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Abstract

Coastal ecosystems experience a wide range of stressors including wave forces, storm
surge, sea-level rise, and anthropogenic modification and are thus vulnerable to erosion.
Urban coastal ecosystems are especially important due to the large populations these lim-
ited ecosystems serve. However, few studies have addressed the issue of urban coastal
vulnerability at the landscape scale with spatial data that are finely resolved. The purpose
of this study was to model and map coastal vulnerability and the role of natural habitats in
reducing vulnerability in Jamaica Bay, New York, in terms of nine coastal vulnerability met-
rics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with no
habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and
future (2080) scenarios using INVEST 3.2.0. We analyzed vulnerability results both spatially
and across all time periods, by stakeholder (ownership) and by distance to damage from
Hurricane Sandy. We found significant differences in vulnerability metrics between past,
current and future scenarios for all nine metrics except relief and wave exposure. The
marsh islands in the center of the bay are currently vulnerable. In the future, these islands
will likely be inundated, placing additional areas of the shoreline increasingly at risk. Signifi-
cant differences in vulnerability exist between stakeholders; the Breezy Point Cooperative
and Gateway National Recreation Area had the largest erodible shoreline segments. Signif-
icant correlations exist for all vulnerability (exposure/surge) and storm damage combina-
tions except for exposure and distance to artificial debris. Coastal protective features,
ranging from storm surge barriers and levees to natural features (e.g. wetlands), have been
promoted to decrease future flood risk to communities in coastal areas around the world.
Our methods of combining coastal vulnerability results with additional data and across mul-
tiple time periods have considerable potential to provide valuable predictions that resource
managers can effectively use to identify areas for restoration and protection.
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Introduction

Coastal ecosystems experience a wide range of stressors including wave forces, storm surge,
sea-level rise, and anthropogenic modification. Coastal ecosystems also absorb many of these
stressors through wave attenuation and protection from erosion, thus providing valuable eco-
system services to people and property [1-5]. When stressors outweigh a coastal ecosystem’s
ability to attenuate them, the coastal ecosystems may become vulnerable to erosion. When
coastal ecosystems are lost to erosion their ecosystem services capacity is reduced, shifting envi-
ronmental stressors to an often urban, developed inland. Urban coastal ecosystems are espe-
cially important due to the large populations these limited ecosystems serve. Within the United
States, coastal areas have averaged about 54% of the nation’s population since 1960 [6].
Although coastal ecosystems are limited in scope in urban settings they are especially impor-
tant due to the large populations they serve. For example, coastal wetlands in New York State
are scarce compared to wetlands found in other states, but they have the greatest value at just
over USD$ 5,100,000 per km” per year due to large coastal populations, dense infrastructure,
and high property value [5].

The recent natural history of Jamaica Bay, New York, situated on the southern shore of
Long Island, is one of extensive anthropogenic modification through dredging of channels and
filling of marshes [7]. According to the New York City Department of Environmental Protec-
tion (NYCDEP), while the surface area of the bay has been reduced from 101 km? in the mid-
nineteenth century to 53 km” in 2007, the volume of the bay has increased 350% [8]. Most of
the peripheral land in the bay consists of artificial fill [9]; the construction of Floyd Bennett
Field alone involved over 396,000 m” of fill [7]. Throughout most of the early twentieth century
these activities were guided and supported by government agencies. Until the 1930’s, many of
those agencies followed a plan for the development of Jamaica Bay into an ocean port and a
commercial and industrial center. This plan called for the elimination of all marshes and mead-
ows within the bay and the creation of two large and entirely bulkheaded islands with an exten-
sive system of piers [7,10]. As of 2006, nearly 43% of the shoreline had been artificially
modified through bulkheads, roads and other structures [11].

It is well documented that the marshes of Jamaica Bay are rapidly disappearing [9,12,13,14].
Saltmarshes covered an estimated 65.5 km” in 1900 [15]. By 1970, only around 16.2 km? of salt-
marshes remained [9]. Causes for the wetland losses in Jamaica Bay are under debate but
include sea-level rise [9], changes in tidal patterns due to dredging activities [14], high nutrient
loading [13], and changes in the source/sink components of the sediment budget due to
anthropogenic changes to bathymetry and upland development [12].

Traditional approaches for defending shorelines from erosion have relied heavily on armor-
ing shorelines with engineered structures such as bulkheads [16]. These alterations often cause
unplanned environmental impacts in the long term [17] such as significant decreases in biodi-
versity and species abundance [18]. One significant threat faced by marshes in Jamaica Bay is
“coastal squeeze” Coastal squeeze is a form of intertidal coastal habitat loss due to a shrinking
intertidal zone. This occurs when the high water mark of an intertidal zone is fixed by a defense
or other hard structure and the low water mark migrates landward in response to sea-level rise
[19]. Since Jamaica Bay’s peripheral marshes are fringing, backed by extensive urbanization
and infrastructure, they lack the opportunity for significant landward migration. Over time the
marshes of Jamaica Bay may be squeezed due to sea-level rise, leaving previously sheltered
structures to bear the brunt of storm surges and wave action. If Jamaica Bay’s marshes are lost,
coastal defense infrastructure will need to be created and/or upgraded in order to avoid an
increase in coastal vulnerability. While bulkheads and other coastal defense structures may
compensate for lost wave attenuation services, they do not provide the array of other services
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coastal ecosystems do such as carbon sequestration, water treatment, wildlife habitat, or unique
recreational opportunities.

