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Abstract
Rotating machinery is one of the most typical types of mechanical equipment and plays a

significant role in industrial applications. Condition monitoring and fault diagnosis of rotating

machinery has gained wide attention for its significance in preventing catastrophic accident

and guaranteeing sufficient maintenance. With the development of science and technology,

fault diagnosis methods based on multi-disciplines are becoming the focus in the field of

fault diagnosis of rotating machinery. This paper presents a multi-discipline method based

on image-processing for fault diagnosis of rotating machinery. Different from traditional

analysis method in one-dimensional space, this study employs computing method in the

field of image processing to realize automatic feature extraction and fault diagnosis in a

two-dimensional space. The proposed method mainly includes the following steps. First,

the vibration signal is transformed into a bi-spectrum contour map utilizing bi-spectrum

technology, which provides a basis for the following image-based feature extraction. Then,

an emerging approach in the field of image processing for feature extraction, speeded-up

robust features, is employed to automatically exact fault features from the transformed bi-

spectrum contour map and finally form a high-dimensional feature vector. To reduce the

dimensionality of the feature vector, thus highlighting main fault features and reducing sub-

sequent computing resources, t-Distributed Stochastic Neighbor Embedding is adopt to

reduce the dimensionality of the feature vector. At last, probabilistic neural network is intro-

duced for fault identification. Two typical rotating machinery, axial piston hydraulic pump

and self-priming centrifugal pumps, are selected to demonstrate the effectiveness of the

proposed method. Results show that the proposed method based on image-processing

achieves a high accuracy, thus providing a highly effective means to fault diagnosis for

rotating machinery.
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Introduction

Rotating machinery, an important and common component in most critical systems, is vital to
the reliable operation of the entire system. An unexpected failure of a rotating machinerymay
cause sudden breakdown of the whole machinery equipment, bringing about enormous finan-
cial losses or even personnel casualties [1, 2]. Therefore, conditionmonitoring and fault diag-
nosis of rotating machinery is of utmost significance for security and reliability in industrial
manufacturing [3, 4].

Rotating machinery under an abnormal state is accompanied with changes in vibration [5].
Thus, the vibration signal analysis method has beenwidely applied to fault diagnostics of rotat-
ing machinery. Feature extraction is a vital stage that determines diagnosis accuracy [6]. Consid-
erable research has been performed on feature extraction based on signal decomposition[7],
among which self-adaptive decompositionmethods have beenwidely spread. Empirical mode
decomposition (EMD) [7–10] and local mean decomposition (LMD) [11, 12] are two typical
self-adaptive decompositionmethods. However, problems such as envelope error, modemixing
and end effect exist in EMD and LMD, which directly influence the diagnostic accuracy [12, 13].
Furthermore, EMD and LMD are usually used combined with time domain feature extraction,
such as complexity measures [14], skewness, and kurtosis [15]. The selection of the time domain
features is usually performedmanually by field experts, whose knowledge and skill make differ-
ence in the diagnosis accuracy. The above disadvantages limit the application of these methods
in practice. Therefore, it is very necessary to put forward a fault diagnosismethodwhich can
realize automatic feature extractionwith a high accuracy and strong robustness.

Nowadays, with the rapid development of science and technology, fault diagnosis methods
based on multi-disciplines have attracted more and more attention of researchers in the field of
fault diagnosis.Many interdisciplinarymethods have been proposed for fault diagnosis. In ref-
erence [16], genetic algorithm (natural evolution theory) combined with support vector
machine (machine learning) is applied to bearings for fault diagnosis. In reference [17], ant col-
ony algorithm (bionics) is employed to realize fault diagnosis for rotating machinery. However,
few studies have been reported to realize fault diagnosis for rotating machinery employing cal-
culationmethods in the field of image processing. Essentially, fault diagnosis for rotating
machinery is a process of fault mode recognition, which is extremely similar to the process of
image recognition. Both fault classification and image recognition belong to the category of
pattern recognition. Therefore, it is of high feasibility to introduce the calculationmethods in
the field of image processing to fault diagnosis for rotating machinery.

In this paper, a novel approach based on image processing is presented to realize automatic
feature extraction for rotating machinerywith a high accuracy and strong robustness and
finally realize fault classification.

