITY UPLC (Waters, Milford, USA) as previ-
ously described [52]. The mobile phases consisted of (A) 1% formic acid and (B) 100% metha-
nol. The injection volume of each sample was 5 μl and the steroid metabolites and progestins
were eluted at a flow rate of 0.600 ml per minute using a linear gradient from 55% A to 75% B
in 5 minutes. For the kinetic analysis, Preg and Prog were separated using a linear gradient
from 40% A to 80% B in 1.5 min. A Xevo TQ or Xevo TQ-S triple quadrupole mass spectrome-
ter (Waters, Milford, USA) was used in multiple reaction monitoring (MRM) mode using an
electrospray in the positive ionization mode (ESI+). The following settings were used: Capillary
voltage of 3.5 kV, cone voltage 15–30 V, collision energy 4–20 eV, source temperature 140°C,
desolvation temperature 400°C, desolvation gas 800 L/h and cone gas 50 L/h. The MassLynx
version 4 software program was used for data collection and analysis.

Quantitative real-time PCR (qPCR)

H295R cells were seeded into 12-well plates at 1 x 105 cells per well, and two days later treated
with DMSO (vehicle control) or 1 μM NES, NoMAC or DRSP for 6 hours. Total RNA was iso-
lated using Tri-reagent (Sigma-Aldrich, South Africa) according to the manufacturer’s instruc-
tions, and subsequently reversed transcribedusing ImProm-II Reverse Transcription System
cDNA synthesis kit (Promega). Real-time qPCR was performed by using the Roche LightCy-
cler1 96 and KAPA SYBR FAST qPCR master mix. The mRNA expression of steroidogenic
enzymes and the reference gene GAPDH was measured using the following primer sets:
CYP17A1 [53], 5-TGGCCCCATCTATTCTGTTCG-3’ (forward primer) and 5’-TAGAGT
TGCCATTTGAGGCCG-3’ (reverse primer); 3βHSD2 [54], 5’-TGCCAGTCTTCATCTACAC
CAG-3’ (forward primer) and 5’-TTCCAGAGGCTCTTCTTCGTG-3’ (reverse primer);
GAPDH [55], 5’-TGAACGGGAAGCTCACTGG-3’ (forward primer) and 5’-TCCACCAC
CCTGTTGCTGTA-3’.The relative transcript levels of the target genes were calculated using
the method described by [56], and normalised to the relative transcript levels of GAPDH.
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Data manipulation and statistical analysis

GraphPad Prism1 software version 5 was used for data manipulations, graphical presentations
and statistical analysis. One-way ANOVA with Dunnett’s (compares all columns versus con-
trol column) post-test was used for statistical analysis. Statistically significant differences are
indicated by either �, ��, ��� to indicate p<0.05, p<0.01 or p<0.001, respectively, whereas
p>0.05 indicates no statistical significance (ns). The error bars represent the standard error of
the mean (SEM) of at least two independent experiments. The kinetic parameters for 3βHSD2
activity and the inhibition constants (Ki) for NES, NoMAC, DRSP and trilostane were fitted by
minimizing the sum of the squared differences between the data sets and the models, using the
NonlinearModelFit function of Mathematica (http://www.wolfram.com). Data was fitted to
three different inhibition mechanisms: a competitive inhibition mechanism (inhibitor binds
only to the free enzyme), a non-competitive inhibition mechanism (inhibitor binds to both the
free enzyme and the enzyme-substrate complex) and an uncompetitive inhibition mechanism
(inhibitor binds only to the enzyme-substrate complex).

Results

NES and NoMAC modulate steroid production by the human H295R

adrenocortical carcinoma cell line

To assess whether the progestins influence the biosynthesis of endogenous adrenal steroids, the
human H295R adrenocortical carcinoma cell line was treated with DMSO or 1 μM MPA,
NET-A, LNG, GES, NES, NoMAC or DRSP in the absence and presence of 10 μM forskolin
(FSK) for 48 hours, prior to steroid analysis by UPLC–MS/MS. FSK mimics the stimulatory
effects of adrenocorticotropic hormone (ACTH) [57] which increases the basal gene expression
of endogenous steroidogenic enzymes, resulting in increased steroid production [32, 54].
Indeed, treatment with FSK resulted in a 4.29-fold increase in the total amount of steroids pro-
duced by the H295R cells (Fig 3 insert; S1 Table). Interestingly, results in Fig 3 show that total
steroid output was not affected by the first- (MPA and NET-A), second- (LNG) or third-
(GES) generation progestins, but differentially influenced by the fourth-generation progestins.
NES, but not DRSP, significantly inhibited the steroidogenic output by the H295R cells under
both basal and FSK-stimulated conditions. Notably, even though NoMAC appeared to inhibit
the steroidogenic output under both these conditions, output inhibition under basal conditions
was not statistically significant.MTT cell viability assays revealed that the inhibitory effects
observed for NES and NoMAC were not due to a decrease in cell viability (S1 Fig).