The purpose of this study was to model and map coastal vulnerability and the role of natural
habitats in reducing vulnerability in Jamaica Bay, New York in terms of nine coastal vulnerabil-
ity metrics (relief, wave exposure, geomorphology, natural habitats, exposure, exposure with
no habitat, habitat role, erodible shoreline, and surge) under past (1609), current (2015), and
future (2080) scenarios. We analyzed vulnerability results spatially and across all time periods,
by stakeholder (ownership) and by distance to damage from Hurricane Sandy. This study dif-
fers from others in that it evaluates coastal vulnerability and the reduction of vulnerability due
to coastal natural habitats in a spatially explicit manner, at the landscape scale, with spatial
data that are finely resolved, and in a location with high quality spatial data over multiple time
periods. The importance of these characteristics in urban ecosystem studies has been noted by
other researchers [1,3,20].

Methods

Our study area is Jamaica Bay, New York, (40°36'44"N 73°50'19"W) situated on the southern
shore of Long Island, and characterized by extensive coastal ecosystems in the central bay jux-
taposed with a largely urbanized shoreline containing fragmented and fringing coastal habitat.
The bay is surrounded on three sides by the New York City Boroughs of Brooklyn and Queens,
bounded by John E Kennedy (JFK) International Airport and the Far Rockaways to the east,
Floyd Bennett Field to the west, and the Rockaway Peninsula to the south (Fig 1). Broad Chan-
nel is the largest and only inhabited island in the bay, Coney Island lies just outside of the bay’s
mouth, and the Breezy Point Cooperative lies near the tip of the Rockaway Peninsula (Fig 1).
Approximately 56% of the bay’s shoreline is within the statutory boundary of the Jamaica Bay
unit of the Gateway National Recreation Area (GNRA), administered by the National Park Ser-
vice (NPS). The Congress of the United States created GNRA in 1972 (Public Law 92-592) and
it is one of the most utilized national parks system units in the United States with over 10 mil-
lion visits each year [21].

We used the Integrated Valuation of Ecosystem Servicesand Tradeoffs tool (InVEST) ver-
sion 3.2.0 [22] coastal vulnerability model to assess coastal vulnerability in Jamaica Bay.
InVEST is a site of free, open-source software models created by the Natural Capital Project
[22]. This model calculates an exposure index by combining the ranks of six bio-geophysical
variables for each shoreline segment: geomorphology, natural habitats, relief, wave exposure,
wind exposure and surge. Ranks vary from very low exposure (rank = 1) to very high exposure
(rank = 5) (Table 1).

Geomorphology and natural habitat rankings were adopted using the ranking scheme sug-
gested by the InVEST user guide [22] which is similar to the one proposed by Hammar-Klose
and Thieler [23]. Relief rankings were assigned based on the average elevation of the land area
within 5 km of each shoreline segment in five equal bins of 20 percent each. The model esti-
mated the relative wave exposure of each shoreline segment by computing the maximum of the
weighted average power of oceanic waves and locally wind-generated waves [22]. Relative wave
exposure values were re-ranked as a percentile and rankings of 1 to 5 were assigned to each
shoreline segment based on binned percentile values of 20 percent each. Wind exposure for
shoreline segments was computed by first dividing the 360 degrees compass rose into sixteen
equiangular sectors. Then, for each sector, the average wind speed of the highest 10% wind
speeds on record in each sector was multiplied by the fetch distance of that sector and by the
percent of all wind speeds on record that blow in the direction of that sector [22]. The values
for all sectors of a shoreline segment were then summed and re-ranked as a percentile.
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Fig 1. Study area Jamaica Bay, New York including relevant place names. Base map obtained from USGS: Long Island West, New
York-New Jersey-Connecticut, Topographic-Bathymetric Map, 1984; USGS Sheet 40073-E1-TB-100. Inset map state boundaries
obtained from U.S. Census Bureau, Second Edition TIGER/Line files—State Boundaries.

doi:10.1371/journal.pone.0163495.9001

Rankings of 1 to 5 were assigned to each shoreline segment based on binned percentile values
of 20 percent each. Storm surge elevation is a function of wind speed and direction, and the
amount of time wind blows over relatively shallow water. In general, the longer the distance
between the coastline and the edge of the continental shelf during a storm, the higher the
potential storm surge. The model calculated surge potential by computing the distance of all

Table 1. List of bio-geophysical variables and rankings.

Variable Very low Low Moderate High Very high
1 2 3 4 5
Geomorphology | Rocky, High cliff, Seawalls Medium cliff, Bulkheads, Low cliff, Alluvial plain, Cobble Beach, Barrier beach, Sandy
Small seawalls Rip-rap Lagoon, Bluff beach, Mud flat

Natural Coral reef, mangrove, High High dune, Low marsh Low dune, Scrubland Seagrass, Kelp No habitat
Habitats saltmarsh

Relief 0 to 20 Percentile 21 to 40 Percentile 41 to 60 Percentile 61 to 80 Percentile 81 to 100 Percentile
Wave Exposure 0 to 20 Percentile 21 to 40 Percentile 41 to 60 Percentile 61 to 80 Percentile 81 to 100 Percentile
Wind Exposure 0 to 20 Percentile 21 to 40 Percentile 41 to 60 Percentile 61 to 80 Percentile 81 to 100 Percentile
Surge 0 to 20 Percentile 21 to 40 Percentile 41 to 60 Percentile 61 to 80 Percentile 81 to 100 Percentile

doi:10.1371/journal.pone.0163495.t001
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segments from the shoreline to a specified depth contour. We used a depth of 10 meters which
represented the edges of deeply dredged shipping channels present in the bay [22].

