@° PLOS | ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Kim H, Choi K-I (2016) A Pipelined Non-
Deterministic Finite Automaton-Based String
Matching Scheme Using Merged State Transitions
inan FPGA. PLoS ONE 11(10): e0163535.
doi:10.1371/journal.pone.0163535

Editor: Yongtang Shi, Nankai University, CHINA
Received: December 14, 2015

Accepted: September 9, 2016

Published: October 3, 2016

Copyright: © 2016 Kim, Choi. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: This work was partly supported by the
ICT R&D program of Institute for Information &
communications Technology Promotion (IITP) and
the Ministry of Science, ICT & Future Planning
(MSIP) (B0101-16-0233, Smart Networking Core
Technology Development) and the Basic Science
Research Program through the National Research
Foundation of Korea (NRF) funded by MSIP
(2012R1A1A1002993). The funders had no role in
study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

RESEARCH ARTICLE

A Pipelined Non-Deterministic Finite
Automaton-Based String Matching Scheme
Using Merged State Transitions in an FPGA

HyundJin Kim'*, Kang-ll Choi?

1 School of Electronics and Electrical Engineering, Dankook University, Yongin-si, Republic of Korea,
2 Advanced Communications Research Laboratory, Electronics and Telecommunications Research
Institute, Daejeon, Republic of Korea

* hyunjin2.kim @gmail.com

Abstract

This paper proposes a pipelined non-deterministic finite automaton (NFA)-based string
matching scheme using field programmable gate array (FPGA) implementation. The char-
acteristics of the NFA such as shared common prefixes and no failure transitions are con-
sidered in the proposed scheme. In the implementation of the automaton-based string
matching using an FPGA, each state transition is implemented with a look-up table (LUT)
for the combinational logic circuit between registers. In addition, multiple state transitions
between stages can be performed in a pipelined fashion. In this paper, it is proposed that
multiple one-to-one state transitions, called merged state transitions, can be performed
with an LUT. By cutting down the number of used LUTSs for implementing state transitions,
the hardware overhead of combinational logic circuits is greatly reduced in the proposed
pipelined NFA-based string matching scheme.

Introduction

Due to the increasing amount of data and communication speed in computer and network sys-
tems, high speed data processing is necessary. In order to extract meaningful information from
data, data are searched in order to know whether patterns exist in the middle of the data or not.
When a pattern is found, it can be said that the pattern is matched. The string that consists of a
sequence of characters is the most basic form of patterns. Traditionally, string matching has
been an interesting topic for indicating a place where one or several patterns are found. The
string matching engine is a specific module that provides the matching information of input
data against target patterns. Generally, the string matching engines can be implemented based
on the software-based system [1-3]. However, in the era of big data and 100-gigabit communi-
cations, the resource in the software-based system cannot be fully focused on the string match-
ing engine. In this case, the software-based string matching engine cannot provide sufficient
performance or throughput. For example, in deep packet inspection (DPI), payloads or user
data in networking packets should be searched at wire speed. If the throughput does not meet

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016

1/24

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0163535&domain=pdf
http://creativecommons.org/licenses/by/4.0/

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

Competing Interests: The authors have declared
that no competing interests exist.

with the wire speed, the performance of network systems can be degraded. Therefore, it is nec-
essary to develop the hardware-based string matching engine.

On the other hand, as the computer and network systems become complex, the number of
target patterns increases dramatically. In addition, a set with target patterns can be updated.
Therefore, the flexibility in the string matching engine is required to map the updated patterns
into the engine. Unlike the software-based string matching engine, the hardware-based string
matching engine should adopt a specific device that guarantees the flexibility of the string
matching engine. The standard cell-based hardware implementation cannot provide the suffi-
cient flexibility because the hardware structure cannot be changed according to the updated
patterns. On the other hand, because FPGA can provide high flexibility using its reconfigura-
tion of logic circuits, the string matching engine can be implemented using an FPGA, which is
called the FPGA-based string matching engine.

There are several configurable elements in an FPGA. Many kinds of FPGA-based string
matching engines using block random access memories (RAMs) have been studied in [4-13],
where configurable logic elements have not been used sufficiently. In general, each configurable
logic element in an FPGA contains a fixed number of LUTs and flip-flops (FFs). Basically, the
configurable logic elements provide the FPGA reconfiguration by changing the contents of
LUTs and routing networks in an FPGA. Due to the limited number of logic elements in an
FPGA, the FPGA-based string matching engine should have low hardware overhead. In addi-
tion, because operating frequency is related to the throughput of the string matching engine,
high operating frequency should be achieved.

In an FPGA implementation, as the complexity of a combinational logic circuit increases,
great effort for synthesizing and implementing the combinational logic description is required.
In addition, operating frequency should be decreased due to the long critical path. On the
other hands, an LUT has multiple inputs (generally, from three to six), whereas only one out-
put bit is provided from an LUT [14]. When a combinational logic circuit between registers is
simple, several input bits for the LUT cannot be used, where the hardware resource of the
unused inputs is wasted. This inefficient resource usage increases hardware overhead in terms
of the number of used LUTs. Therefore, the string matching scheme based on FPGA imple-
mentation should provide both overall string matching method and its hardware architecture
appropriate to the target FPGA, considering hardware complexity, operating frequency, and
low hardware overhead.

This paper proposes a pipelined NFA-based string matching scheme for the FPGA-based
string matching engine. The characteristics of the NFA such as shared common prefixes and
no fajlure transitions are considered in the implementation of the proposed scheme. In addi-
tion, multiple state transitions between stages can be performed in a pipelined fashion. Com-
pared to the implementation of a DFA, when implementing a pipelined NFA, the failure
transitions of deterministic finite automaton (DFA) are not needed, so that the number of tran-
sitions to be implemented can be small. In addition, because each combinational logic circuit
exists between stages separately, each combinational logic circuit can be simplified. Therefore,
hardware complexity can be reduced compared to that in the DFA implementation. In the
hardware architecture, the pipelined priority encoder is adopted to provide the matching index
for the longest matched pattern. In the implementation of the pipelined priority encoder, high
operating frequency is achieved by the pipelined encoding, where a hierarchical design with
four-input encoders is described. The low hardware complexity of the combinational logic cir-
cuits in each stage and pipelined priority encoder can provide high operating frequency. In
order to reduce the hardware overhead of combinational logic circuits, it is proposed that mul-
tiple one-to-one state transitions are merged and implemented in an LUT. Because the number
of used LUTs for implementing state transitions is decreased, the hardware overhead can be

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 2/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

reduced. The hardware description for the proposed string matching scheme is automatically
generated. Using a commercial tool, the generated hardware description can be compiled and
implemented. In the experiments with a state-of-the-art FPGA, the proposed string matching
scheme can provide high throughput and low hardware overhead, compared with previous
FPGA-based string matching schemes.

This paper is structured as follows: firstly, backgrounds and previous works are explained in
detail. Secondly, the proposed string matching scheme and its motivation are described with
several illustrations. Finally, experimental results are shown and analyzed in terms of hardware
overhead and estimated maximum operating frequency.

Backgrounds and Previous Works

In this section, the backgrounds of the FPGA-based string matching engine and previous
works are explained in detail.

String Matching using Block RAMs versus Logic Elements

As shown in the previous section, the FPGA-based string matching engines can be imple-
mented using block RAMs or logic elements. When block RAMs are adopted, the operating
speed and throughput of the FPGA-based string matching engine depend on the memory
access time. Generally, the maximum memory access speed can be kept pace with the maxi-
mum operating speed of logic circuits in the state-of-the-art FPGA. However, in order to
obtain the next state in one clock cycle, both the memory access and several logic operations
are performed, which makes the critical path long. Therefore, due to the low clock frequency
caused by the long critical path, the throughput of the FPGA-based string matching using
Block RAMs can be lower than that using logic elements.

On the other hand, the time for updating patterns includes the generation of configuration
data and pattern mapping in FPGA. When block RAMs are adopted, the automaton-based
string matching schemes can be easily implemented by storing next states for each state into
the memory. Basically, the next state for a state can be obtained according to input data used as
the memory address. In the FPGA-based string matching engines using block RAMs, the hard-
ware description of the string matching engine contains block RAMs. After compiling the
hardware description, the string matching engine can be configured. Next, for the pattern map-
ping, memory contents are generated from target patterns, where memory contents are
updated by inputting memory contents into block RAMs. In order to update target patterns,
memory contents are re-generated and inputted into block RAMs.