To introduce the computing method of image processing to the field of fault diagnosis, first
it is necessary to convert the vibration signal into an image. The higher order spectrummethod
is a typical signal processing method [18–21]; it has been developed rapidly over the past few
years and offers outstanding performance in processing non-Gaussian, non-linear, non-mini-
mum phase, and non-stationary signals, colored Gaussian noise, and blind signals [22]. High
order statistics (HOS) have been proved to provide abundant diagnostic information [23–26].
Bi-spectrum is a subset of higher order spectrumand is defined in terms of the third-order
cumulate. It retains phase information of the signal with a high resistance to noise [9, 27].
Therefore, the bi-spectrumcontour map is employed to realize the transformation from vibra-
tion signals to images.

Owing to the development of the image automatic feature extraction technique in recent
decades, the scale invariant feature transform (SIFT) method is recognized as the most
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appealing descriptor for practical uses and for matching features with good robustness and
high accuracy [28–30]. However, some obvious shortcomings associate with SIFT, such as high
resource consumption, high time complexity, and large computational time requirements [31].
To address these disadvantages, researchers have implemented various improvements to SIFT
[32–36]. In 2008, Bay et al. proposed the modified SIFT method, speeded up robust features
(SURF) [36], which provides faster and better performance in the feature point detection and
description scheme. SURF is combined with integral images and Haar wavelets with the char-
acteristics of rotation and scale invariance. As a novel feature extraction algorithm, SURF not
only brings an obvious advantage in the area of computational speed, but also performs excel-
lent in repeatability, distinctiveness and robustness equal or close to previous methods. Rotat-
ing machinery is susceptible to interference of working conditions and noise, the invariance of
SURF can extractmore stability fault features. Therefore, SURF is employed to extract fault fea-
tures from the transformed bi-spectrumcontour map.

The SURF algorithm generates a 64-dimensional feature vector for each detected feature
point. Considering the high dimensionality may result in feature redundancy and a waste of
resources for subsequent calculation, it is necessary to reduce the dimensionality of the SURF
feature vector. As an emerging dimensionality reduction technique, t-distributed stochastic
neighbor embedding (t-SNE) can maintain the consistency of neighborhoodprobability distri-
bution between high-dimensional and low-dimensional space, thus avoiding information loss
as much as possible [37]. Therefore, t-SNE is used to reduce the dimensionality of the SURF
feature vectors. Finally, a classical neural network, probabilistic neural network (PNN) is intro-
duced for identification of fault modes.

Two typical types of rotating machinery, axial piston hydraulic pump and self-priming
centrifugal pump, are selected to verify the proposed fault diagnosis method based on image
processing. The experimental results demonstrate that the proposed method reaches a high
accuracy.

Methodology

The proposedmethod contains four major step: (1) Image transformation of vibration signal
based on bi-spectrum. (2) Feature extraction based on SURF (3) Dimension reduction based
on t-SNE (4) Fault diagnosis based on PNN. Fig 1 shows the proposed fault diagnosis scheme.

Bi-spectrum counter map generation

A vibration signal of rotating machinery is a complex signal with non-liner, non-stationary sig-
nal with working noise, bi-spectrum is an effective tool to process such signal. Therefore, bi-
spectrum technology is applied to transform vibration signal into image (bi-spectrumcontour
map), which prepare for the application of image processing technology.

Higher-order spectrumare defined by higher-order cumulant. So does bi-spectrum,which
is defined by third-order cumulant. For a random signal x(t), the third-order cumulant can be
expressed as:

C3xðt1; t2Þ ¼ EfxðtÞxðt þ t1Þxðt þ t2Þg ð1Þ

By assuming that the third-order cumulant C3x(τ1, τ2) is convergent, the third-order cumu-
lant spectrum is defined as the 2-dimensional Fourier transform of the third-order cumulant:

Bxðw1;w2Þ ¼
X1

t1¼� 1

X

t2¼� 1

C3xðt1; t2Þe
� jðw1t1þw2t2Þ ð2Þ
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The bi-spectrumof a signal should be estimated under a certain “optimum” standard. In
practice, the bi-spectrumcan be estimated only according to limited observation data. The esti-
mated method of the bi-spectrummethod is the same as the power spectrumestimation
method, including the parametric model and non-parametricmodel. Compared with the indi-
rect method, less computation is required by the direct method [38, 39]. Therefore, the direct
estimation method is adopted in this paper. The flow of the algorithm is described as follows:

1. By assuming that the observation data are of finite length, the sampling frequency is fs. In
the bi-spectrumdomain, the number of the points are ω1 and ω2, and thus the frequency
sampling interval is Δ0 = fs/N0. Divide x(t) into k segments, with each segment containingM
points; (i.e.,N = KM), then subtract the mean of each sample.