The model computed the overall exposure index EI for each shoreline segment as the geo-
metric mean of all the variable ranks:

1/6
EI = (RGeamarphologyRReliefRHahitutsR R R )

WindExposure ™ WaveExposure ~ Surge

The model also computed an erosion index Erl, as the geometric mean of selected variables:

Erl = (RGeDmDrphologyRHabitutsRWaveExposum )1/3

We assessed shoreline exposure under 3 scenarios: 1) current conditions, using the most
recent data available, 2) future conditions, based on the high-estimate 90" percentile sea-level
rise projections for the year 2080, and 3) historic conditions based on the year 1609, the date of
Henry Hudson’s arrival in America. The default InVEST coastal vulnerability model allows the
user to include a 7" variable, sea-level rise. We did not predict shoreline exposure using this
variable because it required a dataset that contained heterogeneous sea-level rise within the
area of interest. To our knowledge, such a dataset does not yet exist for Jamaica Bay. We
instead accounted for sea-level rise by mapping future inundation under the assumptions of
homogenous sea-level rise, no marsh accretion or subsidence, and no loss of marshland to
forces other than sea-level rise.

We used ArcGIS 10.3 to prepare our datasets for input into the model. Our area of interest
for all scenarios was primarily composed of the shoreline segments that fell within the Jamaica
Bay-Rockaway Inlet Hydrologic Unit (HUC 0203020201), as delineated by the United States
Geological Survey’s (USGS) Watershed Boundary Dataset, expanded to include the ocean side,
southern shoreline of the Rockaway Peninsula. All scenarios used the same climatic dataset
derived from the National Oceanic and Atmospheric Administration’s (NOAA) WAVE-
WATCH I model. This dataset was used to determine the wave exposure, wind exposure, and
surge potential rankings for each shoreline segment. This dataset reflects current climate pat-
terns so our analysis does not account for climate changes that have occurred since 1609 or will
occur by 2080. Results from all scenarios were at the 80 m* resolution as that was the finest res-
olution at which all three scenarios would run.

For our current conditions scenario, we used the USGS national elevation dataset (NED) 1/
3" arc second resolution (~ 10 m?) digital elevation model (DEM) as our topography dataset.
We created a 60 m* bathymetric DEM by interpolating bathymetric soundings points from
NOAA’s Electronic Navigational Charts (ENC) using the empirical Bayesian kriging method.
We created a shoreline geomorphology dataset using data from United States Fish and Wildlife
Service (USFWS) National Wetlands Inventory dataset (NWI) to classify sandy, cobble/gravel,
and emergent wetland shorelines and interpreted high resolution (0.35 m?), post Hurricane
Sandy, leaf off imagery and Bing maps bird’s-eye view, 45-degree oblique imagery to classify
rip-rap, pier, and bulkhead shorelines (Table 2). Habitat cover datasets were derived from a
high resolution (~ 3 m”) ecological cover map developed by the Natural Areas Conservancy
(NAC) [24], and supplemented using the NWT dataset (Table 3). The aquatic bed, high dune,
and low dune classes were extracted from the NWI dataset. All other classes were extracted
from the NAC dataset.

We prepared datasets for the future scenario assuming 1.47 m of sea-level rise, the high-esti-
mate 90" percentile sea-level rise projections for New York City in the year 2080 [25]. The
shoreline for this scenario was delineated using the 1.47 m contour line of the NED DEM.
Shoreline geomorphology was reassessed and two additional categories were added for this sce-
nario: previously developed shorelines, where water breached infrastructure, and exposed soil,
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Table 2. Shoreline geomorphology rankings as an aggregate of all possible classes across all three
temporal scenarios.

Shoreline geomorphology Class Rank

Bulkhead

Pier

Previously developed
Rip-rap

Emergent wetland
Cobble/gravel shore
Exposed soil

a0~ hWWww N

Sandy shore
doi:10.1371/journal.pone.0163495.t1002

where the future shoreline fell on a current grass field (Table 2). The habitat cover datasets
were clipped to reflect habitat loss due to inundation.

Input datasets for the past (1609) scenario were developed using data from the Welikia Proj-
ect developed by the Wildlife Conservation Society (WCS). This project aimed to map Jamaica
Bay’s topography, bathymetry, and habitat cover, as they likely existed during Henry Hudson’s
1609 voyage to the region, before European settlement in the area. There are notable differ-
ences between the modern state of Jamaica Bay and the hypothesized Jamaica Bay of 1609. In
an analysis of 100 maps and charts from 1501 to 1844, with careful consideration given to map
scale and historical context, Sanderson (2016) presented a hypothesis regarding the east-to-
west progression of the Rockaway Peninsula and the subsequent formation of the Bay’s interior
marsh islands approximately 200-230 years ago due to a decrease in oceanic wave action [26].