Upon closer inspection of the effects of the progestins on basal and FSK-stimulated produc-
tion of steroid intermediates and end products in the steroidogenic pathway (summarised in
Tables 1 and 2), it is clear that the fourth-generation progestins, NES, NoMAC and DRSP,
modulate the synthesis of numerous endogenous steroids. These progestins appeared to
increase the basal and FSK-stimulated concentrations of Preg, the first metabolite in the ste-
roidogenic pathway, while in most cases the concentrations of the Δ4 C21 steroids Prog,
17OH-Prog, 16OH-Prog, DOC, and CORT were reduced by NES and NoMAC, but not DRSP
(Tables 1 and 2). DRSP increased the basal production of DOC, but had no effect on the pro-
duction of steroids from the mineralocorticoidpathway in the presence of FSK. However, simi-
larly to NES and NoMAC, DRSP inhibited the basal and FSK-stimulated production of
deoxycortisol. Like NES, but unlike NoMAC, DRSP lowered the basal concentration of the glu-
cocorticoid cortisol. Furthermore, NES and NoMAC also tended to decrease the concentra-
tions of the Δ4 C19 androgen precursors A4 and 11OH-A4 as well as the Δ4 C19 androgen
testosterone. Although both NES and NoMAC increased the concentration of the Δ5 C19
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Fig 3. Effect of selected progestins on total steroid production by the human H295R adrenocortical carcinoma cell line

under basal and FSK-stimulated conditions. Cells were incubated with DMSO (vehicle control) or 1 μM MPA, NET-A, LNG, GES,

NES, NoMAC or DRSP, in the absence and presence of 10 μM FSK for 48 hours. Steroid metabolites were extracted from the cell

culture medium and analyzed by UPLC–MS/MS. The concentrations of total steroid produced (μM) were normalized to protein

concentration (mg/ml). The insert graph shows the total steroid production (μM/mg protein) in the absence of progestin treatment

(DMSO) under basal and FSK-stimulated conditions. This total steroid production for both conditions was set as 100%, and the

percentage change upon treatment with progestin relative to the vehicle control (DMSO) of each condition was plotted. Results shown

are the average of three independent experiments with each condition performed in triplicate (± SEM).

doi:10.1371/journal.pone.0164170.g003
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adrenal androgen precursor DHEA under basal conditions, this increase was not significant in
the case of NoMAC. Lastly, DRSP displayed similar inhibitory effects to that of NES and
NoMAC on the production of the Δ4 C19 androgen precursors and androgens. Interestingly,
progestins from the first three generations had no effect on the synthesis of end products under
both basal and FSK-stimulated conditions (Tables 1 and 2), but modulated the synthesis of
some intermediates in the presence of FSK (Table 2). For example, MPA increased the synthe-
sis of the androgen precursors, A4 and 11OH-A4, while GES and LNG inhibited A4 and
11-DHC, respectively.

We subsequently investigated whether NES, NoMAC and DRSP are metabolized in the
H295R cell line and observed a significant reduction in the concentration of NES after the 48
hour incubation period suggesting that this progestin is metabolized by the cells. It should
however be noted that more than 50% of this progestin was still unmetabolized after the incu-
bation period. Conversely, NoMAC and DRSP were not metabolized (Fig 4). This result sug-
gests that the observed effects in the presence of NoMAC and DRSP on steroid biosynthesis
are due to the progestins themselves, while the effects observed for NES may be attibuted to
NES itself and/or its metabolites.

NES and NoMAC inhibit the activity of 3βHSD2, while 3βHSD2 and

CYP17A1 activities are inhibited by DRSP

Due to the modulation of steroidogenesis by NES, NoMAC and DRSP observed in the H295R
cell line we next determinedwhether the activity of specific steroidogenic enzymes could be
influenced by these three progestins. The increased production of Δ5 steroids coupled to the
decrease in Δ4 steroid concentrations observed in most cases, suggested that the progestins

Table 1. Fold change in basal steroid production in response to selected progestinsa.

