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Abstract

Continuous imaging of live tissues provides clear temporal sequence of biological events.
The Drosophilaimaginal discs have been popular experimental subjects for the study of a
wide variety of biological phenomena, but long term culture that allows normal development
has not been satisfactory. Here we report a culture method that can sustain normal devel-
opment for 18 hours and allows live imaging. The method is validated in multiple discs and
for cell proliferation, differentiation and migration. However, it does not support disc growth
and cannot support cell proliferation for more than 7 to 12 hr. We monitored the cellular
behavior of retinal basal glia in the developing eye disc and found that distinct glia type has
distinct properties of proliferation and migration. The live imaging provided direct proof that
wrapping glia differentiated from existing glia after migrating to the anterior front, and unex-
pectedly found that they undergo endoreplication before wrapping axons, and their nuclei
migrate up and down along the axons. UV-induced specific labeling of a single carpet glia
also showed that the two carpet glia membrane do not overlap and suggests a tiling or
repulsion mechanism between the two cells. These findings demonstrated the usefulness
of an ex vivo culture method and live imaging.

Introduction

The larval imaginal discs of Drosophila have been popular experimental subjects for the study
of a wide variety of biological phenomena, including cell proliferation, differentiation, apopto-
sis, competition, shape change, intercellular signaling, and compartmental boundary forma-
tion. These discs derive from invagination of the embryonic epithelium and become flattened
to form discs composed of two epithelial layers, namely the peripodial epithelium (PE) and the
disc proper (DP). The imaginal disc cells proliferate through larval stages and begin to differen-
tiate at the end of larval stage and develop into most of the adult body structures during the
pupal period. Because of their flat and simple two-layer structure, they are easy to observe.
However, live imaging of the discs is difficult because of their location deep within the larval
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body. Although it is possible to image live larva and pupa [1-5], the resolution and time win-
dow for observations are limited. Ex vivo culture of discs has been attempted since the 1960s
[6, 7]. Pupal disc can be cultured for up to 96 hrs [8], and late larval discs can be induced to
evaginate to mimic event in pupal development [9]. However, the long term ex vivo culture
condition that allows normal development and cellular behavior of larval imaginal discs before
evagination, when the disc is relatively flat and can be studied as a two dimensional system, has
not been satisfactorily achieved.

The most challenging problem is finding a culture medium that will support the growth and
development of the imaginal discs over a long period. Chemically defined medium were
designed to mimic larval hemolymph composition [7, 10-12]. Using cells derived from imagi-
nal discs to test for culture conditions, it was found that that addition of insulin, ecdysterone
(20-hydroxyecdysone, 20HE), fly extract and fetal bovine serum (FBS) improved the cell sur-
vival and proliferation [11, 13]. Subsequent works on disc culture varied the concentration of
these components [14-20] (summarized in S1 Table). Only up to 5-8 hours of culture was
obtained [18, 19], although prepupal wing disc has been cultured for 10 hr to study disc ever-
sion [16]. Late third instar wing disc has been cultured for 24 hr and allowed neuronal differen-
tiation [21]. However, the condition has not been used by others and did not work for eye-
antennal disc in our hands. We report that we have identified a culture condition that can sus-
tain normal cell differentiation, morphogenesis and migration of imaginal discs for 18 hrs.

Results and Discussions
Long term culture of eye-antennal and wing discs

Based on the effect on cell differentiation, migration and proliferation, rather than growth, we
found a recipe of culture medium (S1 Table) that can sustain normal disc development for at
least 18 hours. We cultured early third instar (84h AEL; S1 Fig) and mid-third instar (96h AEL;
Fig 1) eye-antennal disc in the medium, without imaging, for various length and then stained
for neuronal and glia markers. In terms of the number of rows of photoreceptor clusters
(ommatidia) and the number of retinal basal glia (RBG) that migrated from optic stalk into the
eye disc, and the number of wrapping glia (WG) as an indicator of glia differentiation, the ex
vivo disc developed comparable to the in vivo discs at 6, 12 and 18 hr, except that the number
of ommatidia rows was slightly reduced at 18 hr (Fig 1A-1C). The development slowed down
at 24 and 36 hrs (S1A and S1B Fig). The progression of the morphogenetic furrow (MF) sug-
gested that normal cellular morphogenesis can be supported. In 36 hr ex vivo cultured disc, the
mature photoreceptor clusters were adjacent to the MF (not shown), suggesting that MF pro-
gression has stopped. For the first 12 hr in culture, the ommatidia row increased at a rate of 1.8
hr per row (Fig 1 and S1 Fig), in line with previous reports of 1.5 hr [22, 23] to 2 hr [24, 25] per
row. The size of the ex vivo cultured disc was comparable to in vivo disc at 6 hr but did not
increase thereafter (Fig 1D, S1C, S1F and S11 Fig). The number of S phase (BrdU™) cells in the
first mitotic wave (FMW) and second mitotic wave (SMW) in the ex vivo cultured eye disc was
comparable to the in vivo disc at 6 and 12 hr, but dropped significantly at 18 hr (Fig 1E and
1F). The number of mitotic (pH3") cells in the entire disc was relatively normal at 6 hr, but
become significantly reduced at 12 and 18 hr (Fig 1G). We also generated neutral clones
marked by nuclear GFP at 72h AEL and dissected out the discs at 96h AEL for culture. The
average cell number per clone in ex vivo cultured disc is comparable with in vivo disc up to 12
h in culture, and become significantly reduced at 18 h in culture (114h AEL) (Fig 1H). The cell
density in ex vivo cultured eye disc did not differ significantly from the in vivo disc for 12 hr,
but was reduced at 18 hr (S2 Fig). The cell density in ex vivo and in vivo antenna disc did not
differ significantly for 18 hr (S2 Fig). The ex vivo cultured eye-antenna disc showed an increase