Shoreline geomorphology and habitat cover classes were assigned ranks to reflect their abil-
ity to protect shoreline segments from exposure and erosion where highly protective segments
were given ranks of 1 and highly exposed segments were given ranks of 5 (Tables 2 and 3).
Habitat classes were assigned protective distances based on the geomorphological characteris-
tics of each habitat. For example, very low lying, low sloping habitats, such as low saltmarsh

Table 3. Habitat cover class rankings and protective distances as an aggregate of all possible clas-
ses across all three temporal scenarios.

Habitat class Rank Protective distance (m)
High saltmarsh 1 400
Low saltmarsh 2 75
Eastern North American wet meadow 2 400
Brackish tidal marsh 2 125
Eastern North American freshwater marsh 2 125
High dunes 2 125
Northern and central ruderal wet meadow and marsh 3 100
Northern and central shrub swamp 3 75
Northern and central ruderal meadow and shrubland 3 100
Northern and central sand barrens group 3 50
Eastern coastal beach group 3 65
Northern Atlantic dune and coastal grassland and shrubland 3 50
Maritime shrubland and successional maritime forest 3 75
Low dunes 3 75
Aquatic beds 4 1200

doi:10.1371/journal.pone.0163495.t003
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and aquatic beds, were given a high protective distance since wave action would flow over these
habitats during a longer period of time and to a larger extent (Table 3).

The model’s final outputs consisted of raster maps where the cell values represented shore-
line segments and were encoded with nine metrics at the segment level including: geomorphol-
ogy, relief, natural habitats, wave exposure, and surge potential rankings as well as an overall
coastal exposure index value, the exposure index value if habitats were not present, the habitat
role value (the difference between the exposure index value and the no habitat exposure index
value), and the erodibility status of the segment (1 = erodible, 0 = not erodible) as determined
by the erosion index.

We assigned a primary stakeholder to each shoreline segment to enable analysis of current
vulnerability by stakeholder. Stakeholder data were obtained from the New York City Depart-
ment of City Planning PLUTO dataset, a land use and geographic dataset which identifies own-
ership of tax lots in New York City. Stakeholder classifications include: JEK Airport, public
lands, public lands (NYC only), private lands, Breezy Point Cooperative, Gateway National
Recreation Area, and US Army (Fort Hamilton). A shoreline segment’s primary stakeholder
was determined using the guiding question “if this segment of shoreline fails (i.e. breached,
inundated, eroded) what group will be primarily impacted?” As a result of this protocol, a
shoreline segment’s primary stakeholder may differ from the actual owner of the parcel directly
adjacent to that segment. For example, in select areas of the bay, the Belt parkway abuts the
shoreline forming a narrow boundary between the water and other properties. Although such
segments would be owned and managed by the Department of Transportation, if they were
breached, the properties beyond the parkway (such as a group of private residences) would be
most impacted and would therefore be considered the primary stakeholder.

In addition, we compared the coastal vulnerability results from our current scenarios for
exposure and surge against mapped areas of Jamaica Bay affected by Hurricane Sandy. Our
data was created by comparing pre- and post-Sandy aerial photos in ArcGIS 10.3. Pre-Sandy
imagery was obtained on March 1, 2012 by USGS; Jamaica Bay was flown post-Sandy on
November 3 and 4, 2012 by the Federal Emergency Management Agency (FEMA). We
assigned metrics based on visible degradation present in the post-Sandy photos using the 60-
40 rule [27]. The metrics assessed were: minimal, moderate and severe flooding, minimal,
moderate and severe artificial debris, minimal and moderate natural debris (no severe natural
debris was present), sand deposition, and marsh dieback (distinct brown patches) [28]. Flood-
ing was defined as areas with clear changes in water content not driven by tides. This was
apparent as dark sunken areas in grass or marsh and on pavement and developed lands. Flood
size delineation was determined by sheer area of the flood including channel and pond expan-
sion, creation or scouring [29]. If a flood covered only one cell (100 m x 100 m) it was digitized
as minimal flooding. A flood with a size up to nine contiguous cells was classified as moderate
flooding and anything larger was classified as severe flooding. Artificial debris (e.g. human
infrastructure) and natural debris (e.g. accumulation of wrack) are types of depositional events
[30]. Artificial debris was defined as anything that was not sand, rip-rap, or natural. Most of
this material consisted of small piles of trash and rubble, boats, cars, and structural materials.
Trash, rubble, car parts, and siding were defined as minimal artificial debris. Cars and boats
were defined as moderate artificial debris. Large artificial debris was classified as anything
larger than a boat or car such as a dock, mooring or house. Natural debris was limited to trees,
brush and wrack. Areas of the beach where natural debris had accumulated (i.e. brush and
wrack) were labeled as minimal natural debris because the individual masses were never very
large, however the collective mass of these groupings could cover considerable areas. In this
case the entire area was digitized rather than individual groupings. When present, downed
trees were defined as moderate natural debris. We found no situations where large natural
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debris accumulated and thus have no severe natural debris category. As the storm’s surge came
through, much of the beach sand located on the southern edge of the study area was pushed
into neighboring areas. If this occurred, the area was digitized and classified as sand deposition.
Marsh dieback was defined as areas that showed clear evidence of plant death due to the storm
(browned areas of dead vegetation) [29]. This was a difficult attribute to see in the imagery and
was used sparingly. Damage maps were reviewed by the New York City Department of Parks
and Recreation for consistency and errors. Areas of change in known restoration sites within
the time period between our two sets of aerial photos were assumed to be the result of restora-
tion, not damage and were removed from the damage dataset. Likewise, areas of change in
known sand placement sites by the US Army Corps of Engineers (USACE) were assumed to be
the result of USACE activities, not sand deposition and were again removed.