2. The discrete flourier transform (DFT) is applied for the jth data segment; that is:

XjðlÞ ¼
1

M

XM

i¼1

xjðiÞexp � j
2p

M
il

� �

ð3Þ

3. According to the coefficient of DFT, calculate the bi-spectrumestimation of each segment:

Bjxðl1; l2Þ ¼
1

D
2

0

XL

k1¼� L1

XL

k2¼� L1

Xjðl1 þ k1ÞX
jðl2 þ k2ÞX

jðl1 þ k1 þ l2 þ k2Þ ð4Þ

4. According to the result of the bi-spectrumestimation Bjxxðl1; l2Þ of each segment, calcu-
late the mean of Bjxxðl1; l2Þ and then obtain the bi-spectrumestimate of the observation

Fig 1. The proposed fault diagnosis scheme based on image processing.

doi:10.1371/journal.pone.0164111.g001
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data x(i):

Bxðo1;o2Þ ¼
1

K

Xk

j¼1

Bjxðo1;o2Þ ð5Þ

Where ω1 = [2πfs/N0]λ1, ω2 = [2πfs/N0]λ2.

Feature extraction based on SURF

After the completion of the image conversion, the next step is to use the technology of image
processing to extract the fault information contained in the bi-spectrumcontour map. As a
classical method in the field of image processing, SURF process the advantages of high preci-
sion and high speed. Its application is has been found in the field of visual tracking, underwater
motion estimation, and other related fields for its novelty. Herein, SURF is employed to extract
and describe feature points of the bi-spectrumcontour map. The basic procedure is as follows:

Feature point detection. Feature point detection in the SURF algorithm is based on Hes-
sian matrices; the feature point is located according to the local maximum of the Hessian
matrix. Consider a certain point (x, y) in row x, column y and image I. The Hessian matrix
H(x, σ) at x with scale σGaussian filter is defined as:

Hðx; sÞ ¼
Lxxðx; sÞ Lxyðx; sÞ

Lxxðx; sÞ Lyyðx; sÞ

" #

ð6Þ

where Lxx(x, σ), Lxy(x, σ), Lyy(x, σ) are the second-order partial derivative and two-dimension
convolution of point (x, y) of the image I, respectively.

The Gaussian function is applicable in scale-space analysis, but in practical application pro-
cess es, it needs to be discretized and cropped, as shown in the left column of Fig 2. This results
in a loss in repeatability during the process of image rotation around oddmultiples of π/4.
However, it is inevitable that it be discretized and cropped. Given Lowe’s success in approxi-
mating LoGwith DoG, Bay improved the approximation for the second-order Gaussian deriv-
ative even further with box filters, as shown in right column of Fig 2. There is a clear benefit for
processing integral images with a convolution template after approximation. The template con-
sists of a simple rectangle whose computation is independent of the size of the template.
Hence, the computational efficiency is greatly accelerated.

In [36], experimental data indicates that the approximation does not degrade the perfor-
mance of the convolution template. The convolution template in Fig 2 are approximations of a
Gaussian functionwith σ = 1.2, which is the lowest scale for calculating the blob response
maps. We denote the approximation template and convolution by Dxx,Dyy and Dxy, which are
used instead of Lxx(x, σ), Lxy(x, σ), and Lyy(x, σ) to obtain the approximate Hessian matrix H.
That is:

jHj ¼ DxyðXÞDxyðXÞ � ½0:9DxyðXÞ�
2

ð7Þ

wherew is set as 0.9. According to (1), we calculate and record the response of each point to
obtain the response map in scale σ.

Scale space representation. To search the feature points in the image with reducing-
enlarging relation, the detection operator should have the ability to search the feature point in
the same physical location at different scale. Scale space is usually donated by an image pyra-
mid. The images are repeatedly smoothed with a Gaussian filter and then sub-sampled for sake
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of achieving a higher level of the pyramid. Lowe subtracts these pyramid layers to obtain the
DoG (Difference of Gaussians) images where edges and blobs can be found.

