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Abstract
Magnetic resonance imaging (MRI) is by nature a multi-modality technique that provides

complementary information about different aspects of diseases. So far no attempts have

been reported to assess the potential of multi-modal MRI in discriminating individuals with

and without migraine, so in this study, we proposed a classification approach to examine

whether or not the integration of multiple MRI features could improve the classification per-

formance between migraine patients without aura (MWoA) and healthy controls. Twenty-

one MWoA patients and 28 healthy controls participated in this study. Resting-state func-

tional MRI data was acquired to derive three functional measures: the amplitude of low-fre-

quency fluctuations, regional homogeneity and regional functional correlation strength; and

structural MRI data was obtained to measure the regional gray matter volume. For each

measure, the values of 116 pre-defined regions of interest were extracted as classification

features. Features were first selected and combined by a multi-kernel strategy; then a sup-

port vector machine classifier was trained to distinguish the subjects at individual level. The

performance of the classifier was evaluated using a leave-one-out cross-validation method,

and the final classification accuracy obtained was 83.67% (with a sensitivity of 92.86% and

a specificity of 71.43%). The anterior cingulate cortex, prefrontal cortex, orbitofrontal cortex

and the insula contributed the most discriminative features. In general, our proposed frame-

work shows a promising classification capability for MWoA by integrating information from

multiple MRI features.

Introduction

Migraine is a form of primary neurovascular disorder characterized by episodic headache [1].
According to a survey by theWorld Health Organization, migraine ranks as the third most
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prevalent disorder, and affected nearly 15% of the whole population. More than 90% of suffer-
ers are unable to work or function normally during their migraine attacks [2]. Moreover, peo-
ple who undergomigrainemay have an increased risk of ischemic stroke, unstable angina, or
affective disorders [3–5]. Based on whether the headaches are accompanied by an early symp-
tom that called aura, migraine is divided into two major subtypes: migraine without aura
(MWoA) and migraine with aura. It is worth to note that two thirds of migraine patients suffer
fromMWoA [6], hence the early diagnosis and appropriate treatment of MWoA is imperative.
SinceMWoA has no clear prodrome, and the symptoms are hard to evaluate and may change
from one attack to the next, it's not always easy to exclude other possible causes of headache
and achieve an accurate diagnosis of MWoA using traditional methods (e.g. symptoms analy-
sis, medical tests). Thus, there has been substantial interest in identifying objective biomarkers
and developing automated methods that with the potential to assist the diagnosis of migraine.

In recent years, studies using magnetic resonance imaging (MRI) have greatly advanced our
understanding to the neural mechanisms underlyingmigraine. Both structural and functional
brain alterations in migraine have been revealed by MRI techniques. Specifically, studies using
structuralMRI (sMRI), especially high-resolution T1-weighted imaging, have demonstrated
that migraine is linked with gray matter (GM) changes in the inferior parietal lobule [7], hippo-
campus [8], inferior frontal cortex [9], motor/premotor and the prefrontal cortex [10]; a recent
study on migraineurs [11] also revealed changes in the regional cortical thickness, cortical sur-
face area, and volume in several brain areas including the parahippocampal gyrus, anterior cin-
gulate cortex and the medial orbital frontal gyrus.Meanwhile, by employing resting-state
functionalMRI (rs-fMRI), a number of studies have demonstrated that migraine was associ-
ated with functional brain alterations measured by various indices, including the amplitude of
low-frequency fluctuations (ALFF), regional homogeneity (ReHo), as well as functional con-
nectivity. For example, compared with the healthy controls, migraineurs showed significant
ALFF changes in the anterior cingulate cortex and prefrontal cortex [12], and ReHo changes in
the prefrontal cortex, orbitofrontal cortex [13], insula [14], and cuneus [15]. Altered functional
connectivity in migraineurs was identified between the dorsolateral prefrontal cortex and the
dorsal anterior cingulate cortex [16], between amygdala and insula [17], and between the pre-
frontal and temporal regions that were within the default mode network [18].