Steroid metabolite MPA (1st) NET-A (1st) LNG (2nd) GES (3rd) NES (4th) NoMAC (4th) DRSP (4th)

Preg - - - - " 2.87 ± 0.57 *** " 2.17 ± 0.19 ** " 4.02 ± 0.33 ***

Prog - - - - # 30.30 ± 0.02 *** # 2.34 ± 0.12 * " 11.11 ± 2.24 ***

17OH-Prog - - - - # 8.33 ± 0.00 *** - " 6.32 ± 0.51 ***

16OH-Prog - - - - # 14.18 ± 0.02 *** # 3.41 ± 0.03 ** " 2.50 ± 0.68 *

DOC - - - - # 7.68 ± 0.08 ** # 1.73 ± 0.07 ns " 2.85 ± 0.30 ***

CORT - - - - # 2.73 ± 0.26 * # 1.43 ± 0.13 ns " 1.58 ± 0.04 ns

11-DHC - - - - " 2.53 ± 1.42 ns " 1.49 ± 0.11 ns " 2.07 ± 0.52 ns

Ald - - - - - - -

Deoxycortisol - - - - # 6.12 ± 0.01 *** # 1.43 ± 0.07 ** # 1.81 ± 0.08 ***

Cortisol - - - - # 2.97 ± 0.16 ** - # 2.80 ± 0.05 **

Cortisone - - - - " 5.33 ± 1.11 *** - # 1.82 ± 0.17 ns

DHEA - - - - " 26.54 ± 5.50 *** " 1.70 ± 0.30 ns " 1.85 ± 0.08 ns

A4 - - - - # 7.12 ± 0.03 *** - # 1.75 ± 0.14 ns

11OH-A4 - - - - - - # 3.19 ± 0.19 *

Testosterone - - - - # 3.77 ± 0.17 *** # 1.58 ± 0.03 * # 1.79 ± 0.04 *

Total steroid (μM) - - - - # 2.91 ± 0.05 ** - -

aThe human H295R cell line was treated with DMSO (vehicle control) or 1 μM MPA, NET-A, LNG, GES, NES, NoMAC or DRSP for 48 hours.

Steroids were extracted and quantified by UPLC–MS/MS. The fold change ± SEM in response to progestin treatment relative to the vehicle control (DMSO),

which was set as one, is indicated. (-) denotes no effect; 17OH-Preg, DHT, estrone and 17β-estradiol were below the limit of detection in the control

samples and thus fold changes in the levels of these steroids in the presence of progestins could not be determined.

Statistically significant differences are indicated by either *, **, *** to indicate p<0.05, p<0.01 or p<0.001, respectively.

doi:10.1371/journal.pone.0164170.t001
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Table 2. Fold change in FSK-stimulated steroid production in response to selected progestinsb.

Steroid metabolite MPA (1st) NET-A (1st) LNG (2nd) GES (3rd) NES (4th) NoMAC (4th) DRSP (4th)

Preg - - - - " 3.35 ± 0.35 *** " 1.47 ± 0.06 ns " 1.28 ± 0.11 ns

Prog - - - - # 12.55 ± 0.03 *** # 1.63 ± 0.08 * " 3.16 ± 0.74 ***

17OH-Prog - - - - # 3.64 ± 0.03 ** - " 2.35 ± 0.23 ***

16OH-Prog - - - - # 35.71 ± 0.01 *** # 2.28 ± 0.03 * -

DOC - - - - # 34.88 ± 0.01 *** # 3.02 ± 0.02 *** -

CORT - - - - # 6.25 ± 0.03 *** # 1.59 ± 0.12 ns -

11-DHC - - # 1.83 ± 0.13 * - - - -

Ald - - - - # 2.22 ± 0.19 ns - -

Deoxycortisol - - - - # 10.98 ± 0.02 *** # 1.78 ± 0.03 * # 1.44 ± 0.03 *

Cortisol - - - - # 1.71 ± 0.16 ns - # 2.22 ± 0.17 ns

Cortisone - - - - " 2.98 ± 0.93 * " 2.08 ± 0.35 ns # 1.73 ± 0.11 ns

DHEA - - - - - - # 2.19 ± 0.13 *

A4 " 1.29 ± 0.08 ** - - # 1.38 ± 0.00 ** # 13.33 ± 0.03 *** # 1.43 ± 0.06 ** # 1.92 ± 0.05 ***

11OH-A4 " 1.61 ± 0.00 *** - - - # 2.43 ± 0.03 *** " 1.77 ± 0.10 *** # 2.34± 0.04 ***

Testosterone - - - - # 18.29 ± 0.04 *** # 1.49 ± 0.02 * # 1.65 ± 0.14 *

Total steroid (μM) - - - - # 1.72 ± 0.04 ** # 1.37 ± 0.08 * -

bThe human H295R cell line was treated with DMSO (vehicle control) or 1 μM MPA, NET-A, LNG, GES, NES, NoMAC or DRSP in the presence of FSK for

48 hours.