In contrast to this method, SURF processes the original image with box filters of different
size. Owning to the application of an integral image, the computation speed between box filters
of different size are the same. In the left column of Fig 3, two 9�9 approximate templates are
considered to be an initial scale template (approximating Gaussian derivatives with σ = 1.2). S
refers to the scale of approximate template, where s = σ = 1.2. The initial layer is noted as the
convolution between approximate templates of the initial scale of the image. The following lay-
ers are obtained by the convolution between gradually increasing s and the initial image. To
guarantee the existence of cardinality and its central pixel, adjacent templates always differ by
an even number.

Each octave consists of 4 templates. In the first octave, adjacent templates differ by 6 pixels;
in the second octave, adjacent templates differ by 8 pixel. In the third octave, adjacent tem-
plates differ by 24 pixels, and so on. If the size of a template is N�N, the scale of the template is
S = 1.2�9/N.We calculate the response at each point and record the response; the response
map can be obtained at a different scale. Thus, a 3-dimension scale space can be constructed.

Interest point localization. We seek the extremum of scale image in (x, y, σ) according to
the Fast-Hessian matrix. First, non-maxima suppression is performed at the extreme points of

Fig 2. Approximated second order derivatives with box filters.

doi:10.1371/journal.pone.0164111.g002
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the 3×3×3 circular neighborhood.Only extreme points greater or less than 26 compared to the
neighborhoodvalue of the scale adjacent up and down and the scale itself can be selected as fea-
ture points. To locate candidate feature points with sub-pixel resolution, we interpolate
between scale space and image space to obtain a stable feature point and its scale value in its
location.

Description of the detected feature point. To enable the descriptor to exhibit rotation
invariance, the direction of feature point should be obtained first. Construct a wavelet response
whose center is a feature point and whose radius is 6 s (s is the scale of the feature point). Pro-
cess the image with Haar wavelet of size 4 s; the wavelet response in the direction of the x-axis
and y-axis can be obtained. Haar wavelet templates are shown in Fig 4. The template on the left
is used to calculate the response in the x-axis direction, whereas the one on the right is used to
calculate the response in the y-axis direction. The black parts are denoted by -1, and the white
parts are denoted by +1.

The neighborhoodof the wavelet response is in the directions of the x-axis and y-axis; assign
different Gaussian weight coefficients to these responses. A local direction vector is formed by
summing the Harr wavelet in the direction of the x-axis and y-axis within 60°. Traverse the
entire circle, then select the direction of the longest vector as the main direction of this feature
point. The main direction determination of the feature point is illustrated in Fig 5.

Construct SURF feature vector. Construct a window region whose center is a feature
point and whose side length is 20σ. Next, divide the window region into 4×4 sub-regions. A
5×5 sampling point is obtained from the sub-region. Seek the wavelet response in the directions
of the x-axis and y-axis of each sampling point, donated as dx and dy, respectively. A Gaussian
filter is applied to dx and dy in each sub-region. The filter center is taken as the feature point,
and a four-dimensional eigenvector (Sdx, Sdy, S|dx|, S|dy|) is formed by summing dx, dy,
|dx|, |dy| in each sub-region. The four-dimensional eigenvector makes up 4 dimensions of the

Fig 3. Filters Dxy for two successive scale levels (9×9 and 15×15).

doi:10.1371/journal.pone.0164111.g003
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descriptor. Each descriptor consists of 4 dimensions. Thus, 4×4×4 = 64 dimensions are
obtained and constitute the SURF descriptor.

Dimensionality reduction based on t-SNE

The feature points extracted by SURF are described in terms of a 64-dimensional descriptor.
The high dimensionality will result in feature redundancy and a waste of resources for subse-
quent calculation. Therefore, it is necessary to reduce the dimensionality of the SURF feature
vector. Manifold learningmethods are widely used dimensionality reductionmethods, which
can be divided into two types, linear methods and nonlinearmethods. Linearmanifold learning
methods include principal component analysis (PCA), multidimensional scaling (MDS), etc.;
nonlinear manifold learningmethods include Isometric Feature Mapping (Isomap), locally-
linear bedding (LLE), etc[40].