Despite identification of the aforementioned functional and morphological brain alter-
ations, there is very few exploration on the possibility of utilizing the MRI findings to assist
diagnosis of migraine patients. One important reason is that most of these findings were
obtained by applying mass-univariate analysis approaches to detect group differences [19],
however, for neuroimaging to be useful in a clinical setting, one must be able to provide predic-
tions at the individual level. In the past several years, the application of machine learning tech-
niques to neuroimaging data analysis has made promising progress in brain disease
identification [20, 21]. Compared to the group level analyses, machine learning techniques
allow inference at the single-subject level, and moreover, they are sensitive to subtle and spa-
tially distributed differences in the brain that might be undetectable in group level compari-
sons. Recently, a growing number of studies have usedmachine learningmethods to examine a
range of psychiatric and neurological conditions, such as Alzheimer’s disease [22], autism [23],
social anxiety disorder [24], depression [25], and schizophrenia [26].

In the application of machine learning techniques, one can either use features derived from
single-modalityMRI data or even a single measure, or include multi-modality features. The
advantage of the latter way is that different MRI modalities/measuresusually provide comple-
mentary pathological information. Aside the obvious distinction between sMRI and functional
MRI, the above-mentioned three indices derived from rs-fMRI are also mutual-complemen-
tary. In detail, both ALFF and ReHo measure the regional spontaneous neural activity, but
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ALFF reflects the amplitude [27] while ReHo indicates the functional synchronization of neural
units that are spatially close to each other [28]. Functional connectivity, i.e., the connectivity
between separate brain regions, provides functional information at the level of brain networks
[29]. By taking them together, one can achieve a more comprehensive understanding of the
brain function from segregation to integration [30]. The advantage of combining multi-type
features over single-type features was also verified in recent studies by showing improved clas-
sification performance in various diseases, including ADHD [31], Alzheimer’s disease [32–34],
Parkinson’s disease [35], and schizophrenia [36]. Nonetheless, very few studies have tried the
multi-type features combination approach in migraine discrimination, and the capability of
machine learning techniques for this condition is not yet known.

With the hypothesis that integration of multi-type features in a proper way could improve
the classification performance compared with single-type feature approaches, in the current
study, we proposed a novel framework that employs multi-kernel support vector machine
(SVM) to combine ALFF, ReHo, regional functional correlation strength (RFCS) and GM fea-
tures. We examined whether this framework works better than single-type feature approaches
in differentiatingMWoA patients from healthy controls (HC).

Materials and Methods

Subjects

Twenty-one migraine patients without aura and twenty-eight healthy controls participated in
this study. The age and gender differences between the two groups were tested using two-sam-
ple t-test and χ2 test respectively, and no significant difference was observed (p>0.05). The
diagnosis of MWoA was made by neurologic practitioners according to the criteria from the
Second Edition of the International Classification of Headache Disorders (ICHD-II) [37]. All
the patients were right-handed and aged between 18 and 45 years. They had to be off analgesic
drugs for at least 2 weeks, not in preventive treatment and had not used any other drugs for at
least 1 month prior to the study. All patients were free frommigraine attack during a follow-up
for at least 72 hours prior to the brain scan, and 48 hours after the scan. Exclusion criteria
included: patients with chronic migraine or other chronic or current pain disorders, subjects
with a history of mental diseases or other neurological disorders besidesmigraine, pregnant
females, subjects with MRI contraindications, or with structural abnormalities in brain found
by computer tomography or conventional MRI scanning. The Local Ethics Committee of the
West China Hospital of Sichuan University approved this study and all subjects have given
written informed consents prior to the participation. Table 1 lists the demographic and clinical
data of the 49 subjects.

Table 1. Demographic and clinical characteristics of the 49 participants.