When logic elements are adopted, the hardware description of the string matching engine
contains the information of mapped patterns. Therefore, after compiling the hardware descrip-
tion, the generated configuration data include the information of mapped patterns in the form
of logic elements. In this case, there is no need to generate memory contents. However, due to
the fine granularity of the logic elements, the configuration time can be increased compared to
the case using block RAMs. In addition, when target patterns are updated, the compilation of
the hardware description should be re-performed.

The maximum capacity of the hardware implementation can be discussed as follows: the
size of block RAMs and number of logic elements are limited in an FPGA. For example, the
total bits of block RAMs in a Virtex-7 FPGA is 68 Megabits, where the minimum size of a
block RAM is 36 Kilobits [15]. On the other hand, 1,955K logic cells can be contained in a Vir-
tex-7 FPGA, in which the logic cell means the logical equivalent of a classic four-input LUT
and a FE. For example, in the implementation of the Aho-Corasick algorithm [16] using mem-
ory blocks, the next state can be obtained using the current state and input character. When

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 3/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

the number of bits in an input character is eight, the number of next state pointers stored in a
current state is 256. In addition, the size of a next state pointer can be [log, S|, where S is the
number of all states. As shown in [17], the Aho-Corasick algorithm requires a large amount of
embedded memory for the large rule set such as antivirus applications. Therefore, the imple-
mentation of the Aho-Corasick algorithm using an FPGA is not feasible. In [6], the pipelined
string matching engine based on the Aho-Corasick algorithm requires 18.1 bits and 0.04 LUT
per a character of patterns on average. In the memory-based string matching in [18], the nor-
malized memory requirements for a character of patterns are over 10 bytes. On the other hand,
in the implementation of the NFA in [19], a state can be implemented using an LUT. Consider-
ing the overall fine granularity and the capacities of block RAMs and logic cells in the state-of-
the art FPGA, the string matching engine using logic cells can have larger capacity than that
using block RAMs.

Therefore, because the proposed string matching scheme is implemented using configurable
logic elements, the string matching engine using configurable logic elements are considered in the
later part of this paper, where the string matching schemes using block RAMs are not reviewed.

Overview of Configurable Logic Elements in an FPGA

An FPGA can provide the flexibility in the string matching engine using configurable logic ele-
ments. In general, there are three types of configurable logic elements in an FPGA: LUTs, FFs,
and programmable switches. An LUT is small memory cell with several input bits and one out-
put bit [14]. By changing memory contents in each LUT, any logic functions can be imple-
mented. In addition, FFs can be configured for implementing any storage. In an FPGA, several
LUTs and FFs are contained in each elementary programmable logic block. For example, a slice
in Xilinx Virtex-7 FPGA has four six-input LUTs and eight storage elements (FFs) [15]. A logic
element in Altera Stratix V can have two four-input LUTs and four FFs [20]. There are many
homogeneous slices or logic elements in an FPGA, where they are connected using program-
mable switches. Because an FPGA has a fixed number of slices or logic elements, the numbers
of available LUTs and FFs are predetermined, which means that the hardware size for a logic
circuit can be limited by the available numbers of LUTs or FFs. In addition, considering the
state-of-the-art FPGA structure in [15, 20], the ratio of the number of storage elements to the
number of LUTs is increased compared to old-fashioned FPGAs.

Overview of FPGA-based String Matching Engine

Using the configurable logic elements, several schemes can be applied in the FPGA-based
string matching engine. Firstly, TCAM (Ternary Content Addressable Memory) can be emu-
lated. In each row of the emulated TCAM block, a pattern is mapped into comparators.
Whereas the commercial TCAM has the fixed number of adopted cells in a row, a row in the
emulated TCAM block can vary the number of cells according to the mapped pattern. When
the pattern is matched, non-zero matching index is outputted. In order to provide one index
for the longest matched pattern, a priority encoder with multiple input indexes should be con-
figured. Because the comparator cells and priority decoder are combinational logic circuits, the
ratio of used LUTs to total LUTs is greater than the ratio of used FFs to total FFs. In addition,
common prefixes between patterns are not shared. Therefore, resource usage cannot be effi-
cient in the FPGA implementation. Moreover, because the number of comparators for a pat-
tern can increase with the pattern length or the number of characters in the pattern, hardware
complexity can also increase with the pattern length of each pattern.

In [21], the pipelined comparators are adopted considering the structure of logic cells in an
FPGA. By splitting the input data into several bit groups for the LUT, multiple bit-level

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 4/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

pipelined comparisons are performed. However, like the TCAM emulation, common prefixes
between patterns are not shared explicitly. Even though the pipelined priority encoder is
adopted to provide the matching index for the longest matched pattern, the clear structure of
the pipelined priority encoder is not shown in [21]. In [22], the pre-decoding scheme is used to
share the decoder for the same character between patterns. By sharing the character decoder,
the repeated decoding for the same character in each comparator can be avoided, so that the
size of combinational logic circuits is reduced. Like [21], the pipelined comparators can be
adopted, where the pre-decoding data are inputted into the comparators. However, in [22],
common prefixes between patterns are not shared. In addition, the problem of the hardware
complexity in the priority decoder is not solved.

In order to share common prefixes between patterns, the automaton-based string matching
scheme can be adopted in the FPGA-based string matching engine. In automation-based string
matching scheme, states store the information of input data sequence, where state transitions
can happen according to the inputted character. In the FPGA-based string matching, states are
stored into registers. When the character of a pattern is translated into a state transition, each
state transition can be implemented using a combinational logic circuit. The combinational
logic circuit outputs the next state according to the inputted character. Between registers for
storing the states, the combinational logic circuit for the state transition is placed.

According to the number of current states, automaton-based string matching schemes are
categorized into the deterministic finite automaton (DFA) and NFA-based string matching
schemes. In the DFA-based string matching scheme, only one state can be the current state. In
addition, one state transition can be performed for an inputted character at a time. Therefore,
the DFA-based string matching scheme can guarantee the regularity for obtaining the match-
ing index. The DFA-based string matching scheme is simply implemented with both large-
sized combinational logic block and register. However, the failure transition for indicating the
longest common suffix [16] should be added in each state, which increases hardware complex-
ity. In addition, due to the large size of the combinational logic block, hardware complexity can
also be increased.

On the other hand, the NFA-based string matching scheme can have multiple current states
and multiple state transitions at a time. Due to the high parallelism using multiple configurable
elements, the NFA-based string matching scheme can be implemented using an FPGA.
Because multiple current states exist at a time, the information of the longest common suffix is
stored into the multiple current states, so that there is no need to indicate the longest common
suffix using the failure transition. In addition, because multiple state transitions can be per-
formed at a time, there are many separate combinational logic blocks between registers in the
implementation. Therefore, hardware complexity is decreased, compared to that of the DFA-
based string matching scheme.

In the NFA-based string matching scheme, in order to perform a state transition, the com-
parator for recognizing the adequate input data of the state transition is implemented between
registers. In an FPGA, the structure of configurable logic elements is fixed. Therefore, if a com-
parator should be suitably sized considering the structure of the logic elements, the hardware
overhead of combinational logic blocks can be reduced.

Previous NFA-based String Matching Schemes using an FPGA

Because the proposed string matching scheme is the exact string matching, previous NFA-
based string matching schemes will be reviewed considering the exact string matching.

In [23], a simple sub-expression can be mapped onto its logic structure. Using the logic
structures for a sub-expression, the NFA-based string matching engine can be implemented.

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 5/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

However, because the match with each character is mapped onto a comparator, the hardware
overhead of combinational logic circuits in an FPGA is not considered.

In the technical approach in [24], both design and implementation processes of an FPGA-
based string matching are described. In [24], the balanced utilization between combinational
logic and FF resources in the NFA-based string matching is explained. However, there is no
systematical or quantitative analysis for the balanced resource utilization.

In the NFA-based string matching in [22, 25], a pre-decoding scheme is used to decode
each input character into multiple bits. In [25], considering the structure of each logic element
in an FPGA, pipelined state transitions are performed for each pattern in parallel, where each
logic element between registers can take the pre-decoding data. However, the sharing of com-
mon prefixes between patterns is not considered.

In [19], the NFA-based string matching scheme is implemented in a pipelined fashion. The
pre-decoding scheme in [22, 25] is applied in [19]. Conceptually, the string matching scheme
in [19] emulates the DFA-based string matching in [16] with the state transitions in different
pipelining depths. In addition, common prefixes between patterns are shared. However,
because each state transition is implemented using a combinational logic block between regis-
ters, the resource usage in terms of used LUTs is inefficient. In addition, due to the long critical
path in the priority encoder for providing the matching index, high operating frequency cannot
be achieved.