Stochastic neighbor embedding (SNE) is one of the best performed nonlinear manifold
learning algorithmwhose core idea is to maintain the consistency of neighborhoodprobability
distribution between high-dimensional and low-dimensional space. SNE transfers traditional
Euclidean distance-based similarity measurement to conditional probability-based similarity
measurement: in high dimensional observation space, the Gaussian distribution is adopted to
simulate the similarity relationship between observation samples. Similarity between xi and xj

Fig 4. Haar wavelet filters.

doi:10.1371/journal.pone.0164111.g004

Fig 5. Determining the main direction of the feature point.

doi:10.1371/journal.pone.0164111.g005
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pj|i is denoted as follows:

pjji ¼
expð� kxj � xik

2
=2si

2Þ
P

k6¼iexp � kxj � xik
2
=2si

2
ð8Þ

Where σi is the bandwidth of the Gaussian kernel function in the observation sample xi. pj|i is
the probability of xj chosen by xi as its neighbor sample. The parameter pj|i obeys a Gaussian
distribution in which the variance is s2

i and the mean value is xi. The probability of xi and xj
being adjacent to each other is

pij ¼
pjji þ pijj

2n
ð9Þ

In low-dimensional space, SNE continues to adopt the Gaussian distribution to measure the
similarity between low-distinction samples. However, two obvious shortcomings exists with
SNE: (1) the objective function is too complex to optimize, and the gradient is not as concise as
desired; (2) the so-called “crowding problem”; that is, when the data are far apart from each
other in high-dimensional space, they must be gathered in the process of mapping to low-
dimensional space. In response, t-distributed stochastic neighbor embedding (t-SNE) is intro-
duced to alleviate these problems[37].

To solve the first problem, the characteristic of symmetry is adopted to simplify the objec-
tive function and optimize the gradient form, which is referred to as symmetric SNE. Accord-
ing to probability theory, the SNE objective functionminimizes the sum of distances of the
conditional probability distribution pj|i (high-dimension) and pi|j (low-dimension) for corre-
sponding points. It equals the two following joint probability distributions of P (high-dimen-
sion) and Q (low-dimension):

C ¼ KLðPkQÞ ¼
X

i

X

j

pijlog
pij
qij

ð10Þ

After adopting a joint probability distribution instead of a conditional probability distribu-
tion, the formula is more concise and understandable.

As for the second question, the t-distribution function is introduce to alleviate the “crowd-
ing problem”. That is, the t-distribution function is used to measure the similarity of points in
low-dimensional space. The joint probability distribution function is as follows:

qij ¼
ð1þ kyi � yjk

2

2
Þ
� 1

X

k6¼1
ð1þ kyi � yjk

2

2
Þ
� 1

ð11Þ

Here, the t-distribution function (DOF is 1) is applied because of its special advantageous char-
acteristic: ð1þkyi � yjk

2

2
Þ
� 1 is the reciprocal of the distance of points far from each other in low-

dimensional space to kyi−ykk2. That means that in low-dimensional space, the presentation of the
joint probability distribution is insensitive to the distance of points. In addition, in theory, the t-
distribution functionoffers the same performance as the Gaussian functionbecause the t-distribu-
tion function can be express as the infinity Gaussian function.Thus, the gradient of t-SNE is:

dC
dyi
¼ 4

X

j

ðpij � qijÞðyi � yjÞð1þ kyi � yjk
2

2
Þ
� 1

ð12Þ

In conclusion, t-SNE focuses on:
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1. The characteristic of non-similarity is associated with points far from each other. The char-
acteristic of similarity is associated with points close to each other. The t-distribution func-
tion is introduced to exert an “exclusion” to process the non-similar points;

2. The application of the t-distribution functionmake it easier to optimize.

The t-SNE approach applies a probability density distribution function to measure the simi-
larity and distribution characteristics. Then, t-SNE accomplishes property preservation by
minimizing the K-L distance probability density in high-dimensional and low-dimensional
space. The t-distribution function is employed to measure the similarity of points in low-
dimensional space, which simplifies the gradient form and improves computational speed.
Most important is to better process the non-similarity points and thus alleviate the “crowding
problem”.

In most research reports, t-SNE exhibits better performance than Sammonmapping, iso-
map and locally linear embedding.

Fault diagnosis based on PNN

PNN is a feedforward neural network developed from radial basis function; its theoretical basis
is the Bayes minimum risk rule (Bayes decision theory). As one of the radial basis function net-
works, it can be used for pattern recognition[41].