Steroids were extracted and quantified by UPLC–MS/MS. The fold change ± SEM in response to progestin treatment relative to the vehicle control (DMSO),

which was set as one, is indicated. (-) denotes no effect; 17OH-Preg, DHT, estrone and 17β-estradiol were below the limit of detection in the control

samples and thus fold changes in the levels of these steroids in the presence of progestins could not be determined.

Statistically significant differences are indicated by either *, **, *** to indicate p<0.05, p<0.01 or p<0.001, respectively.

doi:10.1371/journal.pone.0164170.t002

Fig 4. NES is metabolized by the H295R cells under both basal and FSK-stimulated conditions.

H295R cells were treated with DMSO or 1 μM NES, NoMAC or DRSP in the absence and presence of 10 μM

FSK for 48 hours. Medium containing the test compounds (no cells) was added to the wells of a 12-well plate

as a negative control for metabolism. Steroids were extracted and analyzed by UPLC–MS/MS. The amount

of progestin present in the medium after incubation with the cells was expressed as a % relative to the

amount of progestin in the negative control for metabolism, which was set as 100%. Result shown is the

average of at least two independent experiments with each condition performed in triplicate (± SEM).

doi:10.1371/journal.pone.0164170.g004
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may be modulating the activity and/or expression of 3βHSD2. We also investigated the ability
of the progestins to modulate the activity of CYP17A1 and cytochrome P450 21-hydroxylase
(CYP21A2), for which the natural progestogen, Prog, is a substrate. Non-steroidogenic COS-1
cells were transiently transfected with the cDNA expression vectors for the human 3βHSD2,
CYP17A1 and CYP21A2 enzymes, respectively, followed by treatment with the appropriate
steroid substrate in the absence (DMSO) or presence of 1 μM MPA, LNG, GES, NES, NoMAC
or DRSP. In addition to the fourth-generation progestins, one progestin from the earlier gener-
ations was included. Effects on the activity of 3βHSD2 was assessed using Preg as substrate
(Fig 5A), while Prog was used as substrate to examine the effects on the activity of CYP17A1
(Fig 5B). Prog and 17OH-Prog were both used as substrates for investigating the effects on
the activity of CYP21A2 (Fig 5C and 5D). As shown in Fig 5A, NES (97.44 ± 2.56%),
NoMAC (84.52 ± 4.35%) and DRSP (79.77 ± 5.69%) significantly inhibited the activity of
3βHSD2. Interestingly, DRSP was the only progestin that inhibited the activity of CYP17A1
(55.20 ± 16.50%), while none of the progestins inhibited CYP21A2 activity (Fig 5C and 5D).
None of the first-, second- or third-generation progestins affected the activity of the above-
mentioned enzymes.

Having shown that NES, NoMAC and DRSP abrogate the ability of 3βHSD2 to convert
Preg to Prog (Fig 5A), we next determined the Ki values of these inhibitors as well as that of the
well-known 3βHSD inhibitor trilostane, serving as a positive control [58]. COS-1 cells were
transiently transfected with the cDNA expression vector for the human 3βHSD2, followed by
treatment with Preg in the absence or presence NES, NoMAC, DRSP or trilostane. In the
absence of inhibitor, a Km of 0.85 ± 0.05 μM and Vmax of 31.1 ± 0.7 nmol/min/mg were
obtained. The fits for all inhibitory mechanisms are shown in S2 Fig, while the results in Fig 6
show the fits with the mechanisms best describing the data. These fits resulted in a Ki value of
9.5 ± 0.96 nM for NES (with a non-competitive mechanism), 29 ± 7.1 nM for NoMAC (with a
competitive mechanism), 232 ± 38 nM for DRSP (with a non-competitive mechanism) and
31.3 ± 5.5 nM for trilostane (with an uncompetitive mechanism). We subsequently used these
Ki values to predict the 3βHSD2 activity when 1 μM of the inhibitor and 1 μM of the substrate
are used (S3 Fig, dashed green line). We show that the residual activities predicted for NES
(0.16 ± 0.03 nmol/min/mg),NoMAC (1.04 ± 0.30 nmol/min/mg) and DRSP (3.16 ± 0.87
nmol/min/mg) correlate with the experimental data (NES, 0.43 ± 0.01 nmol/min/mg;NoMAC,
2.62 ± 0.11 nmol/min/mg;DRSP, 3.39 ± 0.19 nmol/min/mg) obtained from Fig 5A, thus vali-
dating the determinedKi values.