In our previous work in [26], the pipelined NFA-based string matching scheme for emu-
lating the DFA-based string matching is described. When the number of target patterns is
small, the hardware overhead for the pre-decoding scheme described in [22, 25] can be great.
Therefore, in [26], the string matching scheme does not adopt the pre-decoding scheme. How-
ever, like [19], the resource usage and hardware complexity for implementing each state transi-
tion and the priority encoder are not considered.

Pipelined NFA String Matching

Before explaining the proposed pipelined NFA-based string matching scheme, the example of
the pipelined NFA string matching scheme based on [19, 22, 25-27] is described. In [27], a
memory-based pipelined approach of the Aho-Corasick algorithm is proposed at first time. On
the other hand, in [19], the NFA-based string matching scheme is implemented in a pipelined
fashion using the logic elements in an FPGA. In the pipelined NFA, like the DFA in [16, 27]
and NFA in [19], common prefixes can be shared. Unlike the DFA in [16], the failure transition
does not exist in the pipelined NFA.

Fig 1(a) shows an example of a pipelined NFA for patterns noodle, noon, nort, and north.
Common prefix no is shared between patterns noodle, noon, nort, and north. Common prefix
noo is shared between patterns noodle and noon. Common prefix nort is shared between pat-
terns nort and north. The circle and number in the circle mean the state and index of the state
at a stage, respectively. The circle with gray color represents the output state, where a pattern
can be matched. The normal arrow means a state transition from a state towards another state.
When the input is the character on the normal arrow, the state transition is performed. The
vertical dotted line shows the pipeline stage according to the distance from the initial state s,.
In a stage of the pipelined NFA, only one state can be the current state. If the maximum pattern
length is L, there are L pipeline stages (stage, — stage; 1) and L current states. When a character
is inputted, state transitions can be performed from stage; to stage;,, in parallel. If there is no
input related to any valid state transitions in stage;, the next state in stage;,, can be a null state.

Fig 1(b) describes states in each stage according to an input sequence noonoo. When each
character is inputted, the state in each stage is determined in a pipelined fashion. Because there

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 6/24

o @
@ : PLOS | ONE A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

RIS

n+@—'ro» o> d»l—»@-i—e+

I

RO
I I
I

stagey stage, stage,; stages; stagey stages
(a)

input

sequence n-> o0->0->n->0 >0 >

So~> S1 2 S2 2 S3 =2 S4 —>null > null
current So —>null = null = null = null = null = null
states So D null > null > null > null = null

So >S1>S2 > S8S3 >

time t t+1 42 t+3 t+4 t+5 t+6 t+7
(b)

Fig 1. Example of a pipelined NFA: (a) pipelined state transitions for patterns noodle, noon, nort, and north; (b) states in each stage
according to an input sequence noonoo.

doi:10.1371/journal.pone.0163535.9001

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 7/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

str_in ———

decoder

| regi
|| ster

W(d)
Wee)
Wih)
wii)
W(n)
W(o)
w(r)
wit)

Sy S Ss3 Sy
W(n)— o Q —1D Q —D Q D —
W W w(d,
o)] LUT o) LUT 1a) LUT
CLK T CLK T CLK T CLK
Sy Ss Se Ss3 Sy
—— D Q D Qr— —— D —
wl W W
U LUT (&) LUT () LUT
CLK >CLK ek
W?i) D Q Vf(i) D Q V|\/S(:7) b a S0
LUT LUT LUT
T CLK T >CLK T CLK

Fig 2. Circuit diagram of the pipelined NFA in Fig 1.
doi:10.1371/journal.pone.0163535.9002

is no failure transition, if the current state is a null state, the next state can also be another null
state. In Fig 1(b), when a character sequence noonoo is inputted, the states in stage, and stages at
time = t+5 and time = t+6 are null states, which means that there are no matched patterns with
lengths of 5 and 6 for the input sequence noonoo. Because the current state exists in each stage,
there can be multiple output states. When the index of the longest matched pattern should be
provided, the output state in stage; has priority over the output state in stage; when i < j.

Fig 2 shows a circuit diagram of the pipelined NFA in Fig 1. Like [22, 25], the character
decoder is implemented. The decoded output bits are inputted into the comparators in LUTs
for performing state transitions, where bit W{(c) can be one for an input character c.

By adopting the one-hot encoding, the values stored in FFs for a pipelined stage indicate the
current state in a stage. For a stage, only one FF can have the output value of one (or true);
other FFs have the output values of zero (or false). By ANDing the decoded output bit and out-
put value from each FF, the input value of each FF for the next stage is determined. Considering
the example in Fig 1, the number of decoded output bits for each state can vary due to the dif-
ferent numbers of state transitions from each state.

When an output state is reached, the identification number of the matched pattern should be
provided. When the value of a state is one, the state can be a current state. Because multiple
states can be current states in the pipelined NFA, there are multiple output states at a time. In
order to provide the identification number for the longest matched pattern, a priority encoder
should be adopted. Let us assume that the matching indexes 1, 2, 3, and 4 are assigned for states
Se» 57> S, and s1¢ for the pipelined NFA in Fig 1(a). When i < j, the pattern length for the output
state in stage; is longer than that for the output state in stage;. Therefore, the output state in stage;
has priority over that for the output state in stage;. For example, state ss has priority over states
$7, o, and sy, where the matching index of 1 is outputted for the longest matched pattern.

Proposed String Matching Scheme

In this section, the motivation and detail description of the proposed FPGA-based string
matching scheme are provided. In this section, it is assumed that the proposed string matching
scheme takes one character as an input at a time. Even though the proposed string matching
scheme can be extended into the string matching with multiple input characters, the hardware

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016

8/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

complexity can increase with the number of inputted characters. In addition, as shown the par-
allel string matching scheme in [28, 29], multiple input chunks or sequences of characters can
be provided, where each chunk can be inputted into each homogeneous string matching mod-
ule. However, in order to show the proposed idea clearly, the proposed string matching scheme
is explained for the case with one inputted character at a time.

Motivation

In the FPGA-based string matching engine, states and state transitions are implemented using
FFs and LUTs, respectively. In the previous NFA-based string matching scheme in an FPGA,
each state transition between states can be implemented with an LUT. If the number of used
input bits in an LUT is smaller than the maximum number of input bits available in the LUT,
the resource for implementing the combinational logic circuits in an FPGA is wasted. In Fig 2,
each two-input AND gate is implemented using an LUT, where the decoded output bit of a
character and output bit from an FF for the current state are ANDed. Whereas the maximum
number of input bits in an LUT is four, the number of used input bits in each LUT is only two.
Therefore, we propose a new NFA-based string matching scheme that increases the efficiency
in the resource usage of combinational logic circuits for implementing state transitions.

On the other hand, as the number of patterns mapped in an NFA increases, the hardware
complexity in the priority decoder also increases. Due to the increased hardware complexity
with the number of mapped patterns, the critical path could exist in the priority encoder.
Therefore, by adding pipeline registers, a pipelined priority encoder can be adopted to shorten
the critical path. Even though the string matching engine in [21] can adopt a pipelined priority
encoder, the detail structure of adopting the pipelined priority encoder for the proposed
FPGA-based string matching will be described.

Merged State Transitions in Pipelined NFA String Matching

Considering the structure of logic elements in an FPGA mentioned above, we propose a new
idea called merged state transitions that can enhance the efficiency of resource usage in the
combinational logic circuits. In order to describe the merged state transitions, the pipelined
NFA in Fig 1(a) is modified.

For finding the candidates of state transitions to be merged, the state transitions to be
merged should meet all of the following conditions:

1. The state transitions to be merged are related to the subpattern or character sequence of a
target pattern.

2. When a state transition st; goes towards state s;, if only one valid state transition st; comes
from state s;, the state transitions st; and st; can be merged.

3. The state transition from an output state cannot be merged with the state transition towards
the output state.

4. A state transition can be merged only once.

The purpose of the conditions mentioned above is explained as follows: firstly, the state
transitions for the match with a target pattern are performed in sequence. Therefore, the state
transitions to be merged should be related to the subpattern of the target pattern.