Fault diagnosis based on PNN is a generally acceptable decision-makingmethod in proba-
bility statistics. By assuming faults mode A and B, for fault feature sample X to be recognized,
according to Bayes minimum risk rule, ifHALAFA(X)>HBLBFB(X), X 2 A; ifHALAFA(X)<
HBLBFB(X), X 2 B. Here, HA andHB denote the prior probability of fault mode A and B. LA is
the cost factor of classifying feature X sample (belonging to A) into mode B falsely. LB is the
cost factor of classifying feature sample X (belonging to B) into mode A falsely. FA and FB are
the density functions of fault mode A, B. Generally, they can only be obtained by the statistic of
the fault feature sample, which cannot be obtained precisely. The density function can be esti-
mated as follows:

FAðXÞ ¼
1

ð2pÞ
p=2

d
p

1

mt

X
exp �

ðX � XAiÞ
T
ðX � XAiÞ

2d
2

� �

ð13Þ

where XAi is the i th training vector of fault mode A;mt is the total number of training samples
of fault mode A; and δ is a smoothing parameter whose value determines the width of the
mitriform curve centered on samples.

PNN is a feedforward neural network with a parallel 4-year structure: input layer, pattern
layer, summation layer and output layer, as shown in Fig 6. The input layer passes input sam-
ples to each node of the pattern layer; the pattern layer weighted summation input vector is
passed by input nodes, which then pass it to the summation layer after calculation by the non-
linear operator. The purpose of the summation layer is to sum up the input from the pattern
layer and obtain the estimated probability densities. The classification result selected by the
output layer is the maximum of the output of the summation layer in terms of the correspond-
ing classification results.

Experiment Results

In order to verify the effectiveness of the proposedmethod, two typical rotating machinery,
self-priming centrifugal pump and axial piston hydraulic pump are selected for case
verification.

Fault Diagnosis for Rotating Machinery based on Image Processing
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Case 1. Fault diagnosis for self-priming centrifugal pump based on

SURF and t-SNE

(1) Data preparation. The data of self-priming centrifugal pump are collected on a self-
priming centrifugal pump data acquisition system, as shown in Fig 7. The acceleration sensor
is installed above the motor housing, and the sensor is fixed on a specific pedestal.

According to the requirement of fault diagnosis for centrifugal pump, a data acquisition
experimental scheme is created for the fault insertion test. The test covers primarily fault
modes. The experiment items are listed in Table 1.

Fig 6. Basic structure of PNN.

doi:10.1371/journal.pone.0164111.g006

Fig 7. Self-priming centrifugal pump data acquisition system.

doi:10.1371/journal.pone.0164111.g007
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In the experiment, the rotation speed is 2,900/min. An acceleration sensor is employed
when sampling. The sample frequency is 10239Hz.

Vibration data are collected under normal conditions and fault conditions, including bear-
ing roller wearing, inner race wearing, and outer race wearing fault conditions, as well as impel-
ler wearing fault condition. The sampling time is 2s for each set, and one set is collected every 5
seconds.

(2) Feature extraction based on SURF and t-SNE. Figs 8–12 shows the bi-spectrum
counter maps of bearing roller wearing, inner race wearing, outer race wearing, and normal
conditions, and centrifugal pump impeller wearing fault condition, respectively. For each con-
dition, three groups of data sets are selected to generate bi-spectrumcounter maps for
comparison.

Table 1. Experiment items of centrifugal pumps fault injection.

Test object Failure test Normal test

rolling bearings bearing inner race wearing test Bearing normal operation test

bearing outer race wearing test

bearing rollers wearing test

Impeller impeller wearing test

doi:10.1371/journal.pone.0164111.t001

Fig 8. Bi-spectrum counter maps under bearing roller wearing fault condition.

doi:10.1371/journal.pone.0164111.g008

Fig 9. Bi-spectrum counter maps under bearing inner race wearing fault condition.

doi:10.1371/journal.pone.0164111.g009
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In the experiment, the SURF descriptor extracts the feature point of the bi-spectrumwith
64-dimension form. By using t-SNE, the origin features of the datasets are reduced automati-
cally to 20 dimensions. Fig 13 shows the distribution of the first three features extracted using
t-SNE and without using t-SNE, respectively. From the first three features, we can conclude

Fig 12. Bi-spectrum counter maps under impeller wearing fault condition.

doi:10.1371/journal.pone.0164111.g012

Fig 10. Bi-spectrum counter maps under bearing outer race wearing fault condition.

doi:10.1371/journal.pone.0164111.g010

Fig 11. Bi-spectrum counter maps under normal condition.

doi:10.1371/journal.pone.0164111.g011
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that the feature information is more concentrated and exhibits a strong ability for separability
after dimension reduction by t-SNE, which provides a desirable input for classification.

