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Abstract
Endophytes proved to exert multiple effects on host plants, including growth promotion,

stress resistance. However, whether endophytes have a role in metabolites shaping of

grape has not been fully understood. Eight endophytic fungal strains which originally iso-

lated from grapevines were re-inoculated to field-grown grapevines in this study, and their

effects on both leaves and berries of grapevines at maturity stage were assessed, with spe-

cial focused on secondary metabolites and antioxidant activities. High-density inoculation

of all these endophytic fungal strains modified the physio-chemical status of grapevine to

different degrees. Fungal inoculations promoted the content of reducing sugar (RS), total

flavonoids (TF), total phenols (TPh), trans-resveratrol (Res) and activities of phenylalanine

ammonia-lyase (PAL), in both leaves and berries of grapevine. Inoculation of endophytic

fungal strains, CXB-11 (Nigrospora sp.) and CXC-13 (Fusarium sp.) conferred greater pro-

motion effects in grape metabolic re-shaping, compared to other used fungal strains. Addi-

tionally, inoculation of different strains of fungal endophytes led to establish different

metabolites patterns of wine grape. The work implies the possibility of using endophytic

fungi as fine-tuning regulator to shape the quality and character of wine grape.

Introduction

Endophytes, including fungi and bacteria, are symbiotic organisms that live within plant tissues
or organs but cause no obvious symptoms of infection [1]. Endophytic fungi widely distribute
in all natural growing plants [2]. During co-evolution, endophytic fungi and plants have
formed a mutualistic and symbiotic relationship. Endophytes benefit their host plants in multi-
ple ways, such as growth promotion [3], nutrients absorption [4], or providing available nutri-
ents for plants [5], as well as increased adaptability to pathogens, pests and abiotic stresses [6–
8]. In addition, some endophytic fungi produce compounds similar to those found in their
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host plant, and these fungi are potential sources for active compounds that may have medical,
agricultural and industrial applications [9–13]. However, few studies concerned the biochemi-
cal response of host plant to endophytes. It had argued that the secondarymetabolites pre-
sented in plants should be re-evaluated by taking into account the existence of endophytes
[14]. For one example, the induction of a Chinese traditional medicine "dragon's blood" (lour-
eirins) from Dracaena cochinchinensis will be greatly promoted by the coexistence of certain
species of fungal endophytes [15]. The possibility that plant secondarymetabolites could be
shaped by endophytes have gained various supports. Generally, endophytes alter host plants’
metabolites may by ways of: i) directly synthesize and secret metabolites in plant [11,16–18]; ii)
purposely secret signal molecules, and consequently cause complicated cascade bio-chemical
reactions in plant [19–23]; and iii) participate in the process of host plant metabolism by pro-
ducing and secreting enzymes to plant and exert functions in plant metabolic pathways [24–
26]. However, the extents of endophyte contribute to its host plant in metabolites and the
underlyingmechanisms require further systematic studies. Obviously, clues that endophytes
possible influence the metabolites of host plants provide possibilities to finely tune the compo-
sition of secondarymetabolites in a target plant using tools of endophytes. This is of special
interest for those plants that are used to produce organoleptic sensitive products, such as wine,
coffee and others.

Grapevine is one of the most economically important fruits in the world, and a large propor-
tion is used for wine making. The quality and character of grape are fundamentally determined
by its biochemical compositions, which affected by both genetic and environmental factors
[27–30]. In addition to genotypes, biotic and abiotic factors also affect the metabolite contents
of grape [31]. Research on how abiotic factors influence grape quality have been broadly cov-
ered, and some of these achievements have been successfully applied in viticulture [32–37].
Regarding biotic factors, attention has been paid also to ambient microorganisms on grape
quality such as pathogens, rhizosphere microbes [38–41]. The well-known "noble rot" wine is
made from plant pathogen Botrytis cinerea infected berries, and special components in Botrytis
cinerea infected grape berries had been detected [42]. Although endophytes are abundantly dis-
tributed within grape leaves [43], and have special intimate relationship with vines [44], their
metabolic effects on grape are vaguely explained. In this study, eight strains of fungal endo-
phytes isolated from vine leaves were high-density inoculated to leaves of wine grape, 4 weeks
after bud-burst Their impacts on grapevine physio-chemistries were assessed both in berries
and full developed leaves at berrymaturity stage, as well as discussed the possible application
of endophytic fungi as metabolic regulators in viticulture.