Data were assembled and loaded in SAS 9.3 for statistical analysis. Several questions were
asked of the data: 1) are there significant differences in the nine predicted coastal vulnerability
metrics among time periods (past, current and future)? General linear models (PROC GLM)
were used to ascertain the differences by vulnerability metric with Tukey-Kramer utilized to
determine which time periods were significantly different from each other; 2) are there signifi-
cant differences in current coastal vulnerability for each of the nine metrics depending on
stakeholder type? General linear models were again used to ascertain the statistical significance
of the relationship between vulnerability and stakeholder type; 3) are there significant correla-
tions between current coastal vulnerability metrics (overall coastal exposure index and surge)
and Hurricane Sandy damage effects such that damage can be used as a surrogate for vulnera-
bility? Pearson correlations were used to ascertain the strength of the relationship between
selected vulnerability metrics and distance to damage. Means and standard deviations are
noted in the text and tables. Except where noted, significant differences were determined at
p <0.05.

Spatially, we used the Moran’s I spatial autocorrelation tool in ArcGIS 10.3 to test for signif-
icant clustering in the coastal vulnerability results for each time period. We then did a hot spot
analysis of coastal exposure. The optimized hot spot analysis geoprocessing tool identifies the
appropriate scale of analysis and corrects for spatial dependence. The optimized hot spot analy-
sis returns Gi* z-scores, p-values and binned confidence levels for each feature with respect to
its analysis value. In the context of this study, higher positive Gi* z-scores and low p-values
indicate vulnerable coastal locations. Conversely, high negative Gi* z-scores and low p-values
indicate locations with low coastal vulnerability.

Results

Frequency distributions of the nine vulnerability metrics from the current scenario showed a
normal pattern with the bulk of the values ranging from 2-4 for all metrics except erodibility
which only produces values of 0 or 1, habitat role which ranged from 0-1, geomorphology,
wave exposure and surge whose values ranged from 4-5, and relief which ranged almost
equally across all values (lower values for all metrics indicate decreased vulnerability) (Fig 2).
Similar patterns emerged for the past and future scenarios with a few notable exceptions. Past
natural habitat values mostly ranged from 1.5-2.5 and past surge and wave exposure ranged
across all values. Future surge was predicted to be at or near 5 for the majority of values and a
lower percentage of erodibility values were predicted to be 1 (6.2% compared with 19.1% and
31.2% for current and past scenarios, respectively).

We found significant differences in vulnerability between past, current and future scenarios
for all nine metrics except relief and wave exposure (Table 4). Of the significant metrics, geo-
morphology, erodible shoreline, and natural habitats were the only metrics with highest means
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Fig 2. Histograms showing ranks of selected metrics. Ranks vary from very low exposure (rank = 1) to very high exposure (rank = 5).
The ‘habitat role’ value is the difference between ‘exposure’ and ‘exposure; no habitat’ at each shoreline segment. Relief and wave
exposure were not included since there was an equal frequency of segments in each rank for those metrics. Erosion were not included and
reported elsewhere as percentage values.

doi:10.1371/journal.pone.0163495.9002

for the past time period. The remaining significant metrics had lowest means for the past time
period. Of the significant metrics, geomorphology, habitat role, and erodible shoreline had
higher means for the current time period compared to the future time period. All other signifi-
cant metrics had higher means for the future time period compared to the current time period.
All vulnerability metrics had significantly differing means across all time periods except natural
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Table 4. Coastal vulnerability comparison using GLM between past, current and future scenarios.

Vulnerability model F-value p-value Past-Current | Current-Future | Past-Future | Pastmean | Currentmean | Future mean

Relief 0.00 0.9995 3.00 3.00 3.00
Wave exposure 0.00 0.9995 3.00 3.00 3.00
Geomorphology 412.512 <0.0001 2 * * * 4.31 3.87 3.58
Natural habitats 33.85% | <0.00012 * * 2.56 2.25 2.52
Exposure no habitat 37.73% | <0.00012 * * 3.23 3.41 3.46
Exposure 13.45% | <0.0001% * * 2.81 2.85 2.94
Habitat role 106.622 | <0.0001°% * * * 0.41 0.56 0.52
Erodible shoreline 189.03% | <0.0001% * * * 0.31 0.19 0.06
Surge 395.872 | <0.0001% * * * 2.55 3.59 3.96

Mean values run from 0-5 and are unitless.
2 Results are significant.
* Significant differences in means.

doi:10.1371/journal.pone.0163495.t004

habitats for which past and future did not differ, exposure no habitat for which current and
future did not differ, and exposure for which past and current did not differ.