On the other hand, a subpattern with the sequence of more than one characters is translated
into a set of merged state transitions. Let us assume that the state transition towards state s; are
shared between multiple target patterns. When state s; has more than one state transition
towards other states, not all state transitions towards other states can be shared between the

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 9/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

1: procedure MERGEDSTATETRANSITIONS(N FA, M)
2 sets Z <+ ¢

3 fori+ 0,5 —1 do

4 for all state; € stage; of NFA do

B: for all state transition sty from state; do
6 NUMmer gedst i

7 st +— sty

8 while st can be merged do

9: if numMmergedst > M +1 then

10: break

11: end if

12: steY

13: st + NextStateTransitionfrom(st)
14: NUMymer gedst Lo NUMmer gedst + 1
15: end while

16: =Y ez

17: end for

18: end for

19: end for
20: return Z

21: end procedure

Fig 3. Pseudo code for extracting sets of state transitions to be merged.
doi:10.1371/journal.pone.0163535.9003

target patterns. Therefore, if the state transition towards state s; is merged with one state transi-
tion from state s;, the merged state transitions cannot be shared. In this case, the subpattern of
the merged state transitions for a target pattern is not always the subpattern for another target
pattern. Therefore, in order to share the state transition towards a shared state s;, the state tran-
sition from state s; cannot be merged with the state transition towards state s;.

If the state transition from an output state is performed, the output state has been reached.
On the other hand, for the merged state transitions, a sequence of characters is compared with
a subpattern at a time. When the state transition from an output state is merged with any other
state transition towards the output state, there is no way to know whether the output state has
been reached or not. Therefore, the state transition from an output state cannot be merged
with the state transition towards the output state.

If a state transition st; is merged with other state transitions, the state transition st; can be
the element of a set for comparing a sequence of characters at a time. If the state transition is
merged more than once, the state transition can be the element of another set. In this case, the
state transition can be performed several times. Therefore, the condition that a state transition
should be merged only once should be met.

Fig 3 describes a procedure that extracts sets of state transitions to be merged. The proce-
dure gets the information of a pipelined NFA (NFA) and the maximum number of merged
state transitions for a state (M) as inputs. Breadth-first search (BFS) is applied to search all
states (state, — states_;) from stage,. In stage stage;, a state transition st of state state; is stored
into a temporary variable st. If state transition st can be merged and the number of state transi-
tion to be merged num,, e geqs is smaller than M + 1, state transition st can be an element of set

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 10/24

o @
@ : PLOS | ONE A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

RO o oNoING NG

rt
O

I I
I I
| 9 | h’l
I I I
| I I
| I I
stagey stage; stage; stage; stagey stages

Fig 4. Example of the pipelined NFA using merged state transitions.
doi:10.1371/journal.pone.0163535.9004

Y, which contains the state transitions to be merged. The next state transition is obtained with
st by calling procedure NextStateTransitionfrom. Then, variable st is replaced with the next
state transition. This process will be iterated until the maximum number of state transitions
can be merged. It is noted that the minimum number of state transitions included in set Y can
be one. After finishing while loop, the final set Y becomes a new element in Z. Finally, all sets
of state transitions to be merged (Z) are returned.

Fig 4 describes an example of the pipelined NFA using merged state transitions. In Fig 4,
subpatterns dle, no, and rt are adopted to merge state transitions. Compared to Fig 1(a), the
state transition from state s, is merged with the state transition from state s; because state s,
has only one valid state transition towards state s,. The state transition from state so is not
merged because state s, is the output state.

Fig 5 shows a circuit diagram of the implementation for the pipelined NFA using merged
state transitions in Fig 4. For the four-input LUT in an FPGA, a maximum of three merged
state transitions can be inputted with a value of previous state. In order to support merged state
transitions at a time, the input character is decoded, and then the decoded output bits are
shifted. In the left part of Fig 5, registers are adopted for shifting the decoded output bits. The
outputs from the registers are inputted into the comparator of merged state transitions. For
example, if three state transitions are merged, three decoded output bits are inputted for the
comparison with three input characters at a time. Therefore, compared to the decoder in Fig 2,
two additional registers are adopted, where decoding bit W(c),,; can be one for an input char-
acter c at time =t + i. When i is zero, the subscript t + i is removed for clarity. The comparators
for the merged state transitions are implemented using LUTs. Compared to the circuit diagram
in Fig 2, multiple decoding bits are inputted in several LUTs in Fig 5, where the required num-
ber of LUTs is reduced from nine to six.

When state transitions are merged, the state information can be shifted using the chain of
FFs. Because the state information is stored in FFs each time, the number of FFs for storing the

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 11/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

str_in —

decoder

— W@z —
— W(e)nz2—
— W(h)t2—

regi W(l)ts2

1 ster — W(n)ez —|

W(0)s2
— W1 —|
W()s+2

regi
ster

- W(d) 1 —
Wewr -
—W(h)e1- -
W1
—W(n)e1- ster —
W(0) 1
= W) 1 - —
W(t) 141

W) | . o S ol S s
W) Wo) |

LUT LUT

W(d) L

We) |s, | s, | Ss lss |Ss S,
Wih) wd) e« a
WO Wi, VT
W(n) W(e)s
W(o)
w(r)
wit)

regi
CLK

Sz | | Ss | Sy
W(r)
W(t)ss1 |

LUT LUT

Fig 5. Circuit diagram of the pipelined NFA using merged state transitions in Fig 4.
doi:10.1371/journal.pone.0163535.9005

state information does not change, compared to that shown in Fig 2. On the other hand, several
registers for shifting the output bits from the character decoder are required. When the maxi-
mum number of merged state transitions for a state is M, the maximum number of FFs
required for shifting the decoded output bits can be 256 x (M — 1) for ASCII character inputs.
Actually, because all ASCII characters are not shown in target patterns, the increased number
of FFs can be smaller than the maximum number. When merging state transitions, whereas the
number of used LUTs can be reduced, the number of used FFs can be increased. Therefore, the
idea with the merged state transitions reduces the number of used LUTs greatly with slightly
increased number of used FFs.

Identification of Matched Patterns with Pipelined Priority Encoder

As shown in the previous section, the identification number of the longest matched pattern is
provided with the priority encoder. In order to decrease hardware complexity, a pipelined pri-
ority encoder can be adopted, so that high operating frequency is achieved.

On the other hand, according to the target patterns, a specific priority encoder can be imple-
mented. For example, when the lengths of several patterns are equal, the output states for the
patterns are located in a stage. Because only one state in each stage can be the current state, the
hardware complexity of implementing the priority encoder can be reduced. In this case, in
order to show the identification of the stage for the matched longest pattern, the index of the
stage is provided using the priority encoder. In addition, the encoder for each stage is required
for providing the index of the output state of the matched pattern. Therefore, the identification
number of the pattern for a state can be the combination with the index of the state in a stage
and the index of the stage. In this case, the size of the identification number depends on the dis-
tribution of pattern lengths.

In our implementation of the pipelined priority encoder, instead of designing the specific
pipelined priority encoder according to different set of target patterns, a hierarchical design of
the pipelined priority encoder is adopted as follows: firstly, a unit block of the pipelined priority
encoder is shown in Fig 6(a), where bits s, 51, 55, and s3 are the information of four output states.
Multiple unit blocks are adopted in the first pipeline stage. If the number of target patterns is x,
the number of unit blocks can be [£]. If an output state s; is reached, signal s; in Fig 6(a) can be

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016

12/24

o @
@ : PLOS | ONE A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

= 440-2
-to- . 2
S1 Priority R Index
S2 Encoder e
S3 g
1
matched
(a)

n
Index, —#4

n
Index; — i

n Mux
Index, — ;

n |
Indexs —“— select Ri _—

— - Index
matched, g o
matched; Pr-i?r-it 2 | 9
matched, Enco dgr
matcheds_|ll,
1 1
matched

(b)

Fig 6. Blocks of pipelined priority encoder: (a) an unit block for getting information of output states;
(b) a block for the stage with four n-bit indexes and matched signals.

doi:10.1371/journal.pone.0163535.g006

true; otherwise, signal s; is false. If i < j, output state s; has priority over output state s;. The prior-
ity encoder in Fig 6(a) is the combinational logic circuit with four-input bits. A four-input OR
gate, which is used to generate an output signal matched with signals s, 1, 55, and s3. Signal
matched indicates whether there are any matched patterns or not. There are two reasons why
four bits are inputted; firstly, because each LUT has one output bit, four input bits can be
encoded with two output bits with two LUTs. Secondly, considering the number of inputs in an
LUT of commercial FPGAs, four input bits can be sufficient to generate signal matched.

