@° PLOS | ONE

CrossMark

click for updates

G OPEN ACCESS

Citation: Horiguchi K, Yako H, Yoshida S, Fujiwara
K, Tsukada T, Kanno N, et al. (2016) S100p-
Positive Cells of Mesenchymal Origin Reside in the
Anterior Lobe of the Embryonic Pituitary Gland.
PLoS ONE 11(10): 0163981. doi:10.1371/journal.
pone.0163981

Editor: Wenhui Hu, Temple University School of
Medicine, UNITED STATES

Received: June 23,2016
Accepted: September 16, 2016
Published: October 3, 2016

Copyright: © 2016 Horiguchi et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information
file.

Funding: The funders had no role in study design,
data collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

S100p-Positive Cells of Mesenchymal Origin
Reside in the Anterior Lobe of the Embryonic
Pituitary Gland

Kotaro Horiguchi'-2®, Hideji Yako®®, Saishu Yoshida??3, Ken Fujiwara®,
Takehiro Tsukada®*, Naoko Kanno?, Hiroki Ueharu?®, Hiroto Nishihara®, Takako Kato?,
Takashi Yashiro®*, Yukio Kato?3*

1 Laboratory of Anatomy and Cell Biology, Department of Health Sciences, Kyorin University, Mitaka,
Tokyo, Japan, 2 Institute of Endocrinology, Meiji University, Kawasaki, Kanagawa, Japan, 3 Division of Life
Science, Graduate School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan, 4 Division of
Histology and Cell Biology, Department of Anatomy, Jichi Medical University School of Medicine,
Shimotsuke, Tochigi, Japan

® These authors contributed equally to this work.
* yukato @ meiji.ac.jp

Abstract

The anterior and intermediate lobes of the pituitary gland develop through invagination of
the oral ectoderm and as they are endocrine tissues, they participate in the maintenance

of vital functions via the synthesis and secretion of numerous hormones. We recently
observed that several extrapituitary cells invade the anterior lobe of the developing pituitary
gland. This raised the question of the origin(s) of these S100B-positive cells, which are not
classic endocrine cells but instead comprise a heterogeneous cell population with plural
roles, especially as stem/progenitor cells. To better understand the roles of these S100B-
positive cells, we performed immunohistochemical analysis using several markers in
S100B/GFP-TG rats, which express GFP in S100B-expressing cells under control of the
51008 promoter. GFP-positive cells were present as mesenchymal cells surrounding the
developing pituitary gland and at Atwell’s recess but were not present in the anterior lobe
on embryonic day 15.5. These cells were negative for SOX2, a pituitary stem/progenitor
marker, and PRRX1, a mesenchyme and pituitary stem/progenitor marker. However, three
days later, GFP-positive and PRRX1-positive (but SOX2-negative) cells were observed in
the parenchyma of the anterior lobe. Furthermore, some GFP-positive cells were positive
for vimentin, p75, isolectin B4, DESMIN, and Ki67. These data suggest that S1003-positive
cells of extrapituitary origin invade the anterior lobe, undergoing proliferation and diverse
transformation during pituitary organogenesis.

Introduction

The adenohypophysis, which is composed of anterior and intermediate lobes, develops through
invagination of the oral ectoderm under the influence of several growth factors by contacting
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the diencephalon and both sides of the ectoderm [1-3]. Both the anterior and intermediate
lobes contain six types of differentiated cells that play important roles in the synthesis and
secretion of several hormones. These endocrine cells are required in all vertebrates for the
maintenance of vital functions such as reproduction, metabolism, growth, and homeostasis.
Additionally, substantial populations of non-hormone-producing cells exist in the anterior and
intermediate lobes and participate in maintaining, assisting, and supplementing hormone-pro-
ducing cells and the vessel system. For quite some time, the non-endocrine cells that have
attracted the most attention are folliculo-stellate (FS) cells, which have a star-like shape [4].
S100B, a Ca2+-binding protein, is a marker for FS cells. SI00B-positive cells in the anterior lobe
are believed to have several roles, acting as stem cells, phagocytes, cells that regulate hormone
release, and cells that participate in cell-cell communication [5-7].

Recently accumulated data indicate that S100B-positive cells are composed of heterogeneous
cell populations that are relevant to several functions. Immunohistochemical analysis with
stem/progenitor cell markers revealed that SI00B-positive cells are composed of at least three
groups of cells [8]. S100B-positive cells can also be grouped into two cell types based on their
adhesiveness to the extracellular matrix: stellate-shaped cells and dendritic-like cells [9]. As
postulated previously, some S100B-positive cells have the ability to differentiate into skeletal
muscle cells [10-12]. More recently, we have reported that some S100B-positive cells are able
to differentiate into all hormone-producing cell types in the anterior and intermediate lobes
[13]. Despite these new findings, it is not yet clear how S100B-positive cells originate and
develop into plural states with diverse roles.