PLOS ONE | DOI:10.1371/journal.pone.0163744 September 29, 2016 2/19



o @
@ ’ PLOS | ONE Ex Vivo Culture of Fly Imaginal Discs

—— invivo
1X insulin
—»— Handke et al. 2014
A - Legoff etal. 2013 B 5
25- 300
©
B T - )
g A1 8 0] T _1—
154 / £
5 Yy 2
6 104 o]
g L:; 1004
o 5- o
0 0

1 ) 1 1 U 1 I )
96 102 108 114 96 102 108 114

AEL (hour)
C 200- D 20-
3 8
E 150 T a 151
3 ) ©
c S -
3 T S'E
S 100+ ' E 2 107 I
= V ] /i 3 i
& @ X
s 504 ‘e 5+
g
wv
; c T 1 i 1 0 ] 1 1 )
96 102 108 114 96 102 108 114
E —— invivo F
1509 - exvivo 200-
3
§ S 150 T/{
Z 100 /I “ ’
£ T = /!
s/ Pl
+ Lot 5 41
3 504 / 3 /
o = @ 504
c T T ) ) c T T T T
96 102 108 114 96 102 108 114
G H
804 15+
= g
g 60+ S
: S 104
[22] 4 i
i | 2
%5 404 @
o o
E E i
2 207 3 411
T T L L] c ] ] |l ]
96 102 108 114 96 102 108 114

Fig 1. An improved medium for long-term ex vivo culture of eye-antenna disc. (A-D) Mid-third instar
(96 hr AEL) MZ97>RFP eye-antennal discs were cultured ex vivofor 6, 12, and 18 hr (102, 108 and 114 hr
AEL, respectively), and compared with discs dissected from larva (in vivo) at these time points. The discs
were cultured in 1X insulin medium (this study) and the medium of Handke et al. (2014) and Legoff et al.
(2013) (see S1 Table) respectively, for comparison. (A) The number of rows of ommatidia, marked by anti-
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HRP. (B) The number of retinal basal glia (marked by anti-Repo). (C) The number of wrapping glia, marked
by MZ97>RFP. (D) The size of eye-antenna disc. (E-G) Mid-third instar (96 hr AEL) w’’"® eye-antennal discs
were cultured ex vivofor 6, 12 and 18 hr (102, 108 and 114 hr AEL, respectively), and compared with discs
dissected from larva (in vivo) at these time points. (E) The number of BrdU™ cells in the first mitotic wave
(FMW). (F) The number of BrdU* cells in the second mitotic wave (SMW). (G) The number of phosphor-
histone 3 (pH3*) cells in the entire disc. For all experiments, N = 10. (H) Neutral clones marked by nuclear
GFP were induced at 72h AEL and the discs were dissected out at 96h AEL and cultured for 6, 12 and 18 hr
(102, 108 and 114 hr AEL, respectively) and compared with clones in in freshly dissected disc. The number
of cells in each clone were compared. N = 20.

doi:10.1371/journal.pone.0163744.9001

in caspase 3 positive cells at 12 and 18 hr (S2 Fig), therefore probably offsetting the increase of
cell numbers by cell divisions.

In the wing disc cultured since early third instar (84 hr AEL), the number of S phase cells
showed a reduction at 12 hr, and steadily decreased at 24 and 36 hr (Fig 2A). The number of
mitotic cells showed a very significant reduction at 12 hr and remained low at 24 and 36 hr (Fig
2B). Live imaging of ex vivo cultured wing disc over 16 hrs showed a significant decrease in
mitotic events after 7 hr (Fig 2C). After 12 hr, there is no more mitosis. The size of wing disc
showed very little growth during the 36 hr ex vivo culture period (Fig 2D). In addition, the ex
vivo cultured wing disc begin to show morphological changes at 48 hr in culture (data not
shown), probably reflecting precocious disc eversion. The cell density is not significantly
different between in vivo and ex vivo wing discs for at least 24 hr (S3E Fig). Caspase 3-positive
cells in ex vivo disc was comparable to the in vivo disc for 24 hr and was higher only at 36 hr
(S3D Fig).

In summary, our new medium can support the photoreceptor and glia differentiation in eye
disc for 18 hr, sustained cell proliferation for 7 hr in wing disc and 12 hr in eye-antenna disc,
but did not support growth in wing and eye-antenna discs.