Despite our observation that NES, NoMAC and DRSP inhibit the activity of 3βHSD2, and
that DRSP also inhibits the activity of CYP17A1, it is possible that the modulation of steroido-
genesis seen in H295R cells could also be due to the progestins altering the expression levels of
these enzymes. We therefore used real-time qPCR to investigate the effect of NES, NoMAC
and DRSP on the mRNA levels of 3βHSD2 and CYP17A1 in H295R cells. The cells were treated
with DMSO (vehicle control) or 1 μM NES, NoMAC or DRSP for 6 hours, followed by real-
time qPCR analysis for the expression of 3βHSD2 and CYP17A1, respectively. The results in
Fig 7A shows that none of the fourth-generation progestins inhibited the mRNA expression of
the 3βHSD2 gene. Furthermore, our results show that neither NES nor DRSP inhibited the
mRNA expression of CYP17A1 (Fig 7B). Surprisingly, we show that NoMAC upregulated the
mRNA expression of the CYP17A1 gene.

Discussion

Progestins are classified into four generations and are widely used in endocrine therapies by
pre- and post-menopausal women. To date, only a few studies have investigated the effects of
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Fig 5. NES, NoMAC and DRSP inhibit the activity of human 3βHSD2, while only DRSP inhibits CYP17A1 activity. COS-1 cells were transiently

transfected with plasmids expressing human (A) 3βHSD2 (pCDNA6-hHSD3β2-V5), (B) CYP17A1 (pIRES-hCYP17A1-V5-X-hCYPB5-6HIS) or (C and

D) CYP21A2 (pCDNA6-hCYP21A2-V5), respectively. Cells were subsequently treated with 1 μM Preg (A) or Prog (B and C) or 17OH-Prog (D), in the

absence (DMSO) and presence of 1 μM MPA, LNG, GES, NES, NoMAC or DRSP for 20 minutes (A), 4 hours (B) or 90 minutes (C and D), respectively.

The steroid metabolites produced by the cells in the medium were extracted and analyzed by UPLC–MS/MS. The concentration of the steroids

produced by the cells was normalized to the total protein concentration using the Bradford protein assay method. The % conversion of substrate to
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these compounds on the biosynthesis of endogenous steroids, and studies directly comparing
the effects of different progestins in the same model system are lacking. To the best of our
knowledge, the present study is the first to directly compare the effects of select progestins
from all four generations on the production of both intermediates and end products of the ste-
roidogenic pathway (Fig 1) in the human H295R adrenocortical carcinoma cell line. Surpris-
ingly, although earlier studies have shown that progestins from the first-, second- and fourth-
generation reduce the production of some endogenous steroids, we show that only the fourth-
generation progestins NES, NoMAC and DRSP modulate the biosynthesis of endogenous ste-
roids in H295R cells. Cell viability assays showed that these changes were not due to changes in
cell viability (S1 Fig). The general trend observedwas that these progestins decreased the con-
centrations of steroids in the glucocorticoidand androgen pathways, while the production of
steroids in the progestogen and mineralocorticoidpathways were decreased by NES and
NoMAC, and increased by DRSP. The observation that NES and NoMAC elicited mostly simi-
lar effects on steroidogenesis, but different to that of DRSP, may be due to the fact that NES
and NoMAC are structurally similar (reviewed in [3]), while DRSP has a unique structure
derived from the MR antagonist spironolactone [59, 60]. Furthermore, we found that NES, but
not NoMAC and DRSP, is metabolized in the H295R cells (Fig 4), suggesting that the effects of
NoMAC and DRSP are due to the progestins themselves, while the effect of NES may be due to
NES itself, its metabolites or a combination thereof. The identification of the metabolites in the
H295R cells was however, beyond the scope of the current study.