Facilitating further investigation of the roles of S100B-positive cells, a transgenic rat that
expresses green fluorescent protein (GFP) under the control of the S1008 promoter (S1003/
GFP-TG rat) has been generated [14]. Using the S1003/GFP-TG rat, we observed that S10083
transcripts are present in the embryonic pituitary on embryonic day 21.5 (E21.5) [8], though it
was previously believed that S100B-positive cells do not appear until approximately ten days
after birth [15]. In the present study, we examined the appearance of S100-positive cells in the
embryonic pituitary and their characteristics via immunohistochemistry using several marker
proteins. As a result, we observed that SI003/GFP-positive cells are present in the prenatal
pituitary, appearing by migration from Atwell's recess, an intraglandular fossa that receives
several blood vessels [16]. These cells are present with mesenchymal cells and other cell types
that surround the pituitary gland. They exhibit proliferative activity and co-expression with
several markers of vessels or neural crest cells, and they reflect transient, multipotent, and
migratory characteristics. Thus, our results suggest that some S1008-positive cells are extrapi-
tuitary in origin and partially participate in vasculogenesis and formation of the pituitary
gland.

Materials and Methods
Ethic Statement

All animal experiments were performed following approval from the Institutional Animal
Experiment Committee of Meiji University (IACUC 14-0012) and Jichi Medical University
(No. 13004 and 14051) and were conducted in accordance with the Institutional Regulations of
Animal Experiments and Fundamental Guidelines for Proper Conduct of Animal Experiments
and Related Activities in Academic Research Institutions under the jurisdiction of the Japanese
Ministry of Education, Culture, Sports, Science and Technology. All treatments were performed
under deep anesthesia and all efforts were made to minimize suffering. All rats did not become
severely ill or died at any time prior to the experimental endpoint. Rats were sacrificed by
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exsanguination from the right atrium under deep pentobarbital anesthesia (40mg/kg) and then
perfused with 4% paraformaldehyde in 0.05 M phosphate buffer (pH 7.4) for experiments.

Rats

S100B/GFP-TG rats [14] that express GFP under control of the promoter for the S100Sgene, a
marker of FS cells, were provided by Professor K. Inoue of Saitama University and bred in our
laboratory. Male rats 8-10 weeks old weighing 250-300 g were provided with ad libitum access
to food and water and housed under conditions of 12 h light and 12 h darkness.