Materials and Methods

Plant and fungal materials

A regionally planted wine grape cultivar Rose honey (V. Vinifera L.× V. labrusca L.) with high
adaptive abilities in Yunnan province, China, was used in this experiment. Vineyards location
belongs to subtropical climate, with altitude ~1400 m, annual precipitation 987.5 mm, yearly
average temperature 17.3°C and average illumination of 2079.2 hours. The vines are five years
old, spur pruned, with density of 1.2 m between rows and 0.9 m between plants, and following
the local standards of fungicide (products of fungicide:metalaxyl, mancozeb, difenoconazole
and Bordeauxmixture) and pesticidemanagements.

Eight strains of fungal endophytes isolated previously from grapevines [45,46] were selected
for treating vines. Features of all these fungal strains and the status within the treated vines
were summarized in Table 1 [47].
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Preparation of fungal material

Fungi were plate cultured on PDA medium for 5–7 days (depending on the growth speed of
the fungus). Five medium-fungalmycelium discs were cut with an 8 mm diameter sterilized
pole-punch for each fungal strains, and transferred into 100 ml PDA sterilized liquid medium
in a 250ml triangular flask. Fungi were shaken cultured at 28°C, 150 rpm, for 8 days. Mycelia of
each fungal strain was harvested with sterilized cloth filter with several times wash using steril-
ized saline solution (0.9% NaCl). And the harvestedmycelia were weighed and homogenized,
and the homogenates were diluted into 1/100 (10 mg/mL) using sterilized saline solution. The
prepared mycelium solutions were stored at 4°C for further use.

Inoculation of fungal endophytes to grapevines

Approximately 160 physiologically similar vines in one vineyard were chosen and firstly
divided into 3 blocks from south to north, and each block was then divided into 9 sub-blocks.
Every sub-block containing 4 vines were inoculatedwith one fungal strain, forming one repli-
cate of a treatment. Two rows in south and north ends, and two panel vines in west and east
sides of the field were left untreated to avoid boundary effects. Eight strains of prepared fungal
solutions and normal saline solution (as control) were painted to expanded vine leaves, 4
weeks after bud-burst (at least ten days before and after this inoculation, vines for inoculation
were free of fungicide and pesticide). One vine at the end of every sub-block was left untreated
as buffer between two different treatments within rows. The inoculations were done two times
per day at morning and evening, respectively, for 3 days. In case it rained within 12 hours after
each inoculation, an extra inoculationwas conducted for compensation after the dry up of vine
leaves. In total 60 mL fungal solution, approximately 600 mg mycelium was inoculated to each
grapevine.

Sampling

At berrymaturity, berries and health full developed leaves (fungi inoculated and normal saline
solution treated) were sampled for each sub-block. One or two clusters of berries and 5

Table 1. Endophytic fungal strains used in the experiment.

Strain

ID

Genus Original host

grapevines

Features in host grapevines

[45, 46]

Status in re-inoculated vines [47]

CXB-2 Xylaria sp Cabernet sauvignon Dominant; Wide Infected and become dominant species

CXB-11 Nigrospora sp Cabernet sauvignon Dominant; Wide Infected and become dominant species

MXN-8 Chaetomium sp Rose honey Dominant; Wide Not detected but changed the fungal endophytes community of

grapevine

HCXL-

16

Alternaria sp1 Cabernet sauvignon Dominant; Narrow Infected and become dominant species

CXC-13 Fusarium sp Cabernet sauvignon Rare; Narrow Infected but existence with minority

Y73-11 Colletotrichum

sp

Yan73 Dominant; Narrow Infected and become dominant species

HMC-7 Alternaria sp2 Rose honey Dominant; Narrow Infected and become dominant species

CXC-9 Gibberella sp Cabernet sauvignon Rare; Narrow Not detected but slightly changed the fungal endophytes

community of grapevine

Features in host grapevine, “Dominant” or “Rare”: means the fungal strains were dominant or rare existent species in their original host grapevines; “Wide”

or “Narrow”: means the fungal strains were distributed in most or only certain cultivars of grapevine.

doi:10.1371/journal.pone.0163186.t001
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randomly selected leaves for each vine in a sub-block were sampled. Berry and leaf samples
were well packaged in ice boxes and delivered to lab within 4 hours for further analysis.