The primary difference in our recipe is the high concentration of insulin (1250 pg/ml). We
checked whether the insulin concentration is optimal (S1 Fig). Without insulin, there is very
little increase in photoreceptor, glia and disc size even in the first 12 hours. With different con-
centrations of insulin (S1A-S1C Fig), the 1x and 2x supported the most differentiation, in
terms of photoreceptor and glia number, but had no benefit on disc size. The insulin probably
mimics the activity of endogenous factor, perhaps the insulin-like peptides. Interestingly, the
human insulin was slightly better than bovine insulin in promoting photoreceptor differentia-
tion (S1J and S1K Fig). We also found that the addition of larva extract (SID-S1F Fig) or adult
extract (not shown) did not have significant effect on disc differentiation and growth. Addition
of various concentration of the moulting hormone 20HE reduced the development (S1G-S11
Fig). Addition of the insect blood sugar trehalose (60 pg/ml) at a level comparable to the hemo-
lymph concentration was not beneficial (S1L and S1M Fig).

We compared our recipe with two other recent reports on culture method (S1 Table, Fig
1A-1D). Discs grown in our medium showed better development than those grown in the
medium of Legoff et al. (2013) even at 6 h of culture, and better than those grown in the
medium of Handke et al., (2014) at 12 hr. The differences are further enhanced at 18 hr. All
three media do not support disc growth.

Long term live imaging of wing disc
Wing disc from mid-second (mid-L2) instar larvae were cultured and monitored for 16.5 hr (at
25°C, equals to early-mid third instar; S1 Movie). 2% agarose cooled to room temperature has

been used to embed the discs [16]. We used low-gelling-temperature agarose. This was effective
in preventing the disc from drifting out of focal plane during imaging and minimize damage to
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Fig 2. Long-term ex vivo culture of wing disc. Wing disc dissected from 84 h AEL larva (mid-L3) was cultured ex vivo for
12, 24 and 36 hr, respectively, and compared to disc directly dissected from larva (in vivo) at the corresponding time points.
The discs were stained for BrdU incorporation and DAPI. (A) The number of BrdU™ cells gradually reduced in ex vivo cultured
disc. N = 10. The percentage of S phase cells is consistent with previous report [46]. (B) The number of mitotic cells (pH3™)
cells maintained at a low level throughout the 36 hr culture period. N = 10. (C) The number of cell divisions within each hour is
monitored over 16 hr culture period of His2Av-GFP wing disc. N = 6 discs. Total cells = 2389. (D) The disc size (area) showed
only slight growth over the 36 hr culture period.

doi:10.1371/journal.pone.0163744.9002

the disc. Sgh-mCherryshowed the actomyosin cable formed at the DV boundary (Fig 3A,
arrow) at around 16.5 hr, corresponding to early L3. The timing is consistent with previous
reports that the formation of actomyosin cable at the DV boundary occurs in early-L3 [26].
This result shows that the ex vivo cultured disc can develop from mid-L2 to early-L3, in a time
comparable to in vivo development. It also shows that the pulse of the molting hormone 20HE
at larval molt is not required for wing disc development from L2 to L3.

Cell divisions of cultured wing disc were analyzed by His2 Av-GFP, which marks chromo-
somes. The mid-L3 wing disc was cultured and monitored for 7 hr (S2 Movie). Within this
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Fig 3. Cell proliferation and DV boundary formation in cultured wing discs. (A) Frames from S1 Movie of
mid-L2 wing disc cultured ex vivo at 25°C for 16.5 hr (equals to early-mid-L3) compared with in vivo disc at the
same age. Sgh-mCherry is Spaghetti squash (Sgh), a non-muscle myosin light chain, fused with mCherry [47].
Sgh-mCherry (green) showed the actomyosin cable at the DV boundary (arrow) at 16.5 hr. ap-Gal4 driven
nuclear GFP (ap>GFP.nls) (white) marked the dorsal compartment. The expression intensity gradually increased
with time. N = 4 discs for ex vivo, N = 6 for in vivo. The Sgh-mCherry intensity in the dorsal (ap-GAL4 expressing
domain) and ventral domain are not significantly different (ratio = 1.13+0.12, N = 6). The lack of nuclear signal in
the left side of the image is due to disc curvature. (B-D) Frames and analyses based on S2 Movie of mid-L3
His2Av-GFP wing disc cultured for 16 hr. N = 4 discs. (B) XZ sections from S2 Movie, with apical surface on top.
The dividing nuclei is marked by red asterisk. (C) The orientation of each cell division over the 7 hr period is
marked by a line connecting the two daughter cells. (D) The orientation of cell divisions (based on C) showed a
bias for divisions along the DV axis and against along the AP axis. (E, F) Frames and analysis based on S3
Movie. An early-L3 ubi>Fuccieye-antennal disc was cultured and monitored at 25°C for 14.5 hr. The fluorescent
marker GFP-E2F {1_230 (green) labels G2, M, and G1 phase, and mRFP1-CycB,_»g¢ (magenta) labels the S, G2
and M phase. Their combination allows clear distinction of G1 (GFP only; green), S (RFP only; magenta), and G2
(GFP and RFP; white) phases. (E) A cell undergoes cell division, going from G2 (GFP and RFP) to two G1 (GFP)
cells. (F) The proportion of different cell cycle phase at the start and end of the culture period are compared. N =3
discs. In this and subsequent figures, the scale bar is 30 um, exceptin (D, E) is 10 um. This and subsequent
analyses based on live imaging are based on at least three independent movies. The results were similar.

doi:10.1371/journal.pone.0163744.9003
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period, the cell density within the imaged area did not increase significantly. From 573 cells at
time 0 in the imaged area, a total of 120 cell divisions were counted within the 7 hr period. The
orientation of cell divisions was marked and showed a preference for the distal-proximal (DV)
axis (Fig 3B and 3C), consistent with previous report [27, 28]. Cell division is relatively rare in
the DV boundary region (Fig 3B), consistent with previous report [29]. The dividing nuclei
ascended from the epithelium to the surface, divided and then sank into the epithelium again
(Fig 3D), consistent with previous report [30].