Analysis of clustering of vulnerability metrics using Moran’s I showed significant clustering
of coastal exposure values for past, current and future scenarios (z-score = 54.59, p < 0.0001, z-
score = 80.35, p < 0.0001, and z-score = 90.62, p < 0.0001, respectively). Vulnerability maps
(Figs 3-5) show that under current conditions, many of the marsh islands in Jamaica Bay are
highly vulnerable along with a large portion of the shoreline of the Rockaway Peninsula and
areas along the western edge near the entrance to the bay. Most of the protected shoreline areas
along the northern, southeastern and northwestern edges of the bay are only minimally vulner-
able. The vulnerability map for future conditions is fairly different. Many marsh islands are
predicted to disappear, so few marsh islands are still vulnerable. With the protection of the
marsh islands gone, areas of the southeastern edges of the bay are now moderately vulnerable,
in particular the southern edges of JFK Airport and the northern bay side of the Far Rockaways.
The entirety of the Rockaway Peninsula is now either moderately or highly vulnerable however
sections of the northern parts of the bay are less vulnerable. The vulnerability map for past con-
ditions is also quite different. No marsh islands existed and the entrance to the bay was from
the south where today the Rockaway Peninsula sits. The most vulnerable sections are near the
entrance to the bay and the northern shoreline of the bay most likely impacted by wave action
through the mouth of the bay. The northeast and northwest sections within the bay are pro-
tected and thus least likely to be vulnerable.

We tested the likelihood for vulnerability to differ across stakeholder categories by compar-
ing the means of vulnerability metrics by stakeholder for the current scenario using GLM
(Table 5). We found significant differences in vulnerability for all nine vulnerability metrics. In
general, Breezy Point Cooperative had the highest mean vulnerability rankings across all vul-
nerability metrics except natural habitats (US Army highest) and habitat role (Gateway
National Recreation Area highest). In general, US Army lands had the lowest mean vulnerabil-
ity rankings across all vulnerability metrics except wave exposure, natural habitats and expo-
sure (public lands NYC lowest) and exposure no habitat and surge (JEK Sirport lowest). Mean
public lands in NYC and US Army lands both had lowest vulnerability for erodible shorelines.

We also looked at whether damage from Hurricane Sandy could be used as a surrogate for
vulnerability and the strength of the relationship between distance to noted damage and vul-
nerability (Table 6). Correlations between the vulnerability values of two metrics (surge and
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Vulnerability Analysis - 1609

Low Vulnerability - 99% Confidence
Low Vulnerability - 95% Confidence
Low Vulnerability - 90% Confidence
Not Significant

High Vulnerability - 90% Confidence
High Vulnerability - 95% Confidence
High Vulnerability - 99% Confidence

Fig 3. Vulnerability map of coastal exposure vulnerability for past conditions. Landmass polygon obtained from the Wildlife
Conservation Society, Welikia Project.

doi:10.1371/journal.pone.0163495.9003

exposure) and their distances in meters to five major damage groupings revealed that signifi-
cant correlations exist for all vulnerability-damage combinations except exposure and distance
to artificial debris. All vulnerability metrics were inversely correlated with damage except for
surge and distance to natural debris, and both exposure and surge and distance to artificial
debris. The strongest correlation was an inverse relationship between exposure and distance to
marsh dieback (r = -0.25, p <0.0001).

Discussion

In this study, spatial and temporal changes in nine metrics of coastal vulnerability were investi-
gated along the shoreline of Jamaica Bay, New York for past, current and future time periods.
This characterization is especially timely given ongoing threats from climate change including
sea-level rise and shoreline erosion [9,25]. We found significant differences in vulnerability
metrics between past, current and future scenarios for all nine metrics except relief and wave
exposure. Overall exposure to coastal erosion in Jamaica Bay is expected to increase through
time. The mean values for relief and wave exposure remained the same for all three temporal
scenarios (rank of 3) due to the metric’s ranking scheme (Table 1). These two variables are
ranked by percentile values so an equal number of segments were assigned to each rank from

PLOS ONE | DOI:10.1371/journal.pone.0163495 October 12,2016 11/18



o @
@ : PLOS ‘ SNE Modeling Coastal Vulnerability through Space and Time

Vulnerability Analysis - 2015

Low Vulnerability - 99% Confidence
Low Vulnerability - 95% Confidence
Low Vulnerability - 90% Confidence
Not Significant

High Vulnerability - 90% Confidence
High Vulnerability - 95% Confidence
High Vulnerability - 99% Confidence

Fig 4. Vulnerability map of coastal exposure vulnerability for current conditions. Landmass polygon delineated using the USGS
NED 1/3rd arc second n41w074 and n41w075 digital elevation model.

doi:10.1371/journal.pone.0163495.9004

one to five. Although natural habitats covered Jamaica Bay almost entirely in 1609, with the
exception of a few small Native American settlements, mean natural habitat values were pre-
dicted to be higher (less protective) in the past scenario than in the current and future scenar-
ios. Differences in input data quality between the scenarios and differences in the spatial
structure and distribution of habitats between the past and future may have contributed to this
result. First, the thematic resolution of our habitat cover data was much lower in the past sce-
nario compared to our current and future scenarios; five unique habitat types were present in
the past compared to 15 types for our current and future scenarios. The model ensures that seg-
ments with only one type of unique habitat are ranked higher than those with multiple habitat
types. Second, the extent of coastal habitat zones differs greatly between the past scenario and
the other scenarios. Under current and future conditions, one could profile the entire suite of
coastal zones from low marsh to upland habitat in a much shorter distance from the shoreline
when compared to past conditions in which coastal habitat zones stretched over very wide
extents. A much longer profile would be needed to capture all coastal habitat zones for the past
scenario. Due to these factors, shoreline segments in the current and future scenarios were
often determined to be protected by more habitat types than segments in the past scenario.
These factors may also demonstrate the limitations of this model in comparing a very urban-
ized coastal system to an undeveloped one. Alternatively, natural habitat cover may indeed be
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Vulnerability Analysis - 2080

Low Vulnerability - 99% Confidence
Low Vulnerability - 95% Confidence
Low Vulnerability - 90% Confidence
Not Significant

High Vulnerability - 90% Confidence
High Vulnerability - 95% Confidence
High Vulnerability - 99% Confidence

Fig 5. Vulnerability map of coastal exposure vulnerability for future conditions. Landmass polygon delineated using the USGS NED
1/3rd arc second n41w074 and n41w075 digital elevation model.

doi:10.1371/journal.pone.0163495.9005

more protective now compared to the past due to the formation of the interior marsh islands.
These islands were often close enough to the peripheral shoreline segments for the model to
classify them as effective protective habitat.