Immunohistochemistry

Heads of S1003/GFP-TG embryonic rats on E15.5, E18.5, E19.5, and E20.5 were fixed in 4%
paraformaldehyde buffered with 0.05 M phosphate buffer (PB; pH 7.4) for 20-24 h at 4°C, fol-
lowed by immersion for more than two days in PB (pH 7.2) containing 30% sucrose at 4°C.
This was followed by embedding the samples in optimum cutting temperature (O.C.T.) com-
pound (Sakura Finetek Japan, Tokyo, Japan) at -80°C before sectioning. Frozen sections 10 pm
thick in the sagittal plane were mounted on glass slides (Matsunami, Osaka, Japan). Antigen
retrieval was performed with an Immunosaver (Nisshin EM, Tokyo, Japan) for 60 min at 80°C.
Slides were then washed in 20 mM 2-[4-(2-hydroxyethyl)piperazin-1-yl] ethanesulfonic acid
(pH 7.5) containing 100 mM NaCl (HEPES), followed by blocking in HEPES containing 0.4%
Triton X100 and 10% fetal bovine serum (FBS) or 1% bovine serum albumin (BSA). Primary
antibodies, antisera, and lectin were reacted overnight at 4°C. The primary antibodies used
were chicken immunoglobulin (Ig) Y against GFP (1:250 dilution, Aves Labs, Inc., Tigard, OR,
USA), rabbit IgG against cow S1008 (1:1000 dilution, Dako, Glostrup, Denmark), rabbit antise-
rum against rat PRRX1 (1:1,000 dilution, raised in our laboratory and assessed for specificity)
[17], rabbit antiserum against rat PRRX2 (1:1,000 dilution, raised in our laboratory and
assessed for specificity) [17], goat IgG against stem/progenitor cell marker human SOX2 (1:500
dilution, Neuromics, Edina, MN, USA), mouse monoclonal antibody against neural crest cell
marker rat p75 (1:100 dilution, Abcom, Plc., Cambridge, UK), mouse monoclonal antibody
against smooth muscle cell marker human o-SMA (1:100 dilution, Santa Cruz Biotechnology,
Santa Cruz, CA, USA), mouse antiserum against pericyte and a neural and mesenchymal stem/
progenitor cell marker rat NESTIN (1:250 dilution, BD Biosciences, San Jose, CA, USA),
mouse monoclonal antibody against mesenchymal cell marker pig VIMENTIN (1:10,000 dilu-
tion, Sigma-Aldrich Corp., St. Louis, MO, USA) and rabbit antibody against dividing cell
marker human Ki67 (1:500 dilution, Abcom, Plc.). Afterwards, a cocktail of the following
guinea pig antisera against pituitary hormones was used: anti-rat LHf (1:8,000 dilution), anti-
rat FSH (1:4,000 dilution), anti-rat TSH (1:16,000 dilution), and anti-rat PRL (1:4,000 dilu-
tion). The antisera were provided by the National Institute of Diabetes and Digestive and Kid-
ney Disease, courtesy of Dr. A. F. Parlow. Guinea pig anti-human ACTH (1:8,000 dilution)
and anti-human GH (1:1,000 dilution) antisera were provided by Dr. S. Tanaka, Shizuoka Uni-
versity, and isolectin B4-conjugated Dyelight 649 (1:100 dilution) was provided by Vector Lab-
oratories (Burlingame, CA, USA). Sections were washed with HEPES, followed by incubation
with secondary antibodies, performed with Cy3- or Cy5-conjugated AffiniPure donkey with
anti-goat, -mouse, -rabbit, and -guinea pig IgG and fluorescein isothiocyanate (FITC)-conju-
gated AffiniPure donkey with anti-chicken IgY (1:500 dilution, Jackson ImmunoResearch,
West Grove, PA, USA). The sections were again washed with HEPES and then enclosed in
VECTASHIELD Mounting Medium with 4',6-diamino-2-phenylindole (DAPI; Vector Labora-
tories) to stain nuclei. Immunofluorescence was observed under fluorescence microscopy with
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a BZ-9000 (KEYENCE, Osaka, Japan) and fluorescence confocal microscopy with a FV1000
(OLYMPUS, Tokyo, Japan).

Results
Appearance of GFP-positive cells at Atwell’s recess on E15.5

We first examined whether GFP-positive cells were present in the embryonic pituitary on
E15.5 by staining for GFP. As shown in Fig 1, GFP-positive cells were observed at Atwell’s
recess, while very strong GFP signals were observed beneath the pituitary gland (Fig 1A"). The
recess is characterized as an intraglandular fossa that receives several blood vessels [16]; we
have previously suggested that PRRX1-positive cells are present here and invade in order to
participate in pituitary vasculogenesis [18,19]. To further characterize the GFP-positive cells,

| PRRX1 || SOX2 |

E15.5

C
Cell number Area
Subject

Total GFP  GFP* PRRX1* SOX2*  DAPI (um?)
1 2 2 51 0 59 5,765
2 3 3 42 0 63 6,113
3 6 6 40 0 64 5,129
4 3 3 38 0 59 5,034

Total 14 14 171 0 245

(%) 9.7 57 69.8 0

* single positive cell

Fig 1. GFP-positive cells at Atwell’s recess on E15.5. Using sagittal sections of embryonic pituitaries on E15.5, immunostaining
was performed for GFP, PRRX1, and SOX2, which were visualized with FITC (A and B, green), Cy3 (A’ and B', red), and Cy5 (A" and
B", white), respectively. Cells positive for GFP only are indicated with yellow arrows. The boxed area in A" is enlarged in B-B'"". Each
cell type was counted in four independent pituitaries (n = 4), and results are listed in C. AL anterior lobe; /L intermediate lobe; PL
posterior lobe; AR Atwell’s recess. Bars = 50 um (A-A"") and 10 ym (B-B""').

doi:10.1371/journal.pone.0163981.9001
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we performed triple immunostaining for GFP, PRRX1, and SOX2. In the enlarged images (Fig
1B-1B""), it is clear that GFP-positive and PRRX1-positive cells do not overlap, while SOX2--
positive cells were not present at the recess, in the brain, or in the anterior pituitary gland (Fig
1A"~1B"). We analyzed the ratios of GFP- and PRRX1-positive cells to the total number of
cells in Atwell’s recess, counted by DAPI staining. GFP-positive cells accounted for approxi-
mately 5.7% of cells, while PRRX1-positive cells accounted for 69.8% (Fig 1C).