Pre-treatment of leaf and berry samples

All leaf samples of each replicate were cut into approximately 1 cm2 pieces. Randomly selected
ripen berries were picked off from clusters. Fresh samples were divided into 3 batches. One
batch (more than 20 g for each sample) of leaf pieces and berries were homogenized into fresh
fine powder in liquid nitrogen with a stainless grinder, stored at -80°C for reducing sugar,
titratable acidity, total phenols, soluble protein and enzyme activity analysis. The second batch
approximately 100 g samples were dried in wind-oven following a program of 110°C 10 min,
80°C 48 hours (72 hour for berries) and then were grounded into fine powder with a stainless
grinder, for analyzing of total flavonoids, DPPH radical and superoxide anion scavenging
capacities. The rest samples about 500 g fresh berry and 100 g of leaf were prepared and stored
at -80°C for the extraction and determination of resveratrol.

Determination of physio-chemical traits

For the determination of reducing sugar (RS), fresh fine powder (1 g) was added with 4 mL 1
mol/L zinc acetate (containing 3% glacial acetic acid) and 4 mL 0.25 mmol/L potassium ferro-
cyanide, and extracted at 80°C for 10 min with two times of vortex. The mixture was centri-
fuged at 5000 rpm and the supernatants was adjusted to pH = 7 by adding calcium carbonate
powder. After 30 min of water bath at 60°C with several times of vortex, the solution was
cooled to room temperature, and metered the volume to 10 mL with distilledwater. After 10
min centrifuge at 5000 rpm, the supernatant was titrated with alkaline tartrate copper solution
A+B [48]. The consumption of the supernatant was used to calculate the contents of RS. Total
flavonoids (TF) content was determined using the aluminium chloride colorimetricmethod
[49], with some modifications.Methanol extracts (0.5 mL), 10% aluminium chloride (0.1 mL),
1 mmol/L potassium acetate (0.1 mL) and distilledwater (4.3 mL) were added after incubation
at room temperature for 30 min. The absorbance was measured at 415 nm. TF content was cal-
culated by comparing the results with rutin trihydrate as standard. Total phenols (TPh) were
determined using the Forint phenol colorimetricmethod. Approximately 1 g fresh frozen pow-
der was used for extraction and TPh were measured [50]. TPh content was standardized
against gallic acid and expressed as milligrams per liter of gallic acid equivalents. For the deter-
mination of total soluble protein and antioxidant enzymes, fresh powder (1 g) was added to 10
mL of 0.1 mol/L potassium phosphate buffer (pH 7.0), containing 0.1 mmol/L EDTA-Na2, 0.5
mmol/L ascorbate and 1% PVPP (polyvinyl polypyrrolidone) and the mixture was incubated
for 30 min with several rounds of vortex shaker. The mixture was centrifuged at 13,000 rpm at
4°C for 10 min. The supernatant was used to determine protein content and antioxidant
enzyme activity. Total soluble protein (TPr) concentration was measured as describedby Brad-
ford [51] using bovine serum albumin as standard. Superoxide dismutase (SOD) was deter-
mined by the nitro-blue tetrazolium (NBT) method [52], and guaiacol peroxidase (GPX)
assays were performed using the method described by Bergmeyer [53]. The extraction and
determination of PAL was performed according to the method of Carolyn et al. [54], with
somemodifications as describedby Xi et al. [55].

Measurement of DPPH radical (DPPH) and Superoxide anion (SA)

scavenging capacities

Dried sample was ground into fine powder, and weighed approximately 1 g into a volumetric
flask. DPPH radical scavenging active substances were extracted by adding 50% of ethanol and

A Fine-Tuning Regulator for Wine Grape

PLOS ONE | DOI:10.1371/journal.pone.0163186 September 22, 2016 4 / 17



sonicating for 30 min in an ultrasonic chamber. The mixture was filtered and the filtrate was
diluted into gradient concentrations. DPPH radical scavenging capacity was measured and cal-
culated according to Li et al. [56], absorbance was read at 517 nm in a spectrophotometer (S22,
Biochrom Libra, England) and results were described as the percentages of DPPH radicals
scavenged [56]. The prepared extracts gradient solutions for DPPH determination were also
used for superoxide anion scavenging capacity (SA) measurement. And the determination of
SA was following the method of Li et al. [55], and the SA scavenging capacity was described as
the percentage of superoxide anions scavenged [55].