MWoA (n = 21) HC (n = 28) T-value χ2 value p-value

Sex (male/female) 5/16 13/15 - - 2.642 0.104a

Age (mean ± SD, y) 27.52 ± 8.15 29.18 ± 6.96 -0.766 - - 0.448b

Education (mean ± SD, y) 15.05 ± 4.14 16.36 ± 2.87 -1.308 - - 0.197b

24-HAMD (mean ± SD) 6.48 ± 6.46 2.46 ± 2.17 2.735 - - 0.012b

14-HAMA (mean ± SD) 4.38 ±5.50 1.46 ± 1.43 2.371 - - 0.027b

SD = standard deviation; y = year; HAMD = Hamilton Depression Scale; HAMA = Hamilton Anxiety Scale; MWoA = migraine without aura; HC = healthy

controls.
a The p value was obtained by χ2 test.
b The p values were obtained by two-sample t-test.

doi:10.1371/journal.pone.0163875.t001
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Image acquisition

All data were acquired using a 3.0 Tesla MRI system (Trio Tim, Siemens, Erlangen, Germany).
Foam paddings and headphones were used to limit head movement and reduce scanner noise
for the subjects. During the data acquisition, all participants were instructed to keep their eyes
closed but not fall asleep, relax their minds and keep as still as possible. A three-dimensional
magnetization-prepared rapid gradient echo sequence was used to collect T1-weighted struc-
tural images, with the following parameters: repetition time/echo time (TR/TE) = 1900/2.26
ms, flip angle = 9°, slice thickness/gap = 1/0 mm, field of view (FOV) = 256 × 256 mm2,
matrix = 256 × 256, voxel size = 1 × 1 × 1 mm3. The rs-fMRI data were collected using an echo
planar imaging (EPI) sequence: TR/TE = 2000/30 ms, flip angle = 90°, slice thickness/gap = 5/0
mm, FOV = 240 × 240 mm2, matrix = 64 × 64, voxel size = 3.75 × 3.75 × 5 mm3.

Data preprocessing

Structural images were preprocessed using the Statistical Parametric Mapping software (SPM8,
http://www.fil.ion.ucl.ac.uk/spm). Images were first segmented into GM, white matter (WM)
and cerebrospinal fluid partitions, then the GM andWM partitions were utilized to create a
study-specific template using the diffeomorphic anatomical registration through exponentiated
lie algebra (DARTEL) algorithm [38]. The individual GM images were warped to this template,
and then modulated and resliced with the resolution remained. Finally, a Gaussian kernel with
a full-width at half-maximum (FWHM) of 8 mm was used to smooth all the GM images.

Resting-state functional images were preprocessed using SPM8 and the Data Processing
Assistant for Resting-State fMRI (DPARSF, http://rfmri.org/DPARSF) toolbox. The first 10
EPI volumes were discarded to avoid the magnetic saturation effects and ensure all participants
adapted to the scanning environment. The remaining volumes first underwent slices timing
correction, and then realigned to the first volume to correct for susceptibility-by-movement
interaction. None of the subjects’ head in this study has a movement that exceeds 2 mm dis-
placement and 2° of rotation in any direction. The realigned scans were further spatially nor-
malized to the Montreal Neurological Institute template and resliced to 3 mm isotropic voxels.
Next, band-pass filtering (0.01 Hz—0.08 Hz) was performed on the time series of each voxel to
reduce the effect of low-frequency drifts and high-frequencyphysiological noise [39]. Then the
ALFF, ReHo and RFCS were calculated as describedbelow.

Feature extraction

ALFF is an effective indicator of regional intrinsic or spontaneous neuronal activity in the
brain [40]. In the calculation of ALFF, the normalized and resliced images were firstly
smoothed using a 4 mm FWHMGaussian kernel. Then the ALFF, within the frequency band
0.01 Hz—0.08 Hz, was calculated for each voxel using the Resting-State fMRI Data Analysis
Toolkit (REST, http://rest.restfmri.net). To reduce the global effects of variability across partici-
pants, for a certain subject, the ALFF of each voxel was divided by the global mean ALFF value.
The individual ALFFmaps were then partitioned into 116 regions of interest (ROIs) based on
the automated anatomical labeling (AAL) atlas [41], and the 116 regional mean ALFF values
were extracted as features for this subject.