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 13/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

Except for the first stage, multiple-bit indexes from a previous stage are inputted. Fig 6(b)
describes a block for the stage with four #n-bit indexes and matched; signals from the previous
stage. When the number of target patterns is x, [log, x| stages are required. Output signal
matched indicates whether there are any matched patterns by ORing input signals matcheds
from the previous stage. Using the 4-to-2 priority encoder, two-bit selection signal is provided
for the n-bit multiplexor, which can transmit the matching index with the highest priority
from the previous stage. The matching index of this stage is provided by concatenating the two
bits from the 4-to-2 priority encoder (high-order bits) and # bits from the multiplexor (low-
order bits).

Based on the detail explanation of Fig 6 mentioned above, Fig 7 shows a diagram of the
pipelined priority encoder. In Figs 7 and 6(a) and 6(b) are denoted as PEU (priority encoder
unit) and n-bit PEB (priority encoder block), respectively. Even though the information of 32
output states are shown in Fig 7, the hierarchical and regular design can be possible. In

2 Index
PEU 1, matched
2 Index
PEU 1, matched £ ingex
2-bit
2 Index PEB 1. matched
PEU 1, matched
2 Index
PEU 1, matched 6, Index
——
4-bit
2 Index PEB 1, matched
A
PEU 1, matched
2 Index
PEU 1, matched 4 Index
2-bit
2 ingex PEB 1, matched
PEU 1, matched
2 Index
PEU 1, matched
® 06 ° ® 06 ©° ® 06 °

Fig 7. An example of pipelined priority encoder.
doi:10.1371/journal.pone.0163535.g007

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 14/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

addition, the size of the identification number for n patterns can be [log, n]. For 32 output
states, two 2-bit PEBs provide two 4-bit indexes; the MSB (most significant bit) of the 6-bit
index of the 4-bit PEB can be logical zero. Therefore, the 5 leftmost bits can be outputted for
identifying matches with 32 patterns in Fig 7.

NFA Construction and Hardware Implementation

There are several issues for constructing NFA and implementing hardware, which will be dis-
cussed in the following subsections.

NFA Construction

Fig 8 shows the flow to obtain FPGA configuration data from a rule set. In order to constructa
pipelined NFA, patterns are extracted from a rule set. By mapping the patterns onto the gener-
ated pipelined NFA, the pipelined NFA construction is performed. Each character in a pattern
is mapped onto a valid state transition, which is similar to the goto function of the Aho-Cora-
sick algorithm. On the other hand, the pipelined NFA does not adopt the failure function.
Based on the constructed pipelined NFA, the state transitions are merged, where the LUT
structure in a target FPGA is considered. After merging the state transitions, a register-transfer
level (RTL) HDL code is generated, where the generated code is synthesizable in the commer-
cial EDA tool. After synthesis and implementation with the generated HDL code, the FPGA
configuration data is obtained.

Rule Set

v

Patterns

v

Pipelined NFA Construction

v

State Transition Mergence <«—— LUT Structure

v
HDL Code Generation

,,,,,,,,,,,,,,, v
| Y

Synthesis & Implementation

v

FPGA Configuration Data

Commercial EDA
Tool

Optimization for
Target Hardware

Fig 8. Flow to obtain FPGA configuration data from a rule set.

doi:10.1371/journal.pone.0163535.9008

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 15/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

Hardware Implementation and Updatability

In the synthesis and implementation step, the resource usage can be reported. When the resource
usage is not under the resource limitation of the target FPGA, it is concluded that additional
FPGA should be adopted. In addition, the HDL code for constructing a new NFA is required.

On the other hand, when a target rule set is updated, the generated HDL code should be
changed, where the code is synthesized and implemented. Because the configuration time of an
FPGA can be great, several suitable solutions are required. In this case, if a redundant FPGA is
used, there is no need to stop the string matching engine when updating the rule set. While
configuring a redundant FPGA for the new rule set, other FPGA is performing the string
matching for an old rule set. After finishing the configuration of the redundant FPGA, the
redundant FPGA is replaced by the FPGA that runs the string matching. Then, the newly con-
figured device can run. At the same time, the old FPGA can be a redundant device. In addition,
the partial reconfiguration can be helpful to solve the problem of updated rule sets. Now, major
FPGA vendors support the partial reconfiguration, as shown in [30, 31]. By adopting the partial
reconfiguration flow, the functionality of the changed patterns can be changed on the fly. Con-
sidering the solutions for updated rule sets mentioned above, it seems that the FPGA-based
string matching can be realistic in the commercial FPGAs.

Experimental Results
Experimental Environments

In order to evaluate the proposed FPGA-based string matching scheme, a program was made
using the C++ library and Boost graph library (BGL) [32]. A RTL HDL code was generated by
our in-house program, considering target patterns and string matching scheme. The program
ran on a Linux machine with Centos 5.11 operating system, Intel(R) Xeon E5620 CPU @2.4
GHz with 8 threads, and 6-Gigabyte physical memory.

Eight different rule sets were adopted from Snort [33] v2.8 rules. Table 1 enumerates several
characteristics of rule sets. Considering o, pattern lengths in a rule set were widely spread. The
distributions of pattern lengths for rule sets could be different from each other. Therefore, it
was concluded that the adopted rule sets were sufficient for evaluating the proposed string
matching scheme.

Table 1. Characteristics of rule sets with target patterns.

rule set num(patterns)’ num(bytes)? max(/)® avg(/)* o°

backdoor 955 8875 94 9.3 7.5
chat 49 431 38 8.8 8.5
deleted 615 7399 72 12.0 11.0
exploit 243 1906 109 7.8 9.2
oracle 337 10783 53 32.0 12.6
policy 114 1154 112 10.1 12.7
spyware 2299 26103 94 11.4 8.1
web-client 1657 67527 92 40.8 22.8

"Number of patterns.

2Total number of characters of target patterns in rule set.

SMaximum pattern length.
“Average pattern length.
SStandard deviation of pattern lengths.

doi:10.1371/journal.pone.0163535.t1001

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 16/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

In the experiments, our target FPGA was Xilinx xc7vx690t-2-ffg1157 [15], which had
866,400 slice registers and 433,200 LUTs with six input bits. The generated HDL code was syn-
thesized using XST in 64-bit ISE 14.4 of Xilinx [34]. The operating system was 64-bit Microsoft
Windows 7 that ran on Intel(R) I7-5960x CPU @3.0 GHz with 16 threads, and 32-Gigabyte
physical memory.

Experimental Data and Discussion

In order to calculate both hardware overhead and maximum operating frequency according to
the maximum number of merged state transitions for a state denoted as M, evaluations were per-
formed by sweeping M. Fig 9 shows the ratios of numbers of FFs, LUTs, and the maximum oper-
ating frequency F to those when M = 1. The number of FFs for shifting the decoded output bits
of character inputs increased with M in all rule sets. In the rule sets with small number of target
patterns, the ratio of FFs for shifting the decoded output bits to those for implementing states in
the pipelined NFA can be great. Therefore, for the rule sets with small number of target patterns
such as chat, exploit, and policy, the ratios increased sharply with M, as shown in Fig 9(a).

On the other hand, the required numbers of LUTs decreased until M = 5. Considering the
structure of a pipelined NFA like a tree, the ratio of state transitions to be merged can be great
in the rule sets with the long average pattern length such as oracle and web-client. In the target
FPGA with six-input LUTs, the maximum number of merged state transitions for a state can
be five for an LUT. In this implementation, five decoded output bits of character inputs for
merged state transitions and the value of a state can be ANDed in an LUT. When M = 6, the
ratios of LUTs in several rules were increased except for web-client. In web-client, due to the
repeated subpatterns with 0. . .0 in each pattern, it was analyzed that the combinational logic
circuit of the comparators for performing merged state transitions was optimized for low hard-
ware overhead. Therefore, it was concluded that the maximum number of inputs in an LUT
was related to the hardware overhead by merging state transitions. In addition, it was expected
that the amount of reduced hardware overhead can depend on a set of target patterns. In sum-
mary, compared to the cases without merging state transitions (M = 1), the required number of
LUTs decreased by 75.1%-46.9% when M = 5.

Maximum operating frequencies were not changed until M = 5 in all rule sets. From M = 6,
the maximum operating frequency of web-client decreased. After analyzing the synthesis report
for web-client, large routing delay was found in the circuit that transmitted shifted decoded
output bits into the comparator for merged state transitions. Due to the large pattern length in
web-client, it was concluded that the routing complexity for large M can be great. Considering
the analysis mentioned above, there was a threshold point of M, which was related to the struc-
ture of an LUT. Therefore, the experimental data with M = 5 for the target FPGA will be
adopted in the later part of this section.