Measurement for trans-resveratrol

Trans-resveratrol was extracted from homogenized 500 g fresh berries and 100 g fresh leaves
with ethyl acetate. Two times extractionwith 500 mL ethyl acetate was performed for both
berry and leaf sample. Extracts were dried with rotary evaporator at 37°C and the dried extracts
were dissolved in 1 mL ethanol. Trans-resveratrol was determined by HPLCmethod as
describedby Pascual-Marti et al. [57].

Data analysis

Data were analysed using SPSS 16.0 software (SPSS Inc., Chicago, IL, USA) for Windows. One-
way ANOVA followed by Tukey’s multiple comparison test at P<0.05, was used for the signifi-
cance determination. Pearson’s correlation analysis was conducted to determine the correla-
tions between variable. Response indexes (RI) were used to describe the effects of treatments
and were calculated by the following formula: Response indexes (RI) = (Vtreatment-Vcontrol)/
Vcontrol. In the formula, Vtreatment is the mean value of a variable, and Vcontrol is the mean value
of control. A positive RI indicates promotion effect, and a negative RI indicates inhibition. Fig-
ures were plotted using Sigma Plot 10.0 (Systat Software Inc., San Jose, CA). Principal compo-
nent analysis (PCA) and K-means clustering were performed using R software (R
Development Core Team 2010). PCA was conducted on the mean-centered and scaled data in
order to investigate the discriminations of the impacts of endophytic strains on leaves and ber-
ries of grapevines. K-means clustering was then employed to investigate the degree of similarity
of physio-chemistry in responding to the inoculated fungal strains.

Results

Compared to the controls, the detected physio-chemical traits could be significantlymodified
by one or more strains of the inoculated fungal endophytes, either in leaves or in berries
(Table 2, S1 and S2 Tables). However, impacts of fungal inoculationwere seen differently on
leaves and on berries (Table 2). For some examples, in leaves, five of eight inoculated fungi
(CXB-2, CXB-11, MXN-8, HCXL-16 and CXC-13) significantly promoted the content of
reducing sugar (RS), but in berries, only two inoculated fungi (CXC-13 and CXC-9) appeared
to promote this trait significantly. Additionally, inoculation of fungal strain CXB-2 tend to pro-
mote the leafy RS, but significantly decreased the berryRS (Table 2). Regarding TF, in leaves,
seven inoculated fungal strains have significantly promoted, while in berries only four fungal
strains had this effect (Table 2).

Response indexes (RI) were used to assess the impacts of certain inoculation of fungal endo-
phytes on the physio-chemistries of grapevines. Compared to non-inoculation group (control),
fungal inoculation have caused obviously changes to some detected biochemical traits, in both
leaves and berries (Fig 1, Table 2 and S3 Table). Most of the physio-chemical traits (RS, TF,
RES, PAL, DPPH and SA in vine leaves, as well as TPr, Res, and PAL in berries) were enhanced
after the inoculation of fungal endophytes, as indicated as red colored or positive RI values
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(Fig 1, S3 Table). Physio-chemical traits TF, Res and PAL appeared positively responses to the
endophytic inoculation, either in leaves and berries (Fig 1). Clustering analysis illustrated that
all those detected physio-chemical traits could be divided into 3 groups: i) traits that have been
greatly promoted by endophytic fungi, such as Res and TF; ii) traits that can be promoted or
inhibited such as GPX, SOD, DPPH and others; and iii) traits that can hardly be influenced,
such as RS, PAL, SA (Fig 1).