ReHo, whichmeasures the functional synchronization of a given voxel with its nearest neigh-
bors, was also calculated using the REST software. For each normalized and resliced image, the
measured cluster was set as 27 voxels [28]. Similar to ALFF processing, the ReHo of each voxel
was also divided by the globalmean ReHo value. After smoothingwith a 4 mm FWHMGaussian
kernel, a ReHomap was obtained for each subject and partitioned into 116 ROIs using the AAL
atlas. The ReHo features of one subject were consisted of the 116 regionalmean ReHo values.
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The RFCSmeasures the average correlation extent of a given brain region compared with all
other regions [32]. To compute resting-state functional connectivity, we regressed out the spu-
rious effects of nuisance covariates [42]. The individual volume was first partitioned into 116
ROIs using the AAL atlas, and the mean time series of each region was then extracted by aver-
aging the time series within that region.We obtained a 116×116 correlation matrix for each
subject by calculating the Pearson correlation coefficients between all possible pairs of regions.
Then, the RFCS was calculated using a method that has been described in previous studies
[43]. The i-th RFCS was defined as:

SðiÞ ¼
1

N � 1

X

j6¼i

Rij

�
�
�
� ð1Þ

where Rij is the correlation coefficient between region i and region j, and N is the number of regions.
Similar to the functionalmaps, individual GMmaps were also partitioned into 116 ROIs

and the regional mean GM values were extracted as features for that subject.
Finally, for each subject, three functionalmaps (ALFF, ReHo and RFCS) and one structural

map (GM) were obtained, and for each map, we extracted 116 features from the 116 AAL
ROIs. For a given ROI, ALFF, ReHo and RFCS reflect the degree of regional activity, the degree
of regional synchronization and the degree of global synchronization of spontaneous neuronal
activity, respectively; and the GM reflects the morphometric characteristics. Therefore, for
each subject, we had 116 × 4 features which convey different types of information.

Feature selection

The dimension of original features is much higher than the number of samples, whichmight lead
to the curse of dimensionality problem and high complexity. To speed up computation and to
improve the classifier performance [44], a feature selection step was adopted to remove irrelevant
or redundant features. Two-sample t-tests were performed to determine features that showed dif-
ferences betweenMWoA and HC groups. Only features with a p value smaller than the prede-
fined threshold (p<0.05, uncorrected)were retained. This process was performed independently
for each feature, ignoring the relationship (redundant or complementary) with other features. To
jointly consider the discriminative power among features, we employed the SVM-recursive fea-
ture elimination (SVM-RFE)method [45] for further feature selection. SVM-RFE is a backward
selection technique that iteratively removes as many non-informative features as possible while
retains features that carry discriminative information. The above mentioned feature selection
schemewas performed separately on each feature type. Of note, all the procedures of feature selec-
tion were constrained on the training set of each leave-one-out cross-validation (LOOCV) fold.

Multi-kernel SVM

In order to effectively integrate different feature vectors, a multi-kernel SVM [46] was used.
We constructed a base kernel for each feature level, and then mixed these base kernels by a
weighted linear combination. Let F be the number of the base kernels, then the final kernel can
be expressed as

Kðxi; xÞ ¼
XF

f¼1

bf k
ðf Þðxðf Þi ; xðf ÞÞ ð2Þ

where xi is the feature vector of the i-th training sample; x is the feature vector of the test sam-
ple; k(f) (x (f) i, x (f)) is the f-th kernel function; and βf� 0 is the weighting factor of f-th kernel
functionwith the constraint of ∑ fβf = 1.
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The final kernel matrix can be naturally embedded into the conventional single-kernel
SVM. Applying a linear SVM to the final kernel, the decision function for the predicted label
can be obtained as below:

FðxÞ ¼ sign
XN

i¼1

yiaiKðxi; xÞ þ b

 !

ð3Þ

where N is the number of training samples, yi2{-1, +1} is the corresponding class label, αi is the
Lagrangianmultiplier, and b is a bias.