Table 2 shows several evaluation data of the proposed string matching scheme. A lot of
characters were in shared common prefixes of each rule set, where the ratios of characters in
shared common prefixes to all characters for a rule set were ranged from 54.6% to 9.3%. In
order to compare with the previous pipelined NFA, the number of moved state transitions to
be merged was computed. In these computations, when the number of merged state transitions
was m, m — 1 state transitions were moved; one state transition can be unmoved in the same
stage, compared to the previous pipelined NFA. As shown in Table 2, 78.5%-69.6% of state
transitions were moved to be merged. Therefore, it was expected that there were many state
transitions to be merged for reducing hardware overhead.

On the other hand, the times required for generating a HDL code and synthesizing the code
were estimated for each rule set. Assuming that the number of target patterns was N, the time

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 17/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

ratio of FFs

ratio of LUTs

ratio of max frequency

2.2

1.8 [

1.6 -

I I
backdoor ——

chat --»>-- PR
deleted - o
exploit —-8-- " |
oracle —=— e
policy --©-- X i
spyware @ j@‘;_f_'_’f—/
web-client --&— e ,_/g-:':'”?‘

2 3 4 5 6 7 8 9

maximum number of merged state transitions for a state

(a)

I T
backdoor ——

0.9 chat -->-- -
deleted
0.8 exploit -—-8-—-
oracle —=—
0.7 policy --o-- |
spyware @
0.6 - SNOBEL - w .. web-client —-a-
\ QLTS Toiaeee _,571‘5 ,>"i;;:"t;;jjj%<--—f.,_
0.5 - AN T L
04 -
03 -
0.2 x x | i et S SR
1 2 3 4 5 6 7 8 9
maximum number of merged state transitions for a state
(b)
1m = = = ale— = = u
backdoor —+—
chat -->-- AL
0.9 - deleted - 7
exploit -8 \‘A\._\
0.8 - oracle —=— A
policy --©--
spyware @
0.7 - web-client - -2~ -
0.6 - ,
0.5 : ‘ ! \ |
1 2 3 4 5 6 7 8 9

maximum number of merged state transitions for a state

(c)

Fig 9. Comparisons by sweeping the maximum number of merged state transitions for a state M: (a)

ratios of used FFs to that when M= 1; (b) ratios of used LUTs to that when M= 1; (c) ratio of the

maximum operating frequency F to that when W =1.
doi:10.1371/journal.pone.0163535.9009

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016

18/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

Table 2. Evaluation data with proposed string matching scheme.

rule set #shared'
backdoor 2308
chat 82
deleted 1845
exploit 321
oracle 5888
policy 118
spyware 8006
web-client 6303

#merged? rishared)® rmerged)* f(patterns)® {(XST)®
4629 26.0% 70.5% 0.21sec 40.2sec
249 19.0% 71.6% 0.01sec 20.3sec
4019 24.9% 72.4% 0.28sec 37.8sec
1103 16.8% 69.6% 0.08sec 26.5sec
3689 54.6% 75.4% 0.15sec 42.7sec
754 10.2% 72.9% 0.02sec 24.5sec
12860 30.7% 71.1% 0.91sec 114.6sec
48055 9.3% 78.5% 1.74sec 347.6sec

"Number of characters in shared common prefixes.

2Number of moved state transitions to be merged.

SRatio of characters in shared common prefixes to all characters.
“Ratio of moved state transitions to all state transitions.

5Time required for generating the HDL code.

Time required for completing synthesis using XST, which does not include the implementation (placement and routing) time.

doi:10.1371/journal.pone.0163535.t1002

complexity of constructing an NFA and extracting merged state transitions can be O(N). Con-
sidering data in Table 2 and the time complexity, it was expected that the time required for gen-
erating an HDL code was not be great for any rule set. In addition, it was analyzed that the time
required for synthesis was not great for the adopted rule sets.

Table 3 summarizes the comparisons with other FPGA-based string matching schemes in
terms of numbers of LUTs and FFs. In addition, the maximum operating frequency F of each
string matching scheme is shown. Several data denoted as N/A in pipe_cam, dfa, and
dfa_onehot were not computed after 24-hour synthesis using the commercial tool due to their
high hardware complexity.

Especially, in web-client, due to the repeated subpatterns mentioned above, it was expected
that the required number of LUTs was optimized by the synthesis tool. Therefore, compared to
the case in cam, the required number of LUTs was not decreased only for web-client. Except for
the case, the required numbers of LUTs were smallest in proposed, compared to other schemes.
Especially, compared to the cases of the pipelined NFA string matching scheme in [19], the
required numbers of LUTs were decreased by 75.5%-46.4%.

On the other hand, it was noted that the required numbers of FFs were increased for shifting
the decoded output bits of character inputs and implementing the pipelined priority encoder.
In addition, considering several characteristics in Table 1 and experimental data in Table 3, it
was concluded that the ratio of the increased FFs was negligible as the numbers of states and
state transitions were great. The comparison of data between pipe_nfa_cd and pipe_nfa_cd_ppe
gave the information of the increased hardware overhead due to the pipelined priority encoder.
With this comparison and data in Fig 9(a), it was analyzed that most additional FFs was caused
by the implementation of the pipelined priority encoder for large rule sets such as spyware and
web-client.

In comparisons in terms of F, the experimental data for pipe_cam, pipe_nfa_cd_ppe, and
proposed with the pipelined priority encoder showed high Fs. These three schemes with high Fs
adopted the same pipelined priority encoder for each rule set. Because critical paths existed in
the pipelined priority encoder, pipe_cam, pipe_nfa_cd_ppe, and proposed showed the same Fs
in Table 3. Even though cam, dfa, and ppfac required the small numbers of FFs, Fs were not
high. In addition, the proposed pipelined NFA-based string matching scheme provided high Fs

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 19/24

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

PLOS |on

)

8'9/9
ank)
£'G69
0289
G689
0289
£'S69
1’629

(zHW)4

¥06°G}
0€6'8
€L5
008+
Y0t
80.°C
(8°14
ov9'e
SLN#

SOL‘v9
819l

L99°}
G09'S
¥69'c
€62,
LeL
zi8's
Sd4#

pasodoud

8'9/9
v129
£'G69
0289
G689
0289
1669
1’629

(zHW)4

9¥8'e9
(VA
8.2}
€9v'S
6502
8199
(A4
Svl's
SLN#

29v'e9
£80°l2

G62't
26ge'S
0£0°C
6€5°9
1314
662
Sdd4#

,8dd po gyu~adid

£00¥SESE9 10 au0d eunol/| g L0 :1op

"suolisuel} sjels pabisw jnoyum pue Jepoous Ajond pauljadid g swsyos Buipodsp-aid yum Buiyorew Butils peseqg-y4N pauljedid,

"suolisuel} ajess pafiswng Jepoous Aoud pauliadid Inoyum pue swsyds Buipooep-aid yum [6] ut Buiyorew Buuis peseqg-y4N pauliadidg

"suolisuel} aels pabisw pue “Jepoous Ajioud paujedid ‘ewsyos Buipodsp-aid inoyum [92] ut Bulyorew Buiis peseq-y 4N pauljadid,
‘Buipoous ajels 10y-auo yum [91] ul Buiyorew Buis paseq-y4a,

0022
9°€61
£29¢
9'892
£.62
9'9v2
1'S0p
2922

(ZHW)4

618'79
€29'ce
662"+
G/G'S
vGh'e
6502
89¥
£98'8
SLN#

bev'19
2928l
671k
¥96'y
€LL}
81L'S
ey
189
SH4d#

oPo Byu adid

8’18l
8'691
L'1Se
6'881
9'8€¢
0'col
0'¢se
861

(ZHN)A

€885 | S00°}

G8.'9g
82t
€508
896'C
8Sv'0l
LvS
88.'€l
SINT#

8G9
6S¢
(344
S0€
65y
vl
[4%4

EEEE

goeydd

V/N
V/N

1862
z8re
6872
8'602
Lv8e
L°€61

(zZHW)4

V/N
V/N
OLL'}
9¥8'9
9le'e
9GL kL
00§
9681
sLN#

V/N
V/N
0S0°+
L6y
009t
LLS'S
c9g
¥85°9
Sd4#

yioyauo gjp

‘Buipoous ejels Areulq yum [91] ut Buiyorew Bulis peseq-y4ag

‘[12] ul Jepooua Ayoud pauljadid & yum uonenwa NYDL pauljedid,

V/N
V/N
8'/01
LSSt
0'99l
8'0¢|
6681
VIN

(zZHW)4
V/N
V/N

V/N
V/N
LEL'SE
ISY'L2
ev8'sh
029°2L
808't
V/N
S1NT#
cBIp

L
6€
6€
ce
6€

V/N
Sd4#

Y19
£'G69
0289
5689
0289
1569
1’629

(zHW)4

V/N
956V
065+
GlS'Y
yre'e
¥20°9
8c/L
yve'L
SLNT#

V/N

0028}k

09.2
LS
8.9t
SvS'L
6LLL
Lev'e
EEEE

Lweo adid

‘uolreinwie AVOL,
¥'0ce Jusijo-gam
966+ alemAds
€'gee Aonod
8'88¢ ajoeio
8'88¢ Jiojdxa
,0S¢ pajsjap
o'ove Jeyo
9'cec Joopyoeq