However, intensity of biochemical changes in grapevine varied among inoculations of dif-
ferent strains of fungal endophytes, and the RI variation boxplots displayed clearly the response
ranges of the detected physio-chemical traits to fungal endophytes inoculations (Fig 2). Leafy
TPr, Res, GPX, SOD, DPPH as well as berryTF, TPh, Res and GPX were modified in greater
ranges by endophytes inoculation.Unlike these physio-chemical traits above, response ranges
of RS, TF and PAL to the fungal inoculations were quite limited (Fig 2). Contents of secondary
metabolites TF and Res can be greatly promoted by endophytes inoculation, both in leaves
(~0.64 fold and 3.24 fold, respectively) and in berries (~ 2.18 fold and 6.9 fold, respectively) (S3
Table). On the other hand, activities of GPX and SOD in grapevines were promoted or inhib-
ited by fungal inoculations. Similar effects were also observedon biochemical traits TPh,
DPPH and SA after inoculatedwith different fungal strains (Fig 2, S3 Table).

Additionally, RI variation boxes showed the inoculation of endophytic fungal strains CXB-
2, CXB-11 and CXC-13 conferring great potentials in modifying the detected physio-chemical
traits (Fig 3). In leaves, inoculation of endophytic fungal strains CXB-11 and CXB-2 changed 9
and 8, respectively, of the total 10 detected physio-chemical traits in greater ranges (RI>0.3)
(Fig 3, S3 Table). And in berries, the inoculation of these two fungal strains had also changed 8
and 7 respectively of the berry physio-chemical traits in greater ranges (RI>0.3) (Fig 3, S3
Table). Inoculation of other endophytic fungi strains had only modified 4–6 of the detected
biochemical traits in greater ranges (RI>0.3) (S3 Table). In leaves, Inoculation of fungal strains
CXB-2, MXN-8 and Y73-11 had triggered greater ranges of physio-chemical vibrations, and in
berries, fungal strains CXB-11, CXC-13 and Y73-11 induced greater ranges of metabolism vari-
ations (Fig 3). Conversely, inoculation of fungal strain CXC-9 caused lesser impacts on grape-
vines’ physio-chemistries, either in leaves or in berries (Fig 3).

Table 2. Significance of difference between means of physio-chemical traits after treated with different strains of fungal endophytes.

Fungal strains RS TPr TF TPh Res PAL GPX SOD DPPH SA

L B L B L B L B L B L B L B L B L B L B

CXB-2 bc c a ab a a d d a a ab ab bc bc d bc ab ab a ab

CXB-11 a b ab ab a a b b ab b ab ab abc a ab c c a a a

MXN-8 cd b a ab b a ab cd a bc bc b c c cd c e ab ab bcd

HCXL-16 bcd b a ab ab c b a b de a a c bc d abc d ab bc cd

CXC-13 d a b a b ab ab d b de ab ab c b a a a bc cd ef

Y73-11 e b b b a abc a a b cde d ab a c a bc a ab d bc

HMC-7 de b c b c bc c bc b bcd bc b abc a bc a bc d d f

CXC-9 e a c b ab c b bc b de bc ab ab c bc ab a cd bc def

Control e b c b c c c cd b e cd b abc bc ab ab d bc d de

One same letter existence means the two values are not different significantly. Otherwise, different letters means the values are significantly different

(P<0.05). “L” represents the values of leaf and “B” represents the value of berry. Physio-chemical traits, RS: reducing sugar; TPr: soluble protein; TF: total

flavonoid; TPh: total phenols; Res: content of trans-resveratrol; PAL: activity of phenylalanine ammonia-lyase; GPX: activity of Guaiacol peroxidase; SOD:

activity of superoxide dismutase; DPPH: percentages of DPPH radical scavenged, at the concentration of 15ug/mL; SA: percentages of superoxide anion

radical scavenged at the concentration of 10mg/mL.

doi:10.1371/journal.pone.0163186.t002
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PCA (principal component analysis) of all these data provided an overview for the effects of
endophytic fungi inoculation on grape biochemical properties of both the berry and leaf samples
(Fig 4). The first three principal components (PC1, PC2 and PC3) explained about 93% of the
total variances. PC1mainly separated berries and leaves, based largely the contents of reducing
sugar (RS), total phenols (TPh), total flavonoids (TF) and phenylalanine-lyase activity (PAL).
Physio-chemical parameters GPX, SOD, PAL, DPPH, SA, TF and TPh were all higher in leaves
than in berries (S1 and S2 Tables). Leaf samples contain almost 10 times of TF and TPh contents
than that of in berries. Conversely, grape berries contain 100 times of trans-resveratrol (Res) and
2–3 times of reducing sugars (RS) than that of leaves (S1 and S2 Tables). PC2 resolved the effects
of different fungal strains into 3 clusters in berries, related mainly to the differences of total solu-
ble protein (TPr), superoxide scavenging capacity (SA), guaiacol peroxidase (GPX), and