(3) Fault diagnosis result based on PNN. The input eigenvector of PNN is extracted by
SURF and t-SNE. To display the result visually, the classification result is contrasted with the
actual result. The accuracy rate is defined as the odds ratio of the correct results and the total
results.

Four set cross validation is adopted to verify the accuracy of the proposedmethod. For each
fault mode, 60 sets of data are collected. The length of the data is 1024. Divide the 60 sets into 4
groups; each group is selected as training data in turn, whereas the others are selected as test
data. The composition of the data is shown as Table 2.

The fault diagnosis of PNN is shown as follows. Fig 14 show the results of 4 set cross valida-
tion. The red circle is the actual fault category, and the blue triangle is the fault diagnosis result.
Annotations 1~5 in vertical axis represent the bearing roller wearing, the bearing inner race
wearing, the normal condition, the centrifugal pump impeller wearing and the bearing outer
race wearing. Table 3 presents a summary of the cross-validation results.

From the diagnosis of PNN we can conclude that all of the accuracy rates exceed 96%. The
cross- validation results of the first, second, third, and fourth sets are 99.11%, 100.00%, 96%,
and 98.22%, respectively. Average classification accuracy is as high as 98.33%, which verifies
the effectiveness of the proposedmethod.

Fig 13. The first three features extracted using t-SNE (a) and without using t-SNE (b).

doi:10.1371/journal.pone.0164111.g013

Table 2. The data composition of the self-priming centrifugal pump for cross validation.

bearing roller

wearing

bearing inner race

wearing

normal centrifugal pump impeller

wearing

the bearing outer race

wearing

total

amount

number of data

points

60 60 60 60 60 300

amount of training

data

15 15 15 15 15 75

amount of test data 45 45 45 45 45 225

doi:10.1371/journal.pone.0164111.t002
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Fig 14. Results of 4 groups of cross validation.

doi:10.1371/journal.pone.0164111.g014

Table 3. The error rate of 4 groups of cross-validation.

Cross-

validation No.

bearing roller

wearing

bearing inner race

wearing

normal centrifugal pump impeller

wearing

bearing outer race

wearing

Mean value/

total

1 samples in

test set

45 45 45 45 45 225

error samples 0 0 0 2 0 2

accuracy 1 1 1 0.9556 1 0.9911

2 samples in

test set

45 45 45 45 45 135

error samples 0 0 0 0 0 0

accuracy 0 0 0 0 0 1

3 samples in

test set

45 45 45 45 45 225

error samples 0 0 0 6 1 9

accuracy 1 1 1 0.8667 0.9778 0.9600

4 samples in

test set

45 45 45 45 45 225

error samples 2 1 0 0 1 4

accuracy 0.9556 0.9778 1 1 0.9778 0.9822

doi:10.1371/journal.pone.0164111.t003
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Case 2. Fault diagnosis for axial piston hydraulic pump based on SURF

and t-SNE

(1) Data preparation. The testing equipment for the axial piston hydraulic pump is
shown in Fig 15. In the experiment, the rotation speed is set as 5280r/min and the correspond-
ing spindle frequency is 88Hz. An accelerograph is installed at the end face of the pump. The
sample frequency is 1k Hz. The data collected contains fault modes of normal, piston shoes
and swashplate wearing, and valve plate wearing. A data set of 500 points for each team is
selected for analysis.

(2) Feature extraction based on SURF and t-SNE. Bi-spectrumestimation using the
direct method for an axial piston hydraulic pump system is conducted.We segment each sam-
ple into M records of 512 points each. The spectrumcontour map of normal, piston shoes and
swashplate wearing, and valve plate wearing are shown in Figs 16–18, respectively. The bi-spec-
trum of three data sets are selected for comparison.

From the spectrumcontour it can be observed that the same types of fault mode are similar;
although there are obvious differences between different fault modes, there are invariant fea-
tures between the same fault modes. The differences between different fault modes can be used
to distinguish fault types.