GFP-positive cells during pituitary development

We performed the same histochemical analysis for the late embryonic stages (Fig 2). Enlarged
images of the rostral part of the anterior pituitary on E18.5 and E19.5 reveal the presence of
GFP-single (Fig 2D-2D"", yellow arrow), PRRX1-single (Fig 2B-2B""', white open arrowhead),
and GFP/PRRX1-double positive cells (Fig 2B-2B"" and 2D-2D"", yellow open arrowheads).
Cells were counted in the anterior and intermediate lobes of four sections each on E18.5, E19.5,
and E20.5 (image data not shown), as listed in Fig 2F. Results showed that in the anterior lobe,
GFP-single and GFP/PRRX1-double positive cells were present at low frequencies (1.2-2.3%),
while PRRX1-single positive cells were more prevalent (18.9-19.8%; Fig 2F). SOX2-positive
cells were negative for GFP, and the frequency of SOX2/PRRX1-double cells was 10.7-15.5%
(Fig 2F). In the intermediate lobe, GFP/SOX2/PRRX1-triple positive cells (Fig 2E-2E"") were
observed, but GFP- and/or PRRX1-single and -double positive cells were absent on E19.5 and
E20.5 (Fig 2F).

We have previously shown that PRRX2, a cognate of PRRX1, is expressed in the mesen-
chyme cells surrounding the pituitary gland [19]. Triple immunostaining for GFP, SOX2, and
PRRX2 was performed on E20.5. As shown in S1 Fig, PRRX2-positive cells were not observed
in the pituitary gland, but they were present in the surrounding mesenchyme, especially outside
the posterior lobe. GFP/PRRX2-double positive cells, as well as GFP- and PRRX2-single posi-
tive cells (SIB-S1B"" Fig), were observed in the caudal and dorsal area outside of the pituitary.
As PRRX2 was not present in the pituitary, we did not include PRRX2 in further staining
experiments.

Proliferative ability of GFP-positive cells

Immunohistochemical analysis of Ki67, a cell division marker, was performed together with
GFP staining to verify the proliferative activity of GFP-positive cells on E20.5. There were
GFP-positive cells that were also positive for Ki67, and these were small and elongated (Fig 3).
In addition, a number of GFP-positive cells in the intermediate lobe were obviously positive for
Ki67. A count of the number of immunopositive cells in the anterior lobe showed that a quarter
of GFP-positive cells were also positive for Ki67 (Fig 3C).

Absence of pituitary hormones in GFP-positive cells

We recently demonstrated that a subset of SI00-positive cells prepared from adult rat anterior
lobes differentiate into hormone-producing cells [13]. To examine whether GFP-positive cells
colocalize with pituitary hormones, we used a cocktail of antibodies against LHB, FSHp, PRL,
TSHB, ACTH, and GH (HORMONES, Fig 4). Colocalization of HORMONES with GFP-posi-
tive cells was not observed (Fig 4B-4B""), while HORMONES/SOX2-double positive cells were
present in the anterior (Fig 4B-4B"", white arrowhead) and intermediate lobes (Fig 4C-4C"",
white arrowhead). In addition, GFP/SOX2-double positive cells were present in the intermedi-
ate lobes (Fig 4C-4C"", yellow open arrowhead).
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Fig 2. GFP-positive cells during pituitary development. Using sagittal sections of embryonic pituitaries on E18.5 (A-B"")
and E19.5 (C—E'"), immunostaining was performed for GFP, PRRX1, and SOX2, which were visualized with FITC (green), Cy3
(red), and Cy5 (white), respectively. GFP/PRRX1/SOX2-triple (yellow arrowheads), GFP/PRRX1-double (yellow open

arrowheads), PRRX1/SOX2-double (white arrowheads), GFP-single (yellow arrows) and PRRX1-single (white open

arrowheads) positive cells are indicated. The boxed areas in A and C are enlarged in B-B"', D-D"", and E-E""". Each cell type
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was counted (n=1for E18.5, n =2 for E19.5, and n = 2 for E20.5, with four slices each), and results are shown in F. AL anterior
lobe; IL intermediate lobe; PL posterior lobe. Bars = 50 um (A, C) and 10 um (B-B"" and D-E"").

doi:10.1371/journal.pone.0163981.9002

Characterization of non-endocrine GFP-positive cells

Several studies to date have postulated that extrapituitary cells, which are non-pituitary in ori-
gin, such as neural and mesenchymal stem/progenitor cells and vessel precursor cells, are pres-
ent in the pituitary gland [18-20]. GFP-positive cells can be clearly seen in Atwell’s recess but
not in the anterior pituitary at E15.5 (Fig 1B). To further characterize GFP-positive cells, histo-
chemical analysis using several cell markers was performed as follows.