The weights of different kernels in the multi-kernel SVM are learned based on the training
samples. The reduced gradient method that converges rapidly and efficiently is chosen to opti-
mize the kernel weights and SVM classifier. The optimization procedure is iterative: given the
current solution of kernel weights, it solves a classical SVMwith the combined kernel; then
updates the kernel weights. This two-step process is repeated until the Armijo’s rule [47] is
met. As explained above, the multi-kernel SVM can provide a convenient and effectiveway for
fusing various features from different modalities. In our case, we focused on multiple features
from two modalities: rs-fMRI and sMRI. Fig 1 gives the schematic illustration of our multi-fea-
ture combination and classificationmethod.

Cross-validation

Cross-validation is often used to assess the generalizability of a model and to ensure that the
model is not overfitted. Here, we used the LOOCVstrategy to estimate the performance of the
proposed framework. In detail, one sample was designated as a test sample, and the remaining
samples were used to train the classifier. For each feature ai in the training samples, a common
feature normalization scheme was adopted: ai = (ai-āi)/σi, where āi and σi are the mean and
standard deviation of the i-th feature across all training samples, respectively. The estimated āi

and σi would be used to normalize the corresponding feature of the test sample. In the LOOCV
procedure, features used for classification were chosen from the normalized training samples.
Specifically, after the filter-based feature selection (t-test), the retained features were further
selected by using the SVM-RFE approach, in which an SVM classifier was repeatedly trained;
and at each iteration, the square of the weight vector coefficientwas used as the ranking crite-
rion to remove the lowest ranking feature. SVM-RFE allowed us to derive an accuracymeasure
for each feature elimination level from which we determined the minimum number of features
required to produce equivalent accuracy to all features. Then the determined features were
used to train the multi-kernel SVM classifier. Optimal kernel weight βf and optimal multi-ker-
nel SVMmodel were obtained and applied to the test sample. The whole process were repeated
until all samples have been left out for test. The final accuracywas computed by averaging the
accuracies from all tests. Accuracy, sensitivity and specificitywere defined based on the predic-
tion results of LOOCV, to quantify the performance of all compared methods:

Sensitivity ¼
TP

TP þ FN
ð4Þ

Specificity ¼
TN

TN þ FP
ð5Þ

Accuracy ¼
TP þ TN

TP þ FN þ TN þ FP
ð6Þ

where TP denotes the number of patients correctly classified; FN denotes the number of
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patients classified as controls; TN denotes the number of controls correctly predicted; and FP
denotes the number of controls classified as patients. We also calculated the area under the
receiver operating characteristic curve (AUC) to illustrate the performance of classification.

Results

Comparison of classification performance

In classifications based on different feature types, the same feature extraction and selection cri-
teria were used. The generalizability of these classifiers was estimated by using the LOOCV

Fig 1. Schematic illustration of the multi-feature combination and classification. ALFF, ReHo, RFCS and

GM measures are used to map resting-state brain function and brain structure, respectively. A SVM classifier is

then designed using a multi-kernel combination strategy to classify MWoA and HC.

doi:10.1371/journal.pone.0163875.g001
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approach. We adopted traditional single-kernel SVM classifier for single-type feature classifica-
tion, and multi-kernel SVM classifier for multi-type features classification. All the SVM classi-
fiers were implemented with the linear kernel and the default penalty parameter C = 1. In case
of direct feature concatenation, we linked the 116 × 4 features (ALFF, ReHo, RFCS and GM)
into a long feature vector, and used the traditional single-kernel SVM to perform the classifica-
tion.We also applied the M3 method in which features are trained using a multi-classifier
based on four maximum uncertainty linear discriminate analysis base classifiers [32]. The pro-
posed framework obtained a classification accuracy of 83.67%, with a sensitivity of 92.86% and
a specificity of 71.43%, which were better than the results of any single-type feature or other
multi-type feature combinations. The classification performance of all the feature types were
summarized in Table 2, and the top 10 features most frequently selected in the proposed
method were listed in Table 3.

In the last step of the framework, discriminative score of each test subject was acquired by
the SVM classifier and then the sign of these scores were used for classification (e.g., positive
indicates HC and negative indicates MWoA). The threshold for classification is chosen to be 0
for efficiency, but in order to evaluate the performance of the classifier this threshold can be
varied across the range of all possible values obtained.With varying thresholds, the receiver
operating characteristic (ROC) curvewas plotted (Fig 2). The larger the area under ROC
obtained, the better the classification performance achieved. AUC of the proposed framework
was 0.83, indicating an excellent discrimination power.