To understand the mechanism whereby the fourth-generation progestins modulate adrenal
steroid biosynthesis, we investigated the effects of the progestins on the activity and/or expres-
sion of 3βHSD2, CYP17A1 and CYP21A2. 3βHSD2 was investigated as NES and NoMAC
tended to increase the concentrations of the Δ5 C21 steroid Preg (Tables 1 and 2) and the Δ5

C19 steroid DHEA (Table 1), while the production of severalΔ4 C21 (Prog, 17OH-Prog,
16OH-Prog, DOC,CORT, deoxycortisol and cortisol) and Δ4 C19 (A4, 11OH-A4 and testos-
terone) steroids were decreased.DRSP also increased the production of Preg and decreased the
production of A4, 11OH-A4 and testosterone (Δ4 C19 steroids), while differentially affecting
the production of Δ4 C21 steroids, suggesting inhibition of additional steroidogenic enzymes.
Moreover, as progestins were designed to mimic Prog, and considering that Prog is a substrate
for both CYP17A1 and CYP21A2, the possibility that progestins modulate the activities and/or
expression of these enzymes could not be excluded.

In COS-1 cells transfected to constitutively express human 3βHSD2 (Fig 5A), CYP17A1
(Fig 5B) and CYP21A2 (Fig 5C and 5D), respectively, we show that NES and NoMAC had no
effect on the activity of CYP17A1 or CYP21A2, but that these progestins significantly inhibited
the activity of 3βHSD2. DRSP also had no effect on the activity of CYP21A2 (Fig 5C and 5D),
but inhibited the activities of both 3βHSD2 (Fig 5A) and CYP17A1 (Fig 5B). The inhibition of
3βHSD2 in COS-1 cells by DRSP correlates with the observed increase in the concentration of
Preg and decrease in the concentrations of the Δ4 C19 steroids observed in the H295R cells,
while the accumulation of Prog, 16OH-Prog and 17OH-Prog in the H295R cells is likely due to
a bottleneck caused by the simultaneous inhibition of 3βHSD2 and CYP17A1. Discrepancies
between the inhibition observed in COS-1 cells and the results observed in the H295R cells
may further be explained by the once-off addition of substrate in the case of the assays per-
formed in COS-1 cells, which is in contrast to the H295R cells which continuously produce ste-
roids and also express multiple enzymes which may compete for binding to the same substrate.

product was plotted, with the substrate only response (DMSO) set as 100% and everything else relative to that. Results shown are the average of at

least two independent experiments with each condition performed in triplicate (± SEM).

doi:10.1371/journal.pone.0164170.g005
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Fig 6. Inhibition of 3βHSD2 activity by NES, NoMAC, DRSP and trilostane. COS-1 cells were transiently transfected

with a plasmid expressing human 3βHSD2 (pCDNA6-hHSD3β2-V5), and subsequently treated with increasing

concentrations (0.5, 1, 2, 4 and 8 μM) of Preg (substrate) in the presence of 0.0, 0.2 or 0.5 μM (A) NES, (B) NoMAC, (C)

DRSP or (D) trilostane. The conversion of Preg to Prog was analyzed using UPLC-MS/MS. Michaelis-Menten plots are

shown in the absence (black symbols and lines) and presence of 0.2 μM (red symbols and lines) and 0.5 μM (blue symbols
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Notably, our real-time qPCR results show that neither NES, NoMAC nor DRSP inhibit the
mRNA expression of 3βHSD2 in H295R cells (Fig 7A), and that DRSP has no significant effect
on CYP17A1 gene expression (Fig 7B). It was interesting to note that although CYP17A1
mRNA expression was increased in the presence of NoMAC, this did not translate to an
observed increase in activity. While the possibility that NES, NoMAC and DRSP modulate the
protein levels of these steroidogenic enzymes cannot be excluded, our COS-1 data confirms
enzyme inhibition of 3βHSD2. Subsequent kinetic studies suggest that the Ki values determined
for these progestins are similar to that of the well-known 3βHSD2 inhibitor trilostane.
Although the mechanism of inhibition that best fitted the data (Fig 6) suggest that trilostane,
unlike NES, NoMAC and DRSP, is an uncompetitive inhibitor of 3βHSD2, it should be noted
that a similar fit was also obtained with the non-competitive mechanism (S2 Fig). Trilostane
has previously been reported to inhibit the activity of 3βHSD2 via a non-competitive mecha-
nism [61]. The fitted data suggest that NES and DRSP are non-competitive inhibitors of
3βHSD2, while NoMAC is a competitive inhibitor (Fig 6). It is noteworthy that the Ki values
determined for the fourth-generation progestins in this study were validated by their ability to
independently predict the inhibition of 3βHSD2 activity in the presence of 1 μM substrate and
inhibitor (S3 Fig).