Cell divisions were also monitored by the Fly-Fucci [31]. The fluorescent marker
GFP-E2F | 30 labels G2, M, and G1 phases, and mRFP1-CycB;_,4¢ labels the S, G2 and M
phases. Their combination allows clear distinction of G1 (GFP only), S (RFP only), and G2/M
(GFP and RFP) phases. For an early-L3 stage ubi>Fucci antennal disc monitored for 14.5 hr
(S3 Movie), the cell number increased from 444 to 492. There were 39 mitotic events observed
(a G2/M nuclei divided to generate two G1 nuclei; Fig 3E), accounting for most of the 48 new
cells. The proportion of the cells in different cell cycle phases can be observed and showed no
difference between the beginning and end of the 7 hr period (Fig 3F).

Long term live imaging of eye-antennal disc. A mid-L3 elav>H2B-RFP eye disc was
monitored for 15.75 hr (S4 Movie). During this period, the number of 8-cell ommatidial cluster
increased from 65 to 226, and the number of rows of ommatidia increased at the rate of 3.15
hr/row (Fig 4), which is slower than the 1.8 hr/row calculated from disc freshly dissected at dif-
ferent time points (Fig 1). This is probably due to the effect on long term laser exposure. The
nucleus can be seen to rise to the apical surface to divide and then descend basally, consistent
with previous report [32]. Such divisions can be seen throughout the 15.75 hr culture and
imaging period. The progression of MF can be seen in a mid-L3 Sgh-GFP eye-antennal disc
cultured for 14.7 hr (S5 Movie).

A group of glia (retinal basal glia, RBG), expressing the pan-glia marker Repo, migrate from
the optic stalk into the eye disc [33, 34]. The anterior most of their distribution is 3-5 rows of
cells behind the anteriorly progressing morphogenetic furrow (MF). Based on morphology and
molecular markers, there are three major types of RBG, namely carpet glia (CG), surface glia
(SG) and wrapping glia (WG) [35]. repo-RFP.nls allowed the live imaging of RBG behaviors

15:45:00

Fig 4. Ommatidial development in cultured eye-antennal disc. (A, B) Frames were taken from S4 Movie. A mid-L3 elav>H2B-RFP eye-antennal
disc was cultured and monitored at 25°C for 15.75 hr. The RFP* (Red) photoreceptor neurons appear posterior to the morphogenetic furrow (MF) and
forms 8-cell ommatidial clusters. There are 6 rows of ommatidia in the beginning (A) and 11 rows at the end (B). N = 3 disc. The scale bar is 30 um.

doi:10.1371/journal.pone.0163744.9004
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(S6 Movie). Over a period of 11.5 hr, the number of Repo” nuclei in a mid-L3 eye disc
increased from 179 (Fig 5A; marked in blue) to 207 (Fig 5B; new Repo" nuclei marked in
white). 39 cell divisions were observed (Fig 5C, arrow points to dividing cells in C’), accounting
for 92% of the 42 new RBG. The remaining 8% is due to migration from optic stalk. The two
daughter cells of a division event are linked by a line (Fig 5C), and can disperse a long distance
from the original site of division. repo>Fucci allowed the detection of glia cells undergoing a
full cell cycle (Fig 5D, arrowhead), as well as cells that undergo endoreplication (Fig 5D,
arrows).

The track of each Repo’ nucleus was recorded and color coded to show the start and end of
movement (Fig 5E). The tracks are also presented as displacements from their origin (Fig 5F
and 5F’). The tracks showed that most RBGs migrated toward the anterior of eye disc, but
some migrate backwards, suggesting two distinct RBG populations with different migratory
behaviors.

The C527-Gal4 was used as a SG marker (Silies et al., 2007). A C527>GFP.nls mid-L3 eye
disc was cultured and imaged for 11.5 hr (S8 Movie). In the beginning, there were 152 C527"
nuclei (Fig 6A). 110 of these did not divide (blue dots in Fig 6A and 6B). 23 divided and both
daughter cells are C527" (purple dots in Fig 6B). 9 divided but only one daughter cell is C527"
(white dots in Fig 6B). In total, 32/152 (21.0%) underwent division, similar to the 21.8% (39/
179 in Fig 5) for Repo” cells. Thus, the C527* glia accounted for probably all proliferating
RBG. 14 C527" nuclei (yellow dots in Fig 6B) disappeared during this period, probably due to
differentiation into another cell type and loss of the marker expression or by cell death. The
occurrence of mitotic events was plotted every 10 minutes (Fig 6H). The divisions were scat-
tered, but only one division occurred after 10 hr, suggesting that the division may not be sus-
tained normally after 10 hr in culture. The migration displacement chart showed that the
C527" nuclei mostly migrated forward (Fig 6F and 6F).