Fig 1. Heat-map and clustering of biochemical changes after the inoculation of different strains of fungal endophytes, in both leaves and berries

of grapevines. Heat-map were drawn according to the response indexes (RI) values (S3 Table), and each row represents a biochemical variable and each

column represents a fungal strain treatment. RI values were centered and scaled in the row direction to form virtual colors as presented in the color key.

Biochemical parameters that showed a similar response to the inoculations of fungal endophytes were clustered together.

doi:10.1371/journal.pone.0163186.g001
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superoxide dismutase (SOD) activities. The first cluster included fungal strains of CXB-2, HCXL-
16 and MXN-8, which related mainly to the influences of berryTPr and SA; the second cluster
included CXB-11, CXC-13 and control; and the other cluster included the rest inoculated fungal
trains CXC-9, HMC-7 and Y73-11, mainly related to the modified activities of SOD and GPX
(Fig 4A and 4B). Principal components PC3 further separated the effects on leaves into two
groups mainly by the different of resveratrol content (Res) (Fig 4C & 4D).

In current experiment, endophytic fungi were inoculated to vine leaves, however, physio-
chemical changes were detected in both leaves and berries at maturity stage. Quantitative cor-
relations of those detected parameters were tested within (and between) leaves and berries, and
coefficients of correlations were shown in Table 3 and Table 4, respectively. Only 5 in leaves
and 4 in berries, respectively, of the inter-parameter pairs were tested significant correlation

Fig 2. Boxplot of physio-chemical traits in response to fungal endophytes inoculations. Green colored boxes represent the leaf physio-chemical

response ranges, and purple colored boxes represent the berry response ranges.

doi:10.1371/journal.pone.0163186.g002
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(Table 3). In contrast, 18 parameter pairs were tested significant correlations (P<0.05) between
leaves and berries. Amongst, TPr, Res, PAL and SA were changed coordinately in significant
correlation between leaf and berry (Table 4). Other correlations deserve to mention were leafy
RS significantly correlated with berryTPr and TF; leafy TPr significantly correlated with berry
TPr, TF, DPPH and SA simultaneously, and negatively correlated with berry SOD; leafy TF sig-
nificantly correlated with berry PAL, DPPH and SA; and leafy Res significantly correlated with
berryTF, Res, SA simultaneously; and the changes of leafy SA also significantly correlated to
berryRes. On the other hand, berry SA significantly correlated with leafy TPr, TF, Res and SA;
and berry SOD significantly but negatively correlated with leafy TPr, RES, and SA simulta-
neously (Table 4). Correlation analysis provides clues in interpreting the co-vibrations of some
physio-chemical traits between leaves and berries in this experiment.

Fig 3. Boxplot of the impacts of inoculated fungal strains on grapevine physio-chemical traits. Green colored boxes represent the impacts on leaf

biochemistries, and purple colored boxes represent the impacts on berry biochemistries.

doi:10.1371/journal.pone.0163186.g003
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Discussion

Currently, fewer studies were covered the influences of endophytic fungi on grape metabolites.
However, interactions existed between endophytes and plant pathogens, as well as endophytes
and their host plants have some reports [58,59]. But the underlyingmechanisms are still not

Fig 4. Principal component analysis (PCA) of the impacts of endophytic fungal inoculation on leaves and berries of grapevines. A and C are

discriminations of leaves (green) and berries (red) after inoculated with different fungal strains. B is loading plot of biochemical parameters for the first two

principle components, PC1 and PC2. D is loading plot of biochemical parameters for the second and third principle components, PC2 and PC3.

