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Abstract
The aim of the present study was to determine the antibacterial activities of the phenolic

essential oil (EO) compounds hinokitiol, carvacrol, thymol, and menthol against oral patho-

gens. Aggregatibacter actinomycetemcomitans, Streptococcus mutans, Methicillin-resis-

tant Staphylococcus aureus (MRSA), and Escherichia. coli were used in this study. The

minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs),

bacterial growth curves, temperature and pH stabilities, and synergistic effects of the liquid

and vapor EO compounds were tested. The MIC/MBC of the EO compounds, ranging from

the strongest to weakest, were hinokitiol (40–60 μg/mL/40-100 μg/mL), thymol (100–

200 μg/mL/200-400 μg/mL), carvacrol (200–400 μg/mL/200-600 μg/mL), and menthol

(500-more than 2500 μg/mL/1000-more than 2500 μg/mL). The antibacterial activities of

the four EO phenolic compound based on the agar diffusion test and bacterial growth

curves showed that the four EO phenolic compounds were stable under different tempera-

tures for 24 h, but the thymol activity decreased when the temperature was higher than

80˚C. The combination of liquid carvacrol with thymol did not show any synergistic effects.

The activities of the vaporous carvacrol and thymol were inhibited by the presence of water.

Continual violent shaking during culture enhanced the activity of menthol. Both liquid and

vaporous hinokitiol were stable at different temperatures and pH conditions. The combina-

tion of vaporous hinokitiol with zinc oxide did not show synergistic effects. These results

showed that the liquid and vapor phases of hinokitiol have strong anti-oral bacteria abilities.
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Hinokitiol has the potential to be applied in oral health care products, dental materials, and

infection controls to exert antimicrobial activity.

Introduction

Essential oils (EOs) are volatile oily liquids obtained from different parts of plants. EOs are
widely used in food preservation and health care products because of their potent antibacterial
activity [1–3], reduction of oxidative stress [4], and anti-inflammatory activities [5]. Many EOs
are generally recognized as safe by the Food and Drug Administration (FDA