The WG were monitored by MZ97>H2B-RFP (S7 Movie). Over a period of 20 hr, the
MZ97" nuclei in a mid-L3 eye disc increased from 86 to 181. The 47 new MZ97" nuclei are
marked in white during 8 hr live imaging (Fig 6C and 6D). However, no division was observed
in MZ97" nuclei. This is consistent with previous reports that MZ97" cells are post-mitotic,
based on the finding that blocking cell division in WG did not reduce RBG cell number [35].
Live imaging showed that all the new MZ97" nuclei appeared in the anterior front, rather than
migrating from the optic stalk. This is also consistent with the sequential differentiation model
that WG differentiates from migrating SG upon contact with photoreceptor axon at the ante-
rior front [35]. Our live imaging provided direct evidence that MZ97" cells differentiate in situ
from Repo" cells at the anterior front. Interestingly, MZ97>Fucci (Fig 6E and S9 Movie)
showed that the anterior MZ97" cells can progress from S phase (magenta) to G1 (green) with-
out undergoing mitosis (magenta plus green), suggesting that MZ97 cells can undergo endore-
plication, probably accounting for the endoreplication seen in repo>Fucci (Fig 5D). The
migration tracks showed that most MZ97" nuclei migrate toward the posterior (Fig 6G and
6G).

The CGs are two giant glias with membrane extended to cover the entire region of RBG.
C135-Gal4, a CG-specific Gal4, driven moesin-GFP (C135>moesin-GFP) showed membrane
extension with dynamic protrusions in the anterior front (S10 Movie). The anterior front of
CG membrane extended 21.7 um during the 7.5 hr of imaging.

Ex vivo manipulations. With the ability of long term ex vivo culture, it is possible to selec-
tively manipulate specific cells. For example, we specifically expressed the KAEDE fluorescent
protein (Ando et al., 2002; Mizuno et al., 2003; Chen et al., 2012) in the CGs using the
C135-Gal4 driver. We then selectively labeled one of the two CGs by UV-converting the
KAEDE from green to red (Fig 7). The converted signal spreads to the entire cell almost

PLOS ONE | DOI:10.1371/journal.pone.0163744 September 29, 2016 8/19
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Fig 5. Proliferation and migration of retinal basal glia in cultured eye disc. Data were taken from S6
Movie. A mid-L3 repo-RFP.nls eye-antennal disc was cultured and monitored at 25°C for 11.5 hr, Nuclear
RFP (green) marks the RBG nuclei. The Repo* nuclei present at time 0 (A) are artificially marked in blue. The
new Repo™ nuclei were marked in white (B). (C, C’) Division in two cells are shown (arrows). The two
daughter cells of a division event are linked by a line. The sites of their divisions are marked by blue dots. (D)
In repo>Fucci ex vivo cultured eye disc, a cell can undergo a full cell cycle (arrowhead showing progression
from red (S phase) to no signal (mitosis phase) to two green (G1 phase) daughter cells). A cell can undergo
endoreplication (arrows showing progression from yellow (G2 phase) to green (G1 phase) without
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undergoing mitosis). (E) The track of each Repo* nucleus was recorded and color coded, with blue
representing the start and red representing the end of movement. The two large Repo™ nuclei are the carpet
glia. They do not undergo extensive movement. (F) The migration tracks are presented as displacements
from their origin. (F’) The track of a few cells are presented. N = 3. The scale bar is 30 um.

doi:10.1371/journal.pone.0163744.9005

instantaneously. This cell-specificlabeling allowed the visualization of the extent of the mem-
brane of each of the two CGs. It showed almost no overlap between the two CGs, suggesting a
tiling or repulsion mechanism between the two cells.

Conclusions

In summary, our method allows the long term ex vivo culture and live imaging of the larval
imaginal discs. We tested wing, antenna and eye discs, and demonstrated that although the cul-
turing condition does not support disc growth and only sustained cell divisions for up to 7-12
hrs, the cultured discs undergo normal developmental process, such as cell proliferation, differ-
entiation, migration and membrane dynamics for up to 18 hrs. The method provided opportu-
nity for directly observing the temporal sequence of biological events, much better than
deducing the sequential events by piecing together multiple snap shots at different time points
and often from different samples. It allows the selective labeling or manipulation of specific
cells with laser precision, replacing or supplementing genetic labeling. We used laser activated
KAEDE to specificallylabel a single carpet glia and observed its entire membrane extension
(Fig 6). We can also use laser to specifically disrupt the actomyosin network, by the chromo-
phore-assisted laser inactivation (CALI;[36]) method, in the disc to examine the physical ten-
sion among cells (HYK and YHS, submitted). It also allows the easy test of chemicals by adding
directly to the culture medium, thus maybe used as a platform for drug screens. Although we
focused on imaginal discs, the condition may also be suitable for other larval tissues.