First, as indicated in Fig 5, immunohistochemistry for p75, a neural crest cell marker [21],
together with staining for GFP and PRRX1 showed the presence of GFP/p75/PRRX1-triple
and GFP/Ki67-double positive cells, as well as p75/PRRX1-double positive cells. Notably, the

0
o
N
L
C
Cell Number
Slice Total GFP GFP/ Ki67 DAPI ajrr?)%)
GFP only Ki67 only
1 1 1 0 18 4 5758
2 3 2 120 48 5,664
3 1 1 0 15 50 5,848
4 3 2 1 13 53 5,288

Total 8 6 2 66 194

Fig 3. Double immunostaining for GFP and Ki67. Double immunostaining for GFP (green) and Ki67 (red)
was performed on a section on E20.5. The boxed area in A is enlarged in B-B". GFP/Ki67-double positive
(yellow open arrowheads) and GFP-single positive (yellow arrow) cells are indicated. Each cell type was
counted in the anterior lobe (n = 2, with one slice each), and results are shown in C. AL anterior lobe; IL
intermediate lobe; PL posterior lobe. Bars =50 pm (A) and 10 um (B-B").

doi:10.1371/journal.pone.0163981.9003

PLOS ONE | DOI:10.1371/journal.pone.0163981 October 3, 2016 7/18



o ®
@ ' PLOS | ONE §100B+ Mesenchymal Cells in Embryonic Pituitary

E20.5

Fig 4. Triple immunostaining for GFP, pituitary hormones, and SOX2. Triple immunostaining using a
section from E20.5 was performed for GFP (green), SOX2 (red), and pituitary hormones (white) using a
cocktail of antibodies against the hormones FSH, LHB, prolactin, TSHB, ACTH, and GH (HORMONES).
The boxed area in A is enlarged in B-B'’ and C—-C"'. GFP/SOX2-double positive (yellow open arrowheads),
SOX2/HORMONES-double positive (white arrowheads), GFP-single positive (yellow arrows), and
HORMONES-single positive (white open arrowheads) cells are indicated. AL anterior lobe; /L intermediate
lobe; PL posterior lobe. Bars = 50 ym (A) and 10 um (B—C"").

doi:10.1371/journal.pone.0163981.9004

"

p75-positive cells were elongated in shape (Fig 5B-5B""). Results revealed that 41.2% of GFP-
positive cells were GFP/Ki67-double positive cells (Fig 5C).

Immunohistochemical analysis of NESTIN, a neural and mesenchymal stem/progenitor cell
marker [22-25], together with GFP and PRRX1 staining revealed the presence of GFP/NES-
TIN/PRRX1-triple positive and GFP/PRRX1-double positive cells (Fig 6). Approximately 8.0%
of the NESTIN-positive cells were also positive for GFP (Fig 6C). Then, VIMENTIN, a mesen-
chymal progenitor cell marker [26], was immunostained together with GFP and PRRX1. The
results revealed a heterogeneous population of VIMENTIN-positive cells, with GFP/VIMEN-
TIN/PRRX1-triple positive cells, VIMENTIN/PRRX1-double positive cells, and VIMENTIN-
single positive cells (Fig 6E-6E""). Approximately 15.5% of the VIMENTIN-positive cells were
also positive to GFP (Fig 6F).

More recently, we have demonstrated that PRRX1-positive mesenchymal cells invade
through Atwell's recess during pituitary vasculogenesis [18,19]. To further verify the correla-
tion between GFP-positive cells and blood vessels, we performed a histochemical analysis with
fluorescence-labeled isolectin B4, a marker of vascular endothelial cells. A few isolectin B4-pos-
itive cells were observed in Atwell’s recess and the region surrounding the pituitary gland, but
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E20.5

C
Cell Number
Subject Total GFP  GFP/  p75 pap  Area (um?)
GFP only p75 only
1 - 1 2 7 45 5,885
2 5 3 2 3 42 5,207
e 9 K| 2 2 48 5,434
4 4 3 1 2 49 5,426

Total 17 10 7 14 184

Fig 5. Triple immunostaining for GFP, p75, and PRRX1. Triple immunostaining for GFP (green), the
neural crest marker p75 (white), and PRRX1 (red) was performed on E20.5. The boxed area in A is enlarged
in B-B""'. GFP/p75/PRRX1-triple (yellow arrowheads), GFP/p75-double (yellow open arrowheads), and p75/
PRRX1-double (white open arrowheads) positive cells are indicated. Counts of each cell type (n = 2, with two
slices each) is listed in C. AL anterior lobe; /L intermediate lobe; PL posterior lobe. Bars = 50 ym (A)

and10 ym (B-B'").