doi:10.1371/journal.pone.0163186.g004
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well understood. As raw materials of some organoleptic sensitive products such as wine grape,
since subtle changes of metabolites in grape berries will cause significant sensory effects to the
resultant products [60]. Therefore, the biochemical impacts of endophytes on wine grape
should be considered. This study initially designed to investigate the biochemical impacts of
exogenous endophytic fungi on grapevines. And all vines chosen for treatment are within one
vineyard with same cultivar and age, with similar physiological status, as well as containing
similar fungal endophytes communities [47]. The inoculation of exogenous fungal endophytes
had led to four impacts on the endophytic fungal communities of the treated vines: i) inocu-
lated fungus successfully infected and became the dominant endophytes within the infected
grapevines; ii) inoculated endophytic strains have infected vines but not become dominant
endophytic fungal species in the treated vines; and iii) re-inoculated fungus not detected from
the inoculated plant ([47] and see summarized in Table 1) In any cases, all these results confer
effects in reconstructing the endophytic communities of the treated vines [47]. Therefore, the
detected changes of vine metabolites in this experiment were actually the consequences of both
the inoculations and the altered endogenous endophytic communities.

Table 3. Coefficients of correlations among detected parameters within leaves (left-below) or berries (right-above) of grapevines.

RS TPr TF TPh Res GPX SOD PAL DPPH SA

RS 0.185 -0.097 -0.004 -0.636 -0.12 0.422 0.083 -0.255 -0.561

TPr 0.452 0.880** -0.375 0.417 0.191 -0.36 0.393 0.583 0.278

TF 0.371 0.602 -0.384 0.710* 0.154 -0.548 0.181 0.541 0.493

TPh 0.227 0.18 0.416 -0.319 -0.004 -0.212 0.365 0.104 0.218

Res 0.288 0.769* 0.299 -0.253 0.183 -0.55 0.18 0.315 0.606

GPX -0.481 -0.628 0.071 0.097 -0.453 0.198 0.138 -0.078 -0.04

SOD 0.134 -0.514 -0.025 0.348 -0.507 0.498 -0.211 -0.792* -0.909**

PAL 0.551 0.519 0.276 -0.159 0.427 -0.507 -0.654 0.382 0.26

DPPH 0.249 -0.326 0.394 -0.009 -0.242 0.542 0.427 -0.008 0.811**

SA 0.385 0.744* 0.513 -0.117 0.853** -0.364 -0.56 0.702* -0.085

** correlation is significant at the 0.01 level

* Correlation is significant at the 0.05 level (2-tailed).

doi:10.1371/journal.pone.0163186.t003

Table 4. Coefficients of correlations of the detected parameters between leaf (xx.l) and berry (xx.b) of grapevines.

RS.b TPr.b TF.b TPh.b Res.b POD.b SOD.b PAL.b DPPH.b SA.b

RS.l 0.27 0.922** 0.733* -0.267 0.295 0.449 -0.116 0.524 0.444 0.136

TPr.l -0.322 0.672* 0.675* -0.006 0.571 -0.17 -0.811** 0.482 0.805** 0.673*

TF.l -0.004 0.413 0.424 0.359 0.307 -0.27 -0.608 0.692* 0.674* 0.678*

TPh.l 0.648 0.279 0.153 0.488 -0.421 -0.247 -0.254 0.186 0.273 0.053

Res.l -0.559 0.538 0.759* -0.404 0.881** -0.026 -0.749* 0.072 0.561 0.688*

POD.l 0.057 -0.619 -0.379 0.448 -0.185 -0.025 0.182 -0.226 -0.404 0.006

SOD.l 0.41 -0.017 -0.038 0.063 -0.45 0.169 0.33 -0.328 -0.052 -0.152

PAL.l -0.085 0.495 0.366 -0.068 0.498 0.384 -0.225 0.748* 0.213 0.178

DPPH.l 0.29 0.055 0.097 -0.048 0.089 0.043 0.332 0.282 -0.227 -0.084

SA.l -0.348 0.529 0.634 -0.173 0.771* 0.078 -0.749* 0.442 0.596 0.721*

**: correlation is significant at the 0.01 level

*: Correlation is significant at the 0.05 level (2-tailed).