The mean estimated surge ranking increased through time. We attribute the low surge value
in the past scenario to the lack of dredged channels in the bay in precolonial times. We attri-
bute the increase in the mean surge value between the past and future scenarios to the greater
fetch distance expected with the loss of interior marsh islands to sea-level rise. The Intergov-
ernmental Panel on Climate Change (IPCC) has also reported that it is likely that there has
been an increase in extreme sea-levels, as experienced during storm surges, since 1970, being
mainly the result of rising mean sea-level [31]. It should also be noted that we used the same
wind and wave datasets for all three scenarios so the model did not account for any differences
in wind and wave patterns that may have presented in 1609 or that may occur by 2080; the
findings with respect to surge only represent changes in geomorphology.

Our model also predicted that the percent of shoreline segments determined to be erodible
fell through time from 31.2% to 19.1% to 6.2%. This is partially due to the anthropogenic hard-
ening of the shoreline over time. In 1609 the shoreline of the entire bay was naturalized with
sandy shorelines and marsh ecosystems. According to our aerial imagery interpretation analysis
of shoreline geomorphology we estimated that by 2015 29% of the shoreline was hardened (rip-
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Table 5. Results of comparison using GLM of vulnerability metrics under the current scenario across stakeholder types.

Vulnerability
model

Relief 31.212
41712
193.222
87.432
132.162

Wave exposure
Geomorphology
Natural habitats

Exposure no
habitat

Exposure
Habitat role

Erodible
shoreline

Surge

@ Results are significant.

F-value

67.87°2
120.66 ®
60.222

43.56 2

<0.0001 @
<0.0001 #
<0.0001 #
<0.0001 @
<0.0001%

<0.0001 @
<0.0001 #
<0.0001

p-value | Mean Breezy Point Mean Gateway Mean JFK Mean Mean Mean public | Mean US
Cooperative National Recreation | Airport private public lands (NYC army
Area lands lands only)

3.59° 3.34 2.29 2.68 2.79 3.33 1.00°¢
5.00° 3.27 2.78 2.39 2.91 1.83° 4.09
5.00° 417 3.73 3.10 3.90 3.17 3.00°
3.10 1.92 2.28 3.18 1.99 1.56° 5.00°
4.46° 3.73 2.94° 2.97 3.24 3.06 3.00
4.01° 3.05 2.44 2.65 2.66 242° 3.00
0.45 0.68° 0.50 0.32 0.57 0.64 0.00°¢
1.00° 0.25 0.07 0.01 0.22 0.00°¢ 0.00°
4.00° 3.92 2.29° 3.40 3.42 3.00 4,00°

<0.0001 #

b Maximum mean value among stakeholders.

¢ Minimum mean value among stakeholders.

doi:10.1371/journal.pone.0163495.t005

rap, bulkhead, or pier). Assuming no further anthropogenic alteration of the shoreline, no loss
of marshland to forces other than sea-level rise, and no marsh accretion, the percent of hardened
shoreline is expected to increase to 40% due to sea-level rise alone by 2080. This is because natu-
ral shoreline segments, such as the low lying marsh islands, are likely to be inundated by sea-
level rise while hardened shorelines are often tall enough that they will not likely be inundated
by 2080. While these hardened shorelines are less erodible than natural shorelines, they do not
provide myriad of other environmental services that natural shorelines can provide [1-3]. The
science of sea-level projections is rapidly evolving and our assumed 1.47 m sea-level rise is
higher than rates proposed since the time of this analysis [32]. It is important that future
research reflect the most recent sea-level rise rates as the science continues to evolve. While we
assumed no accretion of saltmarsh soils in this study, the future response of saltmarshes to sea-
level rise is a contested subject. Some studies predict that future accretion will accelerate at suffi-
cient rate to keep pace with sea-level rise [33]. While more research into the accretion rates of
Jamaica Bay are required, the current accretion rate of the saltmarshes of the Tuckerton Penin-
sula, New Jersey, approximately 80 miles south of Jamaica Bay, is 0.17 cm per year [34]. This
rate is well below current sea-level rise rates, and previous studies document a clear and signifi-
cant loss of saltmarsh coverage in Jamaica Bay during the last few decades [9,12,13,14]. Jamaica
Bay’s saltmarshes may erode laterally due to erosional forces regardless of vertical forces of sea-
level rise and accretion. This model also does not account for disruption in sand transport and
deposition patterns due to urbanization and the introduction of coastal infrastructure since

Table 6. Correlations between damage type and selected coastal vulnerability metrics for the current scenario.