To our knowledge, our study is the first to show that NES and/or its metabolites, NoMAC
and DRSP differentially suppress adrenal steroid biosynthesis and that this inhibition in the
production of steroid hormones in the H295R cells are in line with the inhibition of human

and lines) of NES, NoMAC, DRSP and trilostane. A Km of 0.85 ± 0.05 μM and Vmax of 31.1 ± 0.7 nmol/min/mg were

obtained in the absence of inhibitor. Three inhihitory mechanisms were fitted (S2 Fig) and the best fit mechanism is shown.

Each data point represents the mean ± SE of one experiment performed in duplicate. These results were validated by a

model predicting 3βHSD2 activity in an independent experiment (S3 Fig, dashed green line).

doi:10.1371/journal.pone.0164170.g006

Fig 7. NES, NoMAC and DRSP do not inhibit the mRNA expression of 3βHSD2 and CYP17A1 in the human H295R adrenocortical carcinoma

cell line. The H295R cell line was incubated with DMSO (vehicle control) or 1 μM NES, NoMAC or DRSP for 6 hours. Total RNA was isolated,

reversed transcribed to cDNA and real-time qPCR performed to determine the relative mRNA expression levels of (A) 3βHSD2 and (B) CYP17A1.

GAPDH was used as the reference gene. Results shown are the average of four independent experiments with each condition performed in duplicate

(± SEM).

doi:10.1371/journal.pone.0164170.g007
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3βHSD2 activity in the COS-1 cells. Despite the fact that other studies did not investigate the
effects of these fourth-generation progestins on the activity and/or mRNA expression of
3βHSD2, effects have been reported for first- and second-generation progestins [34, 37–39].
Our results are in agreement with the findings that MPA [37], as well as NET and LNG [38]
have no effects on the activity of rat ovarian 3βHSD. Conversely, using a yeast expression sys-
tem, Lee et al. have previously shown an inhibition of 3βHSD2 by MPA and determined a Ki of
3 μM [34]. Despite this relatively high Ki treatment of breast cancer patients with high doses of
MPA (serum concentrations of 0.14–1.7 μM) have previously been shown to decrease the
serum levels of cortisol, A4, DHEA-S and testosterone [24–27, 62, 63]. While we did not
observe inhibition with 1 μM MPA in our test system, we show potent inhibition of 3βHSD2
by NES, NoMAC and DRSP. Considering their potent Ki values, which are in the nanomolar
range and an order of magnitude lower than the Ki determined for MPA by Lee and co-workers
(1999), it is likely that NES, NoMAC and DRSP modulate steroid levels in vivo. Furthermore, it
is important to note that these validated Ki values fall within the serum ranges reported for the
contraceptive usage of NES (0.086–27.3 nM), NoMAC (3–33 nM) and DRSP (26.7–253 nM),
further highlighting the potential of these progestins to modulate steroid levels in vivo [64–71].
Indeed, results showing decreased concentrations of mineralocorticoidsand glucocorticoids in
the presence of NES and NoMAC, likely by the inhibition of 3βHSD2, suggest that the use of
these fourth-generation progestins may be beneficial for women suffering from metabolic syn-
dromes and/or CVDs caused by glucocorticoidand mineralocorticoidexcess [21, 68–70].

Furthermore, it has previously been shown that when DRSP was combined with ethinyl
estradiol in a combined oral contraceptive and administered to hyperandrogenic women diag-
nosed with polycystic ovary syndrome (PCOS), serum concentrations of total and free testos-
terone, A4 and DHEA-S were decreased [28]. Although the authors did not investigate the
effect of DRSP on the activity of any steroidogenic enzyme, they suggested that the decrease
may be due to inhibition of the 17α-hydroxylase and 17,20-lyase activities of CYP17A1, as they
found a decease in the ratio of 17OH-Prog/Prog and A4/17OH-Prog. Our study in the COS-1
cells directly investigating the inhibition of CYP17A1, showed that DRSP does indeed inhibit
the activty of this enzyme, and also the activity of 3βHSD2. While previous studies showed that
MPA inhibits the 17α-hydroxylase activity of rat ovarian CYP17A1 [37], our results are in
agreement with others showing that MPA has no effect on the activity of the human CYP17A1
[34]. Taken together, the inhibition of androgen production observedwith the fourth-genera-
tion progestins in our study, but not earlier generation progestins like MPA, suggest that the
use of the fourth-generation progestins may have better therapeutic benefits for women with
hyperandrogenism associated disorders such as PCOS than the earlier generations. Although a
number of different progestins are used in the treatment of PCOS, the degree of androgenicity
of the progestin is an important consideration. The fact that NES, NoMAC and DRSP do not
display any androgenic properties, while the selected earlier generation progestins used in this
study do [3], further supports the preferential use of the fourth-generation progestins to treat
PCOS.