The most discriminative features

Since the feature selection in each fold was performed based on the training set, the selected
features slightly differ across different cross-validation folds. Therefore, we defined the features
that were frequently selected in all cross-validations as the most discriminative features. The

Table 2. Classification performance using different types of feature.

Feature types ACC (%) SEN (%) SPE (%) AUC

ALFF 65.31 85.71 38.10 0.69

ReHo 67.35 71.43 61.90 0.67

RFCS 63.27 82.14 38.10 0.68

GM 71.43 85.71 52.38 0.83

ALFF+ReHo 69.39 82.14 52.38 0.70

ALFF+RFCS 64.58 85.71 33.33 0.54

ALFF+GM 70.83 89.29 42.86 0.74

ReHo+GM 72.92 85.71 52.38 0.75

ReHo+RFCS 71.43 82.14 57.14 0.75

RFCS+GM 75.00 92.86 47.62 0.78

ALFF+ReHo+RFCS 72.92 85.71 52.38 0.75

ALFF+ReHo+GM 75.51 89.29 57.14 0.78

ALFF+RFCS+GM 79.59 89.29 66.67 0.84

ReHo+RFCS+GM 73.47 85.71 57.14 0.71

Concatenation 67.35 78.57 52.38 0.74

M3 method 73.47 66.67 78.57 0.82

Proposed 83.67 92.86 71.43 0.83

SEN = sensitivity, SPE = specificity, ACC = accuracy, AUC = area under receive operating characteristic curve. “+” indicates combination of the given types

of features; “Concatenation” means all four types of feature were concatenated into a long feature vector.

doi:10.1371/journal.pone.0163875.t002
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brain regions from where the top ten ALFF, ReHo, RFCS and GM features were selected are
provided in Fig 3. Based on the selectedALFF feature, the ten most discriminative regions were
the bilateral inferior frontal gyrus, left anterior cingulate gyrus, bilateral posterior cingulate
gyrus, right inferior parietal lobule, left lenticular nucleus, right superior temporal gyrus, right
cerebellum and vermis. For ReHo, the regions with relative good classification power included
the left superior frontal gyrus, right insula, right hippocampus, left cuneus, right inferior

Table 3. Top 10 frequently selected features for proposed classification.

Feature Regions Count

ALFF Left anterior cingulate gyrus 41

Left posterior cingulate gyrus 39

Left lenticular nucleus, pallidum 25

Left inferior frontal gyrus, opercular part 13

Right superior temporal gyrus 11

Right inferior frontal gyrus, opercular part 10

Right posterior cingulate gyrus 10

Vermis_1&2 9

Right inferior parietal lobule 6

Right cerebelum_Crus1 5

ReHo Right inferior parietal lobule 37

Right superior temporal gyrus 36

Left lenticular nucleus, putamen 31

Left cuneus 27

Right insula 21

Left lenticular nucleus, pallidum 20

Right hippocampus 6

Right Cerebelum_9 6

Left superior frontal gyrus, medial orbital 5

Right lenticular nucleus, putamen 5

RFCS Left superior frontal gyrus, orbital part 41

Left amygdala 39

Right amygdala 39

Left hippocampus 24

Right Cerebelum_Crus2 18

Right inferior frontal gyrus, triangular part 15

Right Cerebelum_9 12

Right superior temporal gyrus 11

Right Cerebelum_7 11

Vermis_10 4

GM Left supplementary motor area 39

Left hippocampus 38

Right parahippocampal gyrus 33

Left parahippocampal gyrus 17

Right hippocampus 9

Left precentral gyrus 5

Right precentral gyrus 5

Left superior frontal gyrus 5

Right superior frontal gyrus 4

Right inferior frontal gyrus, opercular part 4

doi:10.1371/journal.pone.0163875.t003
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parietal lobule, bilateral lenticular nucleus, right superior temporal gyrus, and right cerebellum.
The most discriminative regions for RFCS included the left superior frontal gyrus, right inferior
frontal gyrus, left hippocampus, bilateral amygdale, right superior temporal gyrus, right cere-
bellum and vermis. GM regions with relative high classification power included the bilateral
precentral gyrus, bilateral superior frontal gyrus, right inferior frontal gyrus, left supplementary
motor area, bilateral hippocampus, and the bilateral parahippocampal gyrus. For all feature
types, the mostly selected regions are the anterior cingulate cortex, prefrontal cortex, orbito-
frontal cortex, and the insula.