doi:10.1371/journal.pone.0163186.t004
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Whatever happened during the process, the inoculation of different strains of fungal endo-
phytes in this experiment has reshaped grapevines’ physio-chemistry and created different
metabolic status of the target grapevines (Fig 1). In particular, endophytic strains CXB-11,
CXC-13 and Y73-11 detected stronger promotion effects on grape metabolic regulation than
other fungal strains, either in leaves or in berries (Fig 3). Fungal strains CXB-11 and Y73-11
belong to genus Nigrospora and Colletotrichum sp, respectively, are dominant species within
the host vines leaves, and had successfully infected and become dominant endophytic fungus
within the treated vines (Table 1). Interestingly enough, CXC-13 was a rare isolated endophytic
fungal strains, but its inoculation had also initiated greater effects on grapevines (Fig 3). How-
ever, relationships between fungal features and its metabolic re-shaping abilities need further
studies. But the fact that inoculation of different strains of fungal endophytes led to different
grape metabolites status, implies the possibilities to apply different endophytes or endophytic
combinations to create different characters, styles and qualities of wine grape and the resultant
wine. One may even purposelymanage vineyards by continuous training with certain kind of
endophyte or endophytic combinations to create vines containing designed endophytic com-
munity structures for sustainable production of quality and characteristic wine grapes.

The French term “terroir” which endued a certain wine of distinguished characters, includes
the local soil, climate factors, ambient organisms and all other [61]. We currently argue that
the roles of endophytes in “terroir” should be taken into account. Additionally, whether endo-
phytes have partiallymediated the impacts between climate factors and grapevines needs to be
re-evaluated, since endophytes communities within certain plant are influenced by climate and
other geographic factors [62,63]. Due to the limited biomass of endophytes in natural growing
plants [64], their metabolic impacts on host plant should also be limited, as comparison to
genotype and other environmental factors such as soil, nutrients, radiation, temperature, pre-
cipitation. [65–67]. However, subtle change of metabolites, especially secondarymetabolites of
wine grape, was enough to influence the organoleptic style of the resultant wine. These second-
arymetabolites such as phenols, flavonoids, tannins, terpenes, stilbenes and others, confer mul-
tiple sensory characters to wine and exert health protective effects to human being [68–71].
Therefore, delicate use of endophytic fungi may become a good fine-tuning tool for regulating
wine grape secondarymetabolites. But how to use this tool to reach our targeted metabolite
patterns of grape berries warrants further researches.

While physio-chemical modificationswere detected in both leaf and berry at berrymaturity
stage. The mechanism which lies in this phenomenon may be the continuous exchange of
metabolites and signals between leaves and berries. It is known that exchanges of transportable
metabolites, signal molecules, as well as some defense compounds among different parts of
plant are occurring continuously [72]. Biochemical traits that significant correlation in quanti-
tative between grape berries and leaves were partially explained the coordinated responses of
those biochemical traits to endophytic inoculations in both leaves and berries (Table 4). Coor-
dinate responses of some metabolites simultaneous in both the fruits and leaves of grapevine
have had evidences [73], and furtherly implies the possibility to shape berrymetabolites by
means of leaf treatments.

While discussing the prospects of this fine-turning regulator to shape wine grape metabo-
lites, negative effects should also be considered, such as risks of producing harmful or toxic
compounds. However, this could be avoided by using endophytic strains isolated from local
vineyards, and following a systematic research for each candidate fungal endophytes before it
can be used in viticulture. Endophytes can occasionally become pathogens [74], but compared
to pathogens or other source of fungi, endophytes are still a safe tool for use.
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Conclusion

Inoculation of fungal endophytes to leaves in earlier stages can alter grapevine physio-chemical
status in both leaves and berries at berry ripening stage. Some endophytic fungal strains such
as CXB-11, CXC-13 and Y73-11 greater ranges of impacts on grapevinemetabolites. Inocula-
tion of different strains of fungal endophytes created different patterns of biochemical status of
grape. Results imply the possibilities using fungal endophytes as fine-tuning regulators to
shape the qualities and characters of wine grape.
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36. Martı́nez-Lüscher J, Torres N, Hilbert G, Richard T, Sánchez-Dı́az M, Delrot S, et al. (2014) Ultravio-

let-B radiation modifies the quantitative and qualitative profile of flavonoids and amino acids in grape

berries. Phytochemistry 102: 106–114. doi: 10.1016/j.phytochem.2014.03.014 PMID: 24713570

37. Considine MJ, Foyer CH (2015) Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.):

photosynthetic tissues and berries. Name: Frontiers in Plant Science 6: 60.
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