Our live imaging of the behaviors of RBGs in eye disc provided direct proof that the MZ97"
WG differentiate from existing Repo® cells, and possibly from the C527" SG. These results are
consistent with the sequential differentiation model [35]. Our results further showed that SG
and WG have distinct migratory behaviors and suggested that WG undergoes endoreplication.
We also showed that the two giant carpet glia membrane do not overlap, suggesting a tiling or
repulsion mechanism between the two cells.

Materials and Methods
Fly stocks

The fly stocks used are: sgh**® Sqh-GFP [37](provided by Jui-Chou Hsu), Sgh-mCherry [38]
(provided by Yu-Chiun Wang), UAS-H2B-RFP [39], UAS-KAEDE (Chen et al., 2012) (pro-
vided by Ann-Shyn Chiang). repo-RFP.nls [40], apmd544-Gal4 [41], His2Av-EGFP [42], UAS-
Fucci and ubi-Fucci (ubi-GFP-E2F; 530 ubi- mRFP1-NLS-CycB)_566) [31], UAS-Moesin-GFP
was from Drosophila Genetic Resource Center. hs-FLP'?, Ay-Gal4 UAS-GFP, C135-Gal4, elav-
Gal4, C527-Gal4, MZ97-Gal4 and UAS-GFP.nls were from Bloomington Drosophila Stock
Center.

Culture medium

Schneider’s Drosophila medium (Thermo 21720-024) was supplemented with 2% FBS (Sigma
N4765), 0.5% penicillin-streptomycin (GIBCO0759), 0.08% fly extract and 1.25 mg/ml insulin
(Sigma 19278). Prepared culture medium should be used within a month.
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Fig 6. Proliferation and migration of surface glia and wrapping glia in cultured eye disc. (A, B, F) A
C527>H2B-RFP mid-L3 eye disc was cultured and imaged for 11.5 hr (S7 Movie). (A) 152 C527* nuclei were
observed at the beginning. (B) 183 C527* nuclei were observed at the end of 11.5 hr. Of the initial 152 cells,
110 did not divide (blue dots in A and B), 23 divided and both daughter cells are C527* (purple dots), and 9
divided but only one daughter cell is C527* (white dots). 14 C527" nuclei (yellow dots in A) disappeared
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during this period. (C, D) A mid-L3 MZ97>H2B-RFP eye-antennal disc was cultured and monitored at 25°C
for 20 hr (S8 Movie). (C) The MZ97* nuclei present at time 0 are marked in blue. (D) The new MZ97* nuclei
are marked in white. No division was observed in MZ97* nuclei. (E) MZ97>Fucci (S9 Movie) showed that the
anterior MZ97" cells (arrow) can progress from S phase (magenta) to G1 (green) without undergoing mitosis
(magenta plus green). Only one round of endoreplication was observed for a WG during the observation
period. (F, G) The migration tracks of C527* (F) and MZ97* (G) nuclei are presented as displacements from
their origin, with blue representing the start and red representing the end of movement. (F’, G’) The isolated
track of a few cells are shown as examples of the different behaviors. (H) Mitotic event in every 10 minutes in
C527>H2B-RFP mid-L3 eye disc cultured for 11.5 hr (S7 Movie). The scale bar is 30 um.

doi:10.1371/journal.pone.0163744.9006

Fly extract

About 0.35 g of larva or adult (about 300 each) were frozen in a 1.5 ml Eppendorf at -80°C for
at least 45 minutes, and grind in 2.5 ml Schneider’s Drosophila medium with a disposable
micro tissue homogenizer (Thomas No. 1215D61). The homogenate was centrifuged at 1500
Xg (KUBOTA 1720, rotor RA-48]) at 4°C for 30 minutes. The supernatant was decanted into a
fresh Eppendorf tube and incubated at 60°C for 10 minutes to inactivate protease, centrifuged
again at 1500 Xg at 4°C for 60 minutes. The supernatant was sterilized through a 0.22 pum filter.
The fly extract (0.14 g/ml) is stored at 4°C and used within a week.

Low melting agarose

0.75% low-gelling-temperature agarose (Agarose II, AMRESCO 0815-25@G) in 1xPBS (10X
PBS: 80 g NaCl, 14.4 g Na,HPO,, 2.4 g KH,PO,, 2 g KCl per 1 L MilliQ H,O, adjust to pH 7.0)
was molten by microwave and kept at 37°C. It should be used within a month. The agarose was
boiled every time after use to avoid contamination.

Dissection of discs

All equipment (forceps, pipette, cover slide, etc.) were sterilized with 70% ethanol. The one eye
disc, with hemi-brain and mouth hook attached, was dissected carefully in culture medium.
The wing disc was dissected as detached from larval epidermis.

Culture and live imaging

The culture chamber (PECON, POC-R2 Cell Cultivation System) components were soaked for
at least 12 hours in 70% ethanol, and assembled on a 0.17 mm cover slide on the stage acceptor.
The cover on the chamber was removed, and the disc sample was placed onto the cover slide
using a pipette. The orientation of disc was adjusted by forceps so that the disc lies flat on the
slide. Most of the medium was removed and 5-6 ul 0.75% low gelling agarose (37°C) was
added to the sample. The melted gel was added vertically to force the eye disc remain at the bot-
tom of the gel. After 5 minutes for the agarose to solidify, 1 ml culture medium at 25°C was
added slowly to the chamber. The chamber was then loaded onto the Zeiss LSM 710 inverted
confocal microscope in the incubator equipped with CTI controller at 25°C.