Discussion

To our best knowledge, this is the first study to demonstrate the advantage of multi-type fea-
tures (sMRI and rsfMRI) integration over single feature approach in the discrimination
betweenMWoA and HC. In general, the more feature types we included, the better perfor-
mance we obtained. In contrast to the best classification achieved by single-type feature (GM),
our framework achieved a higher classification accuracy (83.64% vs. 71.43%). This validated
our hypothesis that the combination of different types of features should integrate more effec-
tive information into the SVM kernel, since they reflect complementary pathological aspects of
diseases. It is worth noting that identifying disease by combining biomarkers from different
feature types with different data fusion methods is still an open area for research.

Fig 2. Classification performance of the proposed framework. ROC curve of the classifier, showing the trade-

off between sensitivity (y-axis) and specificity (x-axis, 1-specificity). The area under the ROC curve is 0.83 for the

proposed approach.

doi:10.1371/journal.pone.0163875.g002
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In the classification using multi-modal imaging data, the feature combining method is a key
point for effective information integration. The simple and common practice is concatenating
all features into a longer feature vector. However, in this study the direct concatenation only
achieved an accuracy of 67.35%, which is even lower than the result of the single GM feature,
indicating that it’s not an effective combination method. Rather, when we combined features
from different modalities using the multi-kernel combination strategy, which firstly combined
the kernel matrices of different features into a mixed kernel matrix, and then using it to train a
single SVMmodel, much better classification performance was achieved. This strategy assigns
kernel weights to different feature types, which may partially interpret the improved capability
in integrating comprehensive and complementary information for the purpose of identifica-
tion. Our framework also performed better in comparison with the M3 method, which used
multi-classifiers to integrate multi-modal information, though better specificity was achieved
by M3. This may implicate the advantageous capability of M3 method to reduce the occurrence
of misdiagnosis in some circumstance.

Feature selection is a useful and important process to remove irrelevant or redundant fea-
tures for dimensionality reduction and improving the performance of the classifier. The filter-
based (t-test) and wrapper-based (SVM-RFE) feature selectionmethods were used in this
work. We would point out that we were not using SVM-RFE to optimize predictive accuracy
but to remove non-informative data from the extracted features and to find the most

Fig 3. Top ten most discriminative features (regional ALFF, ReHo, RFCS and GM). To visually represent the relative contribution of brain regions for

classification, the ROIs were projected onto the cortical surface (top) and shown in 2D slice images (down). Different colors in the figure indicate different

brain regions. The surface maps were visualized using BrainNet Viewer (http://www.nitrc.org/projects/bnv/) and the 2D slice map was generated using

MRIcron (http://www.mccauslandcenter.sc.edu/mricro/mricron/). L: left, R: right.

doi:10.1371/journal.pone.0163875.g003
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parsimonious feature representation. Here, the behavior of predictive accuracywas evaluated
as a function of the number of features in the data. The SVM-RFE algorithm iteratively
removes non-informative features from the data set and derives an accuracymeasure for each
feature elimination level. In this way the minimum number of features required to produce
equivalent accuracy to all features can be obtained.

Among all our single-type feature classifications, the highest accuracywas obtained when
the GM features were used; as well, in all the two-type and three-type feature combinations, the
ones that incorporatedGM features always performed relatively better. In a recent study by
Schwedt et al. [11], three structural features (regional cortical thickness, cortical surface area,
and volume) were used for migraine identification and achieved a desirable classification accu-
racy. These results collectively suggest that structural information might be essential for
migraine identificationwhen using a machine learning approach. Considering other machine
learning researches into Alzheimer’s disease [46] and Parkinson’s disease [48], which are all
based on structural imaging features, we would agree with the argument that structural imag-
ing markers may have greater weight in the diagnostic and prognostic judgment for neurologi-
cal diseases [49].