doi:10.1371/journal.pone.0163981.9005

none were observed in the anterior lobe on E15.5 (Fig 7). Notably, GFP/isolectin B4-double
positive cells were present at Atwell's recess, in addition to GFP-single and isolectin B4-single
positive cells (Fig 7B-7B"). GFP-positive and isolectin B4-positive cells were visible in the
parenchyma of the anterior pituitary on E18.5 (Fig 7D-7D""). GFP-positive cells were likely to
enter into the anterior lobe, and some were positive for isolectin B4. Each cell type was then
counted (Table 1). The frequency of GFP/isolectin B4-double positive cells in the parenchyma
of the anterior lobe on E18.5 (9/26, 34.6%) was slightly higher than that in Atwell’s recess on
E15.5 (6/38, 15.8%). In contrast, the frequency of total isolectin B4-positive cells decreased,
from 18.0% (38/208) in Atwell’s recess on E15.5 to 10.6% (26/246) in the parenchyma of the
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NESTIN PRRX1

E18.5

C
. Cell Number ,
Subject Total GFP  GFP/  Total  pap VE@ (M)
GFP only  NESTIN NESTIN
1 2 1 1 17 51 5,341
2 3 0 3 27 52 5,677
3 1 0 1 17 51 5,514
4 3 1 2 17 53 5,116
Total 9 2 7 88 208
VIMENTIN PRRX1 ‘ Merge |
Dv > _':_-;'_\\ '.~ 'D'"/ .
0 | IR - oS ] R
o ;
L
F
' Cell Number
Subject Total GFP  GFP/  Total pap ATe@(Hm?)
GFP only  VIMENTIN VIMENTIN
1 3 0 3 21 53 4,671
2 3 1 2 12 85 5,290
3 7 3 4 17 56 4,738
4 6 2 4 34 60 5,206
Total 19 6 13 84 224

Fig 6. Triple immunostaining for GFP, PRRX1, and NESTIN or VIMENTIN. Triple immunostaining for GFP
(green), PRRX1 (red), and NESTIN or VIMENTIN (white) was performed on E18.5. Merged images are shown
on the right. The boxed areasin A" and D" are enlarged in B-B™ and E-E”, respectively. GFP/PRRX1/
NESTIN- and GFP/PRRX1/VIMENTIN-triple positive, GFP/PRRX1- and GFP/VIMENTIN-double positive,
PRRX1/NESTIN- and PRRX1/VIMENTIN-double positive, and NESTIN- or VIMENTIN-single positive cells are
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indicated. Each cell type was counted, and the results are listed in C (n = 2 with two slices each) and F (n =1
with four slices). AL anterior lobe; IL intermediate lobe; PL posterior lobe. Bars =50 pm (A" and D"*) and 10 um
(B and E").

doi:10.1371/journal.pone.0163981.9006

anterior lobe on E18.5 (Table 1), reflecting the progress of cell differentiation and scattering in
the parenchyma.

Immunohistochemical analysis of DESMIN, a marker of immature and mature pericytes
[27], was performed together with analysis of GFP and isolectin B4 (Fig 8). DESMIN-positive
cells were observed along with isolectin B4-positive cells, some of which colocalized with GFP.
In addition, DESMIN/isolectin B4-double and DESMIN-single positive cells were observed.
GFP-positive cells were also positive for DESMIN at a frequency of 40.0% (6/15) (Fig 8C).
Finally, immunohistochemical analysis of a-SMA, an early vascular marker present in vascular
smooth muscle cells and pericytes [28], was performed. As shown in Fig 8D and 8E, a small
number of a-SMA-positive cells was observed and were negative for GFP. PRRX1-positive
cells were negative for a-SMA.

Discussion

S100B-positive cells play special roles as non-endocrine cells in the anterior lobe of the pituitary
gland. In the present study, we examined how S100B-positive cells arrive in the embryonic
pituitary. Thus, we have demonstrated for the first time that extrapituitary S100B-positive cells
exhibit diverse characteristics, such as those typical of vascular cells, mesenchymal cells, and
neural crest cells. They also exhibit proliferation activity and invade the embryonic anterior
lobe of the pituitary gland.