Imaging of ex vivo larval disc

The ex vivo time-lapse images were acquired with Zeiss LSM 710 with a GaAsp detector or 510
META-NLO laser-scanning confocal microscope equipped with culture chamber maintained
in 25°C and continuous support of humid air (25°C). C-Apochromat 40x/1.2W Korr or LD
C-Apochromat 40x/1.1W objectives were used for most of the imaging. Z-stack images were
acquired every 4, 10, or 15 minutes as indicated in the movies. 30-60 slices per stack were used
based on the type of fluorescent proteins (nucleus/membrane) from different samples. Optical
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Fig 7. Selectively labeling of single carpet glia. (A-C) The KAEDE fluorescent protein was expressed in the carpet glia by
the C135-Gal4 driver. One of the two CGs was selectively illuminated by 514 nm laser in the boxed area. The KAEDE was
photoconverted from green to red and the signal spread to the entire cell very rapidly. (D) The green signal showed nearly
complete conversion to red and slowly recovered due to new protein synthesis. (E) The red signal decayed slowly, probably
due to protein degradation. Subsequent boosts at lower laser power was at every 4 hr to maintain the red signal. N = 3. The
scale baris 50 ym.

doi:10.1371/journal.pone.0163744.9007
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sections were set to 1.2 um with optical interval less than 1 pm. Eye-antennal disc size and
growth change were acquired using Plan- Apochromat 20x/0.8 objective. 45 slices were stacked
under optical section set to 1.4 um with optical interval equals to 0.8 pm. Time is displayed as
hr:min:sec, relative to the start of the time-lapse.

Clone induction
The clones were induced at 72h AEL for 7 mins heat shock, and dissected at 96h AEL.

KAEDE photoconversion

The green KAEDE was excited by a 514 nm laser and the red 543 nm emission was monitored.
The initial photoconversion was 3% power of a 25 mW laser for 80 scans. Each scan takes 1.4
sec to complete. Because the photo-conversion is due to a peptide cleavage [43], it is irreversible
and stable. The red signal slowly decays, probably due to protein degradation. The green signal
showed nearly complete conversion to red and slowly recovered due to new protein synthesis.
Subsequent boosts were reduced to 1% of 25 mW laser for 40 scans of 1.4 sec each, totaling 1
min, every 4 hr to maintain the red signal.

Immunostaining

Larval discs were dissected, fixed and stained followed by protocol as previous described [44].
Primary antibodies were: mouse-anti Cut (1:200), mouse anti-Repo (1:100), rat-anti-Elav
(1:200), rat-anti E-Cadherin (1:25) from Developmental Studies Hybridoma Bank (DSHB,
University of Iowa). The anti-cleaved caspase 3 (CC3) antibody [45] is from Cell Signaling
Technology 96618. Fluorescence conjugated secondary antibodies, including anti-HRP (1:300),
were obtained from Jackson ImmunoResearch. Imaging procedures were acquired by LSM 510
Meta or LSM 780 confocal microscope (Zeiss).

Supporting Information

S1 Table. Comparison of medium compositions. In order for comparison, we standardized
the compositions of various mediums reported for disc culture. FBS, fetal bovine serum; FCS,
fetal calf serum. The serum is heat inactivated. The standard unit of antibiotics is 10 U/ml peni-
cillin and 10 pg/ml streptomycin. The standard fly or larva extract is 0.14 g/ml in Schneider’s
medium. We found that larval and adult extract are equivalent. We used recombinant human
insulin, whereas bovine insulin purified from pancreas was used in other studies [13, 15, 18,
20]. The source for the other reports is not known. We have not tested whether the species
source makes a difference. The concentration conversion for insulin in Zartman et al (2013) is
2.5 U/mg. Ecdysone is 20-hydroxyecdysone. # juvenile hormone analog and fat body condi-
tioned medium. § 50 pg/ml penicillin, 50 ug/ml streptomycin, 100 pg/ml neomycin.

(DOCX)

S1 Fig. Optimization of the culture medium. Early third instar (84 hr AEL) w'’'® eye-anten-

nal discs were cultured ex vivo for 12 hr, 24 hr and 36 hr (96, 108 and 120 hr AEL), respectively,
and compared with discs freshly dissected from larva (in vivo) at these time points. (A-C) Dif-
ferent concentration of insulin were compared. (D-F) The 1X insulin medium with addition of
different concentration of larva extract were compared. (G-I) The 1X insulin medium with
addition of different concentration of 20HE were compared. (J, K) The insulin from human or
bovine were compared. (L, M) The 1X insulin medium with addition of trehalose (60 pug/ml)
was compared. (A, D, G, ], L) The number of rows of ommatidia, marked by anti-HRP. (B, E,
H) The number of retinal basal glia (marked by anti-Repo). (C, E, I, K, M) the size of eye-
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antenna disc. In all experiments, N = 20.
(TIF)

S2 Fig. Cell density and cell death in ex vivo cultured eye-antenna disc. The eye-antenna
disc at 96h AEL stained with DAPI (blue). The two insets (green and red, from the antenna
and eye disc, respectively) are enlarged as A’ and A”. (B-B”) The in vivo disc at 102h (B, +6),
108h (B, +12) and 114h (B>, +18) AEL. (C-C”) The ex vivo disc at 102h (C, +6), 108h (C, +12)
and 114h (C”, +18) AEL. The discs were stained with DAPI (blue) and anti-cleaved caspase 3
(CC3, red). The cell density in the in vivo and ex vivo eye disc (D) and antenna disc (D’) were
plotted for the 18 hr culture period. (E) The number of CC3" cells in the in vivo and ex vivo
eye-antenna disc were plotted for the 18 hr culture period. The Scale bar is 30 pm, except for A
and A” (5 pm).