(ZHW)4 18s 8|nJ
€9L'vL | 90¥'C Jusljo-qgam
6S2'LL | €90°C osemAds

€9L'L | 160t Aoyod
06.2 0.2 8joelo
L2/8't | €ell Jojdxe
GeSy | 202t pajsjap

1£%1% 6S€E 1eyo
0L9'S | ZIL'L Joopyoeq
SLN# | Sdd# 1es anl

weo

L

"4 Aouanbaiy Bupesado winwixew pue s] 78 S44 JO SI8quInU Jo sWd} Ul sswayas Buiyojew Bullys paseq-yHd4d 19yio yum suositiedwos g ajqeL

20/24

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

PLOS |on

)

¥00¥'GEGE910°8u0d [euInol/| /g1 01:10p

'sdied 448 1N P9sN A|In} Jo JaquInNg

'sifed 44 '8 1 N7 POSN JO JoqUINNg

"suolsuel} sjess pafiiew noyum pue Jepoous Aond pauljadid @ swsyos Buipoosp-aid yum Buiyorew Buuis peseq-y4N pauliedid,
"suolisuel} syels pafiiswng 1epoous Aoud pauliadid Inoyum pue swsyds Buipoosep-aid yum [6] ut Bulyorew Buuis peseqg-y4N pauliadidg
"suolisuel} syels pafiiew pue ‘Jepoous Aploud pauljedid ‘ewsyds Buipodsp-aid inoyum [92z] ur Buiyorew Buis peseqg-y4N pauliadid
"Buipoous ejels Joy-suo yum [9] ut Buiyorew Buwis peseq-y4q,,

‘Buipoous eyels Areuiq yum [91] ut Buiyorew Bulis peseq-y4ag

‘[12] ursepoous Ayoud pauiiadid e yim uolenwe Wy L pauliadid,

‘uoieinws AVOL,

912'slt | €6.%9 | 85L'€9 | 0SLVv9 | €8L°L9 | LS0°S9 9./ €906 V/IN V/N V/N VIN €G6'61 | €52'ce G89'IL v88'v1 jusijo-gam

6,08 | 69¥'cc | S€6'0c | €98'lc | 928l | 6SLEC (87474 206°9¢ V/N V/N V/N V/N 98LvL | 0LV'6l /822 Ge0‘ch osemAds
(0127 6L} Syl 8ch'L LLO‘L LEV'L VA7 ovL'L ¥0°L 9LL'L e 1918l 8GS°I 26L'e 9l vel'e Aoijod
899°I VAL ave’s 605‘S 016y 629'S €9¢ lEL'e | S06'y | 2589 ¥e 99v'le | €ev'y €eg's 0se ore's 8joeio
€61 ¥6'c cL8’lL glLee ves’lL €0v'e 79¢ 600 ¥65°1L gec'e €¢ 658'Gl €le'e 6v.'c (874 6S.'c Jojdxa
oov'e 1092 G/E'9 28.'9 €19°G vee'L 96€ 1250k | S9S°G | 29L°tL 92 929'cL | 0S8‘G 61LLL SvS gie's pais[op
8.1 708 00t 89S 4% 8vS el 99G 19€ S0S 9l LE8't 9L LELL 19 ceL eyo
LSL°E G62'6 1822 £vE‘8 2059 AAN) 69¢€ LG8'EL | 8159 | 2v6'8t V/N VIN 2,69 €0.°6 €26 ¥0¥‘9 loopxoeq
siind# | slied# | slind# | slied# | Slind# | slied# | sSlind# | siled# | Slind# | slled# | SINd# | Sled# | slind# | Sled# | gSIiNd# | Slled# 18s 8|nJ
pasodoud mQ&lﬁul@:dSQ oPo Byu adid goeydd yJoyauo ejp <P Lweo adid , wea

'siied 448 1N pash Ajny pue siied 44’8 1N PAsh Jo siaquinu Jo swLId} Ul sawayds Buiyojew Buuys paseq-yHdd 1aylo yum suosuedwos "y ajqel

21/24

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

with small deviation, where the throughput for one character input at a time can be reached up
to 5.56 Gigabits per second (Gbps) -5.37 Gbps.

Table 4 summarizes the comparisons with other FPGA-based string matching schemes in
terms of numbers of used LUT & FF pairs and fully used LUT & FF pairs. In order to know the
design density and distribution, the data about the logic distribution are added. As shown in
[35], the LUT &FF pairs can be a cluster to take advantage of the design locality in an FPGA. If
logic clusters contained insufficient logic resources, the amount of inter-cluster routing
resources needed for routing will be great. Therefore, the complexity of wiring and intercon-
nections can be predicted. In Table 4, the ratios of the number of fully used LUT & FF pairs to
the number of used LUT & FF pairs in cam, aho, and ppfac were very low, which could increase
the routing resources between clusters. The main reason of the low ratios was because the num-
ber of FFs was much smaller than the number of LUTs. In proposed, the ratios of the number
of fully used LUT & FF pairs to the number of used LUT & FF pairs were low, compared to the
cases of pipe_nfa_cd and pipe_nfa_cd_ppe. Considering the low ratios of proposed, the addi-
tional routing resources between clusters in proposed can be required. Due to the largely
decreased number of used LUTs, the ratios can be lowered. Compared to pipe_nfa_cd and
pipe_nfa_cd_ppe, because the ratios of increased FFs in small rule sets such as chat and policy
were somewhat high, the ratios of the number of fully used LUT & FF pairs to the number of
used LUT & FF pairs can be proportionally lowered. However, for large rule sets such as spy-
ware and web-client, due to the low ratio of increased FFs, it was expected that the additional
routing resources between clusters could be small.

Conclusion

This paper proposes a pipelined NFA-based string matching scheme with a new technique
called merged state transitions. In addition, the pipelined priority encoder is adopted in order
to maximize the operating frequency. The proposed string matching scheme is evaluated based
on realistic experimental environments using the automatically generated RTL code, commer-
cial synthesis tool, and state-of-the-art FPGA. Experimental data shows that the proposed
string matching scheme can reduce the number of LUTs greatly and achieve high throughput
per one character input up to 75.5% and 5.56 Gbps, respectively. As shown in [28, 29], because
the pipelined NFA-based string matching scheme can process multiple chunks of characters in
parallel, it is expected that throughput can be enhanced by equipping multiple instances.
Therefore, the proposed string matching scheme can be extended. Considering the conceptual
idea and experimental data, it is concluded that the proposed pipelined string matching scheme
can be helpful to achieve high performance with low hardware cost.

Author Contributions
Conceptualization: HJK.
Data curation: HJK.

Formal analysis: HJK KIC.
Funding acquisition: HJK.
Investigation: HJK KIC.
Methodology: HJK.

Project administration: HJK.

Resources: HJK KIC.

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 22/24

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

Software: HJK.

Supervision: HJK.

Visualization: HJK.

Writing - original draft: HJK.

Writing - review & editing: HJK KIC.

References

1.

10.

11.

12

13.

14.

15.
16.

17.

18.

19.

Lee CL, Lin YS, Chen YC. A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.
PloS one. 2015; 10(10):e0139301. doi: 10.1371/journal.pone.0139301 PMID: 26437335

Vasiliadis G, Antonatos S, Polychronakis M, Markatos EP, loannidis S. Gnort: High performance net-
work intrusion detection using graphics processors. In: Recent Advances in Intrusion Detection.
Springer; 2008. p. 116—134. doi: 10.1007/978-3-540-87403-4_7

Kouzinopoulos CS, Margaritis KG. String matching on a multicore GPU using CUDA. In: Informatics,
2009. PCI'09. 13th Panhellenic Conference on. IEEE; 2009. p. 14-18.