The S1008 protein is often used as a tumor marker, and it is believed to exhibit diverse bio-
logical functions [29-31]. S100p has attracted attention owing to its characteristic presence in
non-endocrine cells involved in various pituitary functions. Since the first observation of S1008
in the anterior pituitary [32], many studies have suggested that S100B-positive cells play several
distinct roles, such as being involved in phagocytosis, cell-cell communication, hormone
release, and the maintenance of cell resources as stem/progenitor cells [5-7]. S100B-positive
cells in the anterior pituitary can be grouped into three main types: astrocyte-like cells express-
ing glial fibrillary acidic protein and/or vimentin [33], epithelial cell-like cells expressing kera-
tin [34], and dendritic cell-like cells expressing interleukin-6 [9,35-37]. This might suggest the
presence of heterogeneous lineages of S1003-positive cells. Recently, we showed that a subset of
S100B-positive cells has the ability to differentiate into hormone-producing cells [12,13], con-
sistent with previous indications [38]. The generation of S100B-positive cells from SOX2-posi-
tive cells has been demonstrated using genetic lineage tracing [39]. These studies were
conducted with postnatal pituitaries, as it was believed that S100B-positive cells appear approx-
imately ten days after birth [15]. However, our previous study revealed the presence of S1003
transcripts in the embryonic pituitary [8], indicating that S100B-positive cells are already pres-
ent in the embryonic pituitary. Here, we demonstrated that S100B-positive cells at Atwell's
recess and in the embryonic anterior lobe are SOX2-negative, differing from SOX2-lineage
S100B-positive cells [39]. These appear by extrapituitary invasion with other mesenchymal
cells.

The oral ectoderm, a pituitary primordium, originates from the thickened epithelium of an
early neural primordium, the cranial placode of neural plate origin [40,41]. However, our
recent results suggest that non-neural-plate originating cells positive for PRRX1 and PRRX2
appear in this tissue during organogenesis [18,19,42]. PRRX1 (also known as MHox) and
PRRX2 (also known as S8) are known as mesenchymal markers and modulate, as well as act as,
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Isolectin B4

E15.5

E18.5

E20.5

Fig 7. Double immunostaining of GFP and isolectin B4. Using sagittal sections of embryonic pituitaries
onE15.5 (A-B"),E18.5 (C-D"), and E20.5 (E-H"), immunostaining was performed on four slices for GFP
and endothelial cell marker isolectin B4 and was visualized with FITC (green) and Cy5 (white), respectively.
Merged images are shown on the right. The boxed areasin A", C", and E" are enlarged in B-B", D-D", and
F-F". GFP/isolectin B4-double (yellow arrowheads), GFP-single (yellow arrows), and isolectin B4-single
(open white arrowheads) cells are indicated. The boxed area in F" is enlarged in G=G", and its orthogonal
projections were analyzed by confocal Z-stack imaging with 0.1-um slices (H-H"). AL anterior lobe; IL
intermediate lobe; PL posterior lobe. Bars =50 pm (A", C",E",and G") and 10 pm (B", D", F", and H").

doi:10.1371/journal.pone.0163981.9007
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Table 1. The frequency of GFP/isolectin B4-double positive cells on E15.5 and 18.5.

A. Atwell’s recess on E15.5

Subject

W N =

4
Total

Total GFP
4
4
3
5
16

B. Parenchyma on E18.5

Subject

w N =

4
Total

Total GFP
3
5
4
3
15

Cell Number Area (um2)
GFP only GFP/ Isolectin B4 Total Isolectin B4 DAPI
3 1 8 49 4,671
3 1 5 47 4,187
2 1 13 56 4,708
2 3 12 56 4,617
10 6 38 208
Cell Number Area (Um2)
GFP only GFP/ Isolectin B4 Total Isolectin B4 DAPI
1 2 7 56 5,608
2 3 6 54 5,579
1 2 5 67 4,943
1 2 8 69 5,137
5 9 26 246

Cell counts represent cells positive for GFP and /or isolectin B4.

doi:10.1371/journal.pone.0163981.t001

stem/progenitor cells [43-45]. We previously suggested that mesenchymal cells positive for
PRRX1, PRRX2, and NESTIN are involved in pituitary vasculogenesis [18,19]. In the present
study, we observed that S100B-positive cells are first negative for PRRX1 at Atwell's recess but
are later positive for it in the anterior lobe, exhibiting transdifferentiation. Notably, Krylysh-
kina et al. [24] reported that some NESTIN-positive cells exhibit pericyte phenotypes and are
sporadically positive for S100, exhibiting progenitor characteristics. Some S1008-positive cells
were positive for NESTIN or VIMENTIN, which are known to indicate plasticity. Indeed,
S100B/PRRX1-positiveand S100B-positive cells are similar to vascular cells that are isolectin
B4- and DESMIN-positive. However, S100B-positive cells are negative for a-SMA, indicating
that a different cell lineage is responsible for generating smooth muscle cells. Accordingly,
some S100B-positive cells may participate in vasculogenesis by transdifferentiation.