The implications of decreased androgen production in other disorders or diseases such as
breast cancer, however, are not straightforward. For example, as epidemiological and case-
control studies indicate an association between elevated concentrations of androgens and
increased risk of developing breast cancer [72–75], decreased androgen production may be
advantageous in terms of androgen receptor (AR)-positive breast cancers. Conversely, the
observeddecrease of androgens may be detrimental as androgens and the AR have been
proposed to have protective roles in breast cancer (reviewed in [76, 77]). This complexity is fur-
ther highlighted by the fact that the use of both an androgenic progestin (MPA) and a non-
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androgenic progestin (NoMAC) used in HRT were shown to be associated with an increased
risk of developing breast cancer in postmenopausal women [78].

Conclusion

In summary, all three of the fourth-generation progestins investigated in this study had effects
on steroidogenesis, with effects observedwith NES and NoMAC being mostly similar, while
those observed for DRSP often differed. The results showing that NES, NoMAC and DRSP
inhibit 3βHSD2 activity, while DRSP inhibits the activities of both 3βHSD2 and CYP17A1 in
the COS-1 cells, correlate to the changes observed in the biosynthesis of steroid hormones in
the H295R cell line. Although the concentration (1 μM) of the progestins used in this study
are supraphysiological, the Ki values determined for the inhibition of 3βHSD2 fall within the
serum ranges reported for the contraceptive usage of NES, NoMAC and DRSP, supporting the
likelihood that these progestins affect adrenal steroidogenesis in vivo. The findings of our study
further highlight the fact that, although progestins are all designed to mimic the biological
activity of Prog, relatively minor differences in their structures may cause profound alterations
in their biochemical activity.

Supporting Information

S1 Fig. Viability of basal and forskolin (FSK)-stimulatedH295R cells in the presence of dif-
ferent generation progestins.Cells were incubated for 48 hours with DMSO (vehicle control)
or 1 μM MPA, NET-A, LNG, GES, NES, NoMAC or DRSP in the absence or presence of
10 μM FSK. Cell viability was measured using the MTT assay and results are expressed as fold
proliferation relative to DMSO = 1. Results shown are the average of three independent experi-
ments (±SEM) performed in triplicate.
(TIF)

S2 Fig. Michaelis-Menten plots of 3βHSD activity in the absence or presence of NES,
NoMAC, DRSP and trilostane.COS-1 cells were transiently transfected with a plasmid
expressing human 3βHSD2 (pCDNA6-hHSD3β2-V5), and subsequently treated with Preg
(0.5, 1, 2, 4 and 8 μM) in the presence of 0.0, 0.2 or 0.5 μM NES, NoMAC, DRSP or trilostane.
The conversion of Preg to Prog was analyzed using UPLC-MS/MS. Three inhibitory mecha-
nisms were fitted to the data sets: competitive, non-competitive and uncompetitive, using the
rate equations shown in the figure. Confidence intervals (95%) for the fits are indicated in the
plots with grey fillings. Each data point represents the mean ± SE of at least duplicate experi-
ments.
(TIF)

S3 Fig. PredictedMichaelis-Menten plots of 3βHSD2 in the presence of 1 μM NES,
NoMAC and DRSP. Michaelis-Menten plots were predicted (dashed green line) based on the
data presented in Fig 6. The predicted Vmax in the presence of 1 μM NES (0.16 ± 0.03 nmol/
min/mg), NoMAC (1.04 ± 0.30 nmol/min/mg) and DRSP (3.16 ± 0.87 nmol/min/mg) corre-
lates with the residual activities determined experimentally (NES, 0.43 ± 0.01 nmol/min/mg;
NoMAC, 2.62 ± 0.11 nmol/min/mg;DRSP, 3.39 ± 0.19 nmol/min/mg) as shown in Fig 5A.
(TIF)

S1 Table. Basal and FSK-stimulated production of steroid metabolites in the human adre-
nal H295R cell line.
(PDF)
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