Our proposed framework sought to identify the most discriminative features between
MWoA patients and healthy controls. The brain regions with top discriminative powers were
partially overlap with those reported in the previousMWoA studies that applied conventional
univariate statistical analysis to functional and structural imaging data. For example, altered
ALFF has been identified in the anterior cingulate gyrus and inferior frontal gyrus [12]; ReHo
changes have been revealed in the superior frontal gyrus [13], insula, superior temporal gyrus,
lenticular nucleus, cerebellum, hippocampus, cuneus and the inferior parietal lobule [14]; and,
abnormal functional connectivity has been reported in the prefrontal and temporal regions
[16, 18], as well as amygdala and visceroceptive cortex [17]. Regions showing high discrimina-
tive power for GM features in the current study, such as the precentral gyrus, superior frontal
gyrus, inferior frontal gyrus and supplementary motor area, were also reported with deficits in
previous voxel basedmorphometric studies of MWoA [9, 10, 16]. But with one important
note, the regions shown on discriminationmaps only indicate their relatively high contribu-
tions to the classification, but are not equivalent to those identified frommass-univariate analy-
ses that are of more pathophysiology relevance.

Our study should be still taken as a preliminary proof-of-concept study. It proposes a prom-
ising approach for the future translation of neuroimaging into patient benefit. The pipeline we
used includes the preprocessing of sMRI and rs-fMRI data using standard analytical software
(SPM and DPARSF); extraction of feature vectors that consist of regional ALFF, ReHo, RFCS
and GM values; selection of the extracted features; and application of the multi-kernel SVM to
the selected feature vector. Once the multi-kernel SVM classifier is trained and a decision func-
tion is generated, a new sample could be classified in minutes. Although our approach requires
replication and validation in larger samples, it provides initial evidence of a rapid and accessible
methodology that could potentially aid clinical decisions.

One imperfection of this study is that in the depression and anxiety assessments the MWoA
group scored significantly higher than healthy controls. Clinically diagnosed depression and
anxiety are reported to be associated with brain alterations that overlap with the observations
in the current study; for example, the ALFF changes in the cerebellum, anterior cingulate cor-
tex and inferior frontal gyrus in depression [27], and fronto-amygdalar functional connectivity
changes in anxiety [50]. We acknowledge that this may raise concerns about the bias intro-
duced into the feature pattern, however, the patients’ HAMD and HAMA scores are still far
below the diagnostic threshold for depression and anxiety disorder, so the differences are more
likely to be emotional fluctuations caused by migraine. The effects of these differences on
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imaging data, if any, should be minor. Of course, an ideal research should only recruit MWoA
but without any other combined symptoms.

Other possible limitations of our study should also be noted. Firstly, we only included rs-
fMRI and sMRI for multi-modal classification. Other data modalities e.g., task fMRI, diffusion
MRI and electroencephalogram,which all provide additional information, should be consid-
ered in future studies. Secondly, we used the AAL atlas to parcellate the whole brain for ROI
definition. Though this method simplified computation, recent studies did find that different
parcellation schemes could affect brain network analysis [51–53]. Thus, it’s needed to apply
our method to other brain atlases, or even at voxel level, to investigate the impact of brain par-
cellation on classification. Finally, considering the relative small sample size (49 subjects in
total), the classifier is only specific to the current dataset. In the future, we would like to use a
larger dataset to determine the generalizability of this framework.

Conclusions

This study proposed a novel framework to discriminateMWoA and HC using ALFF, ReHo,
RFCS and GM features derived from rs-fMRI and sMRI scans. Compared with the single-,
two-, and three-type feature based classification, the classification performance was improved
by integrating all four types of features via a multi-kernel SVM. The promising classification
results suggest multi-modal imaging data based pattern-classification as a direction that
deservesmore comprehensive investigations for MWoA discrimination.
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