(TIF)

S3 Fig. Cell density and cell death in ex vivo cultured wing disc. The wing disc at 84h AEL
stained with DAPI (blue). The insets (green) is enlarged as A. (B-B”) The in vivo disc at 96h
(B, +6), 108h (B’ +12) and 120h (B”, +18) AEL. (C-C”) The ex vivo disc at 96h (C, +6), 108h
(C’ +12) and 120h (C”, +18) AEL. The discs were stained with DAPI (blue) and anti-activated
caspase 3 (CC3, red). The cell density in the in vivo and ex vivo wing disc (D) were plotted for
the 18 hr culture period. (E) The number of CC3" cells in the in vivo and ex vivo wing disc
were plotted for the 18 hr culture period. The Scale bar is 30 um, except for A’ (5 um).

(TIF)

S1 Movie. DV boundary formation in cultured wing disc. The mid-L2 wing disc, with associ-
ated trachea, was cultured for 16.5 hrs (about early-mid-L3). Sgh-mCherry (green) showed the
appearance of the actomyosin cable at the DV boundary (arrow) at around 16 hr. ap-Gal4
driven nuclear GFP (ap>GFP.nls) (white) marked the dorsal compartment. The expression
intensity gradually increased. The scale bar is 30 pm.

(AVI)

$2 Movie. Cell proliferation in cultured wing disc. The mid-L3 wing disc was cultured for 7
hr. His2Av-GFP (green) marked chromosomes. The two daughter cells of a division event are
linked by a line. The scale bar is 30 um.

(AVI)

$3 Movie. Cell divisions in cultured antennal disc. An early-L3 ubi>Fucci eye-antennal disc
was cultured and monitored at 25°C for 12 hr. The cell cycle G1 (GFP only; green), S (RFP
only; magenta), and G2 (GFP and RFP; white) phases can be distinguished. The scale bar is
30 um.

(AVT)

S$4 Movie. Ommatidial development in cultured eye disc. A mid-L3 elav>>H2B-RFP eye-
antennal disc was cultured and monitored at 25°C for 15.75 hr. RFP (Red) marks the differenti-
ating photoreceptor neurons. The scale bar is 30 pum.

(AVI)

S5 Movie. Progression of morphogenetic furrow in ex vivo cultured eye-antennal disc. An
early-L3 Sqh-GFP eye-antennal disc was cultured and monitored at 25°C for 14.5 hr. Sqgh-GFP
(green) marks the cell contour. The scale bar is 30 pm.

(AVI)

S6 Movie. Proliferation and migration of RBG in cultured eye disc. A mid-L3 repo-nRFP
eye-antennal disc was cultured and monitored at 25°C for 11.5 hr, RFP (green) marks the
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RBGs. While most Repo* nuclei move toward the anterior, some migrate backward. The two
large nuclei are the carpet glia. The scale bar is 30 um.
(AVI)

S7 Movie. Proliferation and migration of C527" glia in cultured eye disc. A C527>GFP.nls
mid-L3 eye-antennal disc was cultured and imaged at 25°C for 11.5 hr. GFP (green) marks the
SG. The scale bar is 30 pm.

(AVI)

S8 Movie. Migration of MZ97" glia in cultured eye disc. A mid-L3 MZ97>H2B-RFP eye-
antennal disc was cultured and monitored at 25°C for 20 hr. RFP (green) marks the WG. Note
the new MZ97" nuclei appear at the anterior front, and many nuclei move backward. The scale
bar is 30 pm.

(AVI)

S9 Movie. MZ97" glia undergoes endoreplication. A mid-L3 MZ97> Fucci eye-antennal disc
was cultured and monitored at 25°C for 23 hr. The anterior MZ97" cells can progress from S
phase (magenta) to G1 (green) without undergoing mitosis (magenta plus green). The scale bar
is 30 um.

(AVT)

$10 Movie. Membrane dynamics of carpet glia in cultured eye disc. A mid-L3
C135>Moesin-GFP eye-antennal disc was cultured and monitored at 25°C for 7.5 hr. Moesin-
GFP (green), Repo (magenta). The scale bar is 30 um.

(AVI)

S11 Movie. Selectivelylabeling of a single carpet glia. A mid-L3 C135>KAEDE eye disc was
cultured and monitored at 25°C for 17.75 hr. The photoconversion was induced by 405nm
laser. Immediately after the two minutes of laser scan for photoconversion, the red signal is
seen in the entirety of the carpet glia. The scale bar is 50 pm.

(AVI)
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