In the present study, we observed that some PRRX1- and S100B-positive cells are also posi-
tive for p75, exhibiting an elongated cell shape similar in appearance to vessels differentiating
into pericytes and smooth muscle cells in the anterior lobe (Fig 5). p75 is a receptor for neuro-
trophin and is known as a neural crest marker [46]. Two decades ago, Borson et al. (1994)
reported comparative data that showed that p75-positive cells are present in surrounding mes-
enchymal cells and blood vessels in the developing macaque pituitary [47]. These observations
provide intriguing and suggestive insights for understanding pituitary organogenesis, since the
neural crest, now referred to as the fourth germ layer in vertebrates, originates from the border
area between the neural plate and non-neural ectoderm. This is followed by delamination and
an epithelial-mesenchymal transition (EMT) to produce diverse cell lineage derivatives of the
neural crest that then invade several tissues during the embryonic period [48-50]. These deriv-
ative lineages include pericytes, smooth muscle cells [51] and S100B-positive cells [52,53], the
latter of which were observed in the present study. More recently, the involvement of neural
crest cells in pituitary vasculogenesis has been reported [54]. Motohashi et al. (2014) revealed
that neural crest-derived cells sustain their multipotency even after entry into their target tis-
sues [55]. It should also be mentioned that the reverse transition from mesenchyme to epithe-
lium includes the acquisition of stemness [56] and that neural crest-derived Schwann cells can
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Isolectin B4 DESMIN Merge

E18.5

C
Cell Number
Subject Total GFP  GFPI  Total  papy /€2 (M)
GFP only  DESMIN DESMIN
1 4 3 1 17 52 4,671
2 4 3 1 11 43 4187
3 4 3 1 19 43 4,708
4 3 0 3 11 53 4617
Total 9 6
| | a-SMA || PRRX1 || Merge |
S
o
WY
F
Cell Number
Subject Total GFP  GFPI  Total  pap  1re@(um?)
GFP only a-SMA  a-SMA
1 3 3 0 2 49 4671
2 3 3 0 0 47 4187
3 3 3 0 1 56 4708
4 3 3 0 2 56 4617
Total 12 12 0 5 208

Fig 8. Immunostaining for GFP, DESMIN, a-SMA and PRRX1 and staining with isolectin B4. Using
sagittal sections of embryonic pituitaries on E18.5, staining for vascular endothelial cells with isolectin B4 (A") or
a-SMA (D') was performed by visualization with Cy5 (white), together with staining of GFP (FITC; green, A and
B) and the pericyte marker DESMIN or PRRX1 (Cy3; red, A" and B"). GFP/DESMIN-double (yellow open
arrowheads), DESMIN/isolectin B4-double (white open arrowheads), GFP-single (yellow arrows), and
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DESMIN- or a-SMA-single (white arrowheads) positive cells are indicated. Merged images (A", B"', D", and
E'') are shown on the right. Each cell type (n = 2 with two slices each) was counted, and results are listed in C
and E. AL anterior lobe; IL intermediate lobe; PL posterior lobe. Bars =50 ym (A" and D"*) and 10 um (B"" and
E").

doi:10.1371/journal.pone.0163981.9008

be reprogrammed to acquire multipotency [57]. The role of neural crest lineage cells and their
plasticity in the anterior lobe remain interesting subjects of study.

We previously showed that various types of cells invade into the pituitary gland, in particu-
lar S100B-positive cells with differentiation and proliferation abilities [19], confirming and
exploring in further detail the previous results that extrapituitary lineage cells invade the ante-
rior lobe [58]. A previous study that revealed the importance of direct contact between the
pituitary primordium and surrounding ventral diencephalon, mesenchyme tissue, and noto-
chord [58] suggested the partial invasion of surrounding cells, in addition to signals promoting
growth and differentiation. In future studies, we intend to investigate whether S1008-positive
and other extrapituitary cells maintain their plasticity and/or acquire stemness in the anterior
lobe. To accomplish this, lineage tracing of S100B-positive cells will be required.

Supporting Information

S1 Fig. Triple-immunostaining for GFP, PRRX2, and SOX2. Triple-immunostaining for
GEFP (green), PRRX2 (red), and SOX2 (white) is shown in sections on E20.5. Merged images
are shown on the right. The boxed area in A" is enlarged in B-B""'. GFP/PRRX2-double posi-
tive (yellow arrowheads), GFP-single positive (yellow arrows) and PRRX2-single positive (white
arrowheads) cells are indicated. IL intermediate lobe; PL posterior lobe. Bars = 50 pm (A"’) and
10 pm (B™).
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