In the experiment, the SURF descriptor converts the bi-spectrum into a 64-dimension vec-
tor. Using t-SNE, the origin features of the datasets are reduced automatically to 20 dimen-
sions. Fig 19 shows the distribution of the first three features extracted using t-SNE and
without using t-SNE. From the first three features, we can conclude that the feature informa-
tion is more concentrated and exhibits a strong ability of separability after dimension reduction
by t-SNE, which provides a desirable input for classification.

Fig 15. Axial piston hydraulic pump system.

doi:10.1371/journal.pone.0164111.g015
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(3) Fault diagnosis result based on PNN. The input eigenvector of PNN is extracted by
SURF and t-SNE. To display the result visually, the classification result is contrasted with the
actual result. The accuracy rate is defined as the odds ratio of the correct results and the total
results.

Four set cross validation is adopted to verify the accuracy of the proposedmethod. For each
fault mode, 60 sets of data are collected. The data set length is 500. We divide the 60 sets into 4
groups; each group is selected as training data in turn, whereas the others are selected as test
data. The composition of the data is shown as Table 4.

The fault diagnosis of PNN is shown as follows. Fig 20 show the results of 4 sets cross valida-
tion. The red circle is the actual fault category, and the blue triangle is the fault diagnosis result.

Fig 16. Bi-spectrum counter map of normal.

doi:10.1371/journal.pone.0164111.g016

Fig 17. Bi-spectrum counter map of valve plate wearing.

doi:10.1371/journal.pone.0164111.g017

Fig 18. Bi-spectrum counter map of piston shoes and swashplate wearing.

doi:10.1371/journal.pone.0164111.g018
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The numbers 1~3 in the vertical axis represent normal, piston shoes and swashplate wearing
and valve plate wearing. Table 5 presents a summary of the cross validation results.

From the results diagnosed by PNN, we can conclude that the accuracy rate of all four set
cross validation tests has exceeded to 97%. The cross- validation results of the first, second,
third, and fourth sets are 97.04%, 100.00%, 100.00%, and 97.78%, respectively. Average classifi-
cation accuracy is as high as 98.71%, which verifies the effectiveness of the proposedmethod.

Conclusions

In this paper, we present a novel rotating machinery diagnosismethod based on image recogni-
tion that contains four major steps: First, the bi-spectrum is employed to transform the initial
vibration signal into an image (bi-spectrumcounter map). Next, SURF is first introduced to
extract feature points of the image automatically. To reduce the dimension while describing
the feature points accurately as much as possible, the manifold dimension reductionmethod t-
SNE is used to map the high-dimensional features to low-dimensional space. Based on the fea-
ture vectors extracted by SURF and t-SNE, PNN is applied to enable fault mode recognition.

The proposed image-recognition-basedfault diagnosticmethod for rotating machine first
introduces the image interest point extractionmethod to provide a fault diagnosis and achieve
feature extraction of the bi-spectrumautomatically. Thus, the method avoids the limitations of
relying on a diagnostician for feature extraction. Favorable results for two types of typical rotat-
ing machinery demonstrate that our method can improve robustness and generalization ability
while maintaining accuracy of classification. Our subsequent work will be focused as follows:

Fig 19. The first three features extracted using t-SNE (a) and without using t-SNE (b).

doi:10.1371/journal.pone.0164111.g019

Table 4. The data composition of axial piston hydraulic pump for cross validation.

normal piston shoes and swashplate wearing valve plate wearing Total

number of data points 60 60 60 180

amount of training data 15 15 15 45

amount of testing data 45 45 45 135

doi:10.1371/journal.pone.0164111.t004
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1. Apply this method to more types of machinery.

2. Improve computing speed while maintaining diagnostic accuracy.

3. Conduct further research about the fault diagnosis technologies with fluctuated working
conditions.

Fig 20. Result of 4 set cross validation.

doi:10.1371/journal.pone.0164111.g020

Table 5. The error rate of 4 groups of cross-validation.

No. of cross validation Normal piston shoes and swashplate wearing valve plate wearing mean value/total

1 samples in test set 45 45 45 135

error samples 0 4 0 4

accuracy 100% 91.11% 100% 97.04%

2 samples in test set 45 45 45 135

error samples 0 0 0 0

accuracy 100% 100% 100% 100%

3 samples in test set 45 45 45 135

error samples 0 0 0 0

accuracy 100% 100% 100% 100%

4 samples in test set 45 45 45 135

error samples 2 0 0 2

accuracy 95.56% 100% 100% 97.78%

doi:10.1371/journal.pone.0164111.t005
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