Tan L, Brotherton B, Sherwood T. Bit-split string-matching engines for intrusion detection and preven-
tion. ACM Transactions on Architecture and Code Optimization (TACQ). 2006; 3(1):3—34. doi: 10.
1145/1132462.1132464

Piyachon P, Luo Y. Compact state machines for high performance pattern matching. In: Proceedings
of the 44th annual Design Automation Conference. ACM; 2007. p. 493—496.

Pao D, Lin W, Liu B. A memory-efficient pipelined implementation of the aho-corasick string-matching
algorithm. ACM Transactions on Architecture and Code Optimization (TACO). 2010; 7(2):10. doi: 10.
1145/1839667.1839672

Kim H, Hong H, Baek D, Ahn JH, Kang S. A memory-efficient heterogeneous parallel pattern matching
scheme in deep packet inspection. IEICE Electronics Express. 2010; 7(5):377-382. doi: 10.1587/elex.
7.377

Kim H, Kang S. A pattern group partitioning for parallel string matching using a pattern grouping metric.
Communications Letters, IEEE. 2010; 14(9):878-880. doi: 10.1109/LCOMM.2010.080210.092347

Kim H, Hong H, Baek D. A pattern partitioning algorithm for memory-efficient parallel string matching in
deep packet inspection. IEICE transactions on communications. 2010; 93(6):1612—-1614. doi: 10.
1587/transcom.E93.B.1612

Kim H, Kim HS, Kang S. A memory-efficient bit-split parallel string matching using pattern dividing for
intrusion detection systems. Parallel and Distributed Systems, IEEE Transactions on. 2011; 22
(11):1904-1911. doi: 10.1109/TPDS.2011.85

Kim H. A Memory-Efficient Bit-Split Pattern Matching Architecture Using Shared Match Vectors for
Deep Packet Inspection. IEICE Transactions on Communications. 2012; 95(11):3594—-3596. doi: 10.
1587/transcom.E95.B.3594

Le H, Prasanna VK. A memory-efficient and modular approach for large-scale string pattern matching.
Computers, IEEE Transactions on. 2013; 62(5):844—-857. doi: 10.1109/TC.2012.38

Jiang W. Scalable ternary content addressable memory implementation using FPGAs. In: Architec-
tures for Networking and Communications Systems (ANCS), 2013 ACM/IEEE Symposium on. IEEE;
2013.p. 71-82.

Kuon I, Tessier R, Rose J. Fpga architecture: Survey and challenges. Foundations and Trends in Elec-
tronic Design Automation. 2008; 2(2):135-253. doi: 10.1561/1000000005

Xilinx. 7 Series FPGAs Configurable Logic Block—User Guide; 2014.

Aho AV, Corasick MJ. Efficient string matching: an aid to bibliographic search. Communications of the
ACM. 1975; 18(6):333—-340. doi: 10.1145/360825.360855

Pao D, Wang X, Wang X, Cao C, Zhu Y. String searching engine for virus scanning. IEEE Transactions
on Computers. 2011; 60(11):1596—1609. doi: 10.1109/TC.2010.250

Kim H, Choi Kl, Choi SI. A Memory-Efficient Deterministic Finite Automaton-Based Bit-Split String
Matching Scheme Using Pattern Uniqueness in Deep Packet Inspection. PloS one. 2015; 10(5):
e€0126517. doi: 10.1371/journal.pone.0126517 PMID: 25938779

Chen CC, Wang SD. An efficient multicharacter transition string-matching engine based on the aho-
corasick algorithm. ACM Transactions on Architecture and Code Optimization (TACO). 2013; 10
(4):25. doi: 10.1145/2541228.2541232

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 23/24

http://dx.doi.org/10.1371/journal.pone.0139301
http://www.ncbi.nlm.nih.gov/pubmed/26437335
http://dx.doi.org/10.1007/978-3-540-87403-4_7
http://dx.doi.org/10.1145/1132462.1132464
http://dx.doi.org/10.1145/1132462.1132464
http://dx.doi.org/10.1145/1839667.1839672
http://dx.doi.org/10.1145/1839667.1839672
http://dx.doi.org/10.1587/elex.7.377
http://dx.doi.org/10.1587/elex.7.377
http://dx.doi.org/10.1109/LCOMM.2010.080210.092347
http://dx.doi.org/10.1587/transcom.E93.B.1612
http://dx.doi.org/10.1587/transcom.E93.B.1612
http://dx.doi.org/10.1109/TPDS.2011.85
http://dx.doi.org/10.1587/transcom.E95.B.3594
http://dx.doi.org/10.1587/transcom.E95.B.3594
http://dx.doi.org/10.1109/TC.2012.38
http://dx.doi.org/10.1561/1000000005
http://dx.doi.org/10.1145/360825.360855
http://dx.doi.org/10.1109/TC.2010.250
http://dx.doi.org/10.1371/journal.pone.0126517
http://www.ncbi.nlm.nih.gov/pubmed/25938779
http://dx.doi.org/10.1145/2541228.2541232

@° PLOS | ONE

A Pipelined Non-Deterministic Finite Automaton-Based String Matching Scheme

20.
21.

22,

23.

24,

25.

26.

27.

28.

29.

30.
31.
32.

33.

34.
35.

Altera. Stratix V Device Overview; 2015.

Sourdis |, Pnevmatikatos D. Fast, large-scale string match for a 10Gbps FPGA-based network intru-
sion detection system. In: Field Programmable Logic and Application. Springer; 2003. p. 880-889.
doi: 10.1007/978-3-540-45234-8_85

Baker ZK, Prasanna VK. A methodology for synthesis of efficient intrusion detection systems on
FPGAs. In: Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE
Symposium on. IEEE; 2004. p. 135—-144.

Sidhu R, Prasanna VK. Fast regular expression matching using FPGAs. In: Field-Programmable Cus-
tom Computing Machines, 2001. FCCM’01. The 9th Annual IEEE Symposium on. IEEE; 2001. p. 227—
238.

Hutchings BL, Franklin R, Carver D. Assisting network intrusion detection with reconfigurable hard-
ware. In: Field-Programmable Custom Computing Machines, 2002. Proceedings. 10th Annual IEEE
Symposium on. IEEE; 2002. p. 111-120.

Clark CR, Schimmel DE. Scalable pattern matching for high speed networks. In: Field-Programmable
Custom Computing Machines, 2004. FCCM 2004. 12th Annual IEEE Symposium on. IEEE; 2004.
p. 249-257.

Kim HJ. A Failureless Pipelined Aho-Corasick Algorithm for FPGA-based Parallel String Matching
Engine. In: Information Science and Applications. Springer; 2015. p. 157—164. doi: 10.1007/978-3-
662-46578-3_19

Pao D, Lin W, Liu B. Pipelined architecture for multi-string matching. Computer Architecture Letters.
2008; 7(2):33-36. doi: 10.1109/L-CA.2008.5

Lin CH, Tsai SY, Liu CH, Chang SC, Shyu JM. Accelerating string matching using multi-threaded algo-
rithm on gpu. In: Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE. IEEE;
2010.p. 1-5.

Lin CH, Liu CH, Chien LS, Chang SC. Accelerating pattern matching using a novel parallel algorithm
on gpus. Computers, IEEE Transactions on. 2013; 62(10):1906—1916. doi: 10.1109/TC.2012.254

Kao C. Benefits of partial reconfiguration. Xcell journal. 2005; 55:65—67.
Bourgeault M. Alteras partial reconfiguration flow; 2011.

Siek JG, Lee LQ, Lumsdaine A. Boost Graph Library: User Guide and Reference Manual, The. Pear-
son Education; 2001.

Roesch M, et al. Snort: Lightweight Intrusion Detection for Networks. In: LISA. vol. 99; 1999. p. 229—
238.

Xilinx. ISE Design Suite; 2012.

Hartenstein RW, Griinbacher H. Field-Programmable Logic and Applications. The Roadmap to Recon-
figurable Computing: 10th International Conference, FPL 2000 Villach, Austria, August 27—30, 2000
Proceedings. 1896. Springer Science & Business Media; 2000.

PLOS ONE | DOI:10.1371/journal.pone.0163535 October 3, 2016 24/24

http://dx.doi.org/10.1007/978-3-540-45234-8_85
http://dx.doi.org/10.1007/978-3-662-46578-3_19
http://dx.doi.org/10.1007/978-3-662-46578-3_19
http://dx.doi.org/10.1109/L-CA.2008.5
http://dx.doi.org/10.1109/TC.2012.254