Distance to sand

Distance to natural Distance to flooding Distance to marsh Distance to artificial

deposition debris dieback debris
Vulnerability model r p-value r p-value r p-value r p-value r p-value
Exposure -0.08327% | <0.0001% | -0.120212 | <0.0001? | -0.22322% | <0.0001% | -0.25484 % | <0.00012 | 0.00637 0.7541
Surge -0.04794 2 0.01842 | 0.178552 | <0.0001?% | -0.06241% 0.00212 | -0.234812 | <0.0001?% | 0.15355% | <0.0001
@ Results are significant.
doi:10.1371/journal.pone.0163495.t006
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1609 [35], or the effects hardened shorelines may have on adjacent shorelines, such as flanking
erosion to adjacent natural shorelines due to reflectance of wave energy [17].

The geography of vulnerable areas in the bay shifts with time. In 1609, areas of high vulnera-
bility (on the barrier islands and in the area across from the bay’s mouth) largely reflect direct
exposure to oceanic waves (Fig 3). Although it is difficult to compare the past scenario with the
current and future scenarios due to the drastic changes in the geography of the bay as a whole,
some clear trends emerge when comparing the current and future scenarios of the bay. Cur-
rently, the interior marsh islands, Floyd Bennett Field, the Rockaway Peninsula, and the por-
tion of Coney Island at the mouth of the bay are low vulnerability areas while the northern and
eastern periphery of the bay are largely exposure cold spots (Fig 4). By 2080, many of the vul-
nerable marsh islands will have shrunk or been inundated entirely and the northern and east-
ern areas of the bay will become more vulnerable (Fig 5). While currently the uninhabited
marsh islands bear the brunt of erosional forces, by 2080 high vulnerability locations will likely
shift to shorelines that front residential and other built areas such as the Far Rockaways, the
eastern portion of the Rockaway Peninsula. This will likely have implications economically,
structurally and socially [36].

Our stakeholder analysis found clear differences in vulnerability between the various stake-
holders in the bay (Table 5). The Breezy Point cooperative had highest vulnerability rankings
for most categories and the highest overall exposure ranking. One factor that contributed to
this result is the Cooperative’s location on the Rockaway inlet, which is exposed to open ocean
on one side, is entirely sandy shoreline, has low average relief, and is close to a large dredged
channel on its bay side. 100% of the cooperative’s shoreline was ranked as erodible in 2015, far
more than any other stakeholder. The US Army had the highest vulnerability ranking for natu-
ral habitat and the lowest for geomorphology since all shorelines assigned to them are
completely bulkheaded. Natural habitats play the biggest role in protecting shorelines assigned
to the Gateway National Recreation Area and other public lands. This result is unsurprising as
many of these areas have been managed as natural preserves. John F. Kennedy International
Airport had the lowest vulnerability for surge of any stakeholder. This can be attributed to the
abundance of marsh islands between the mouth of the bay and the airport and the lack of
dredged channels on the eastern edge of the bay.

Our damage correlation analysis compared distance to damage due to Hurricane Sandy to
the model’s predicted overall exposure and surge values (Table 6). Significant correlations exist
for all vulnerability (exposure/surge)-damage combinations except for exposure and distance
to artificial debris. Most correlations were weak but the strongest was the inverse relationship
between exposure and distance to marsh dieback. As such, our results do not support the use
of distance to damage as a surrogate for vulnerability. These correlations may have been weak
due to limitations in our analysis. We determined distance from each shoreline segment to the
nearest area of storm damage. This resulted in some segments being paired with damage areas
that most likely weren't related, such as ones across open water or at great distances. It is diffi-
cult to attribute any given area of damage to any single section of shoreline. A more robust
analysis would need to determine a shoreline segments ‘damage-shed, the exact areas which
would face damage through the failure of specific shoreline segments.

Communities in coastal areas around the world will likely feel the effects of climate change
through subsequent sea-level rise and increased storm events [31,35] which may strongly affect
cultural and natural resources. Coastal protective features, ranging from storm surge barriers
and levees to natural features (e.g. wetlands), have been promoted in coastal areas by the
USACE, environmental groups, and state and local government to decrease future flood risk.
However, it is not understood where these measures might be best implemented to affect the
most benefit. Coastal areas of the United States are often unique couplings of natural wetland
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habitat with densely populated urban landscapes. The juxtaposition of heterogeneous shoreline
habitat creates variability in coastal vulnerability rankings. Resource managers are thus increas-
ingly using ecosystem services modeling in the creation of management plans and restoration
efforts. As demonstrated here, coastal vulnerability results can be coupled with additional data
(e.g. stakeholders) and modeled over multiple time periods to identify the extent and severity
of change and impacts on other entities. Data from past time periods can be used to better
understand how changes in the landscape may have influenced current coastal vulnerability
and data on future scenarios can be used to predict future changes in vulnerability. Further,
these methods can be tailored for any coastal region for which data exist. Thus, our methods
have considerable potential to provide valuable predictions of coastal vulnerability to resource
managers to effectively identify areas for restoration and protection.

Supporting Information

S1 File. Raw results and supplementary data as shapefiles. The results of the InVEST vulner-
ability models and the Moran’s I spatial autocorrelation analysis as ESRI shapefiles, as well as
map identifying local Hurricane Sandy damage.
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S1 Table. Initial Datasets. The datasets used for this analysis, the source organization, notes
on how they were used, and a web location of the data when available. All but one dataset
(New York City Ecological Cover Map) are publically available.
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S2 Table. Raw results. The results of the InVEST vulnerability models. Each record represents
a shoreline segment and include geographic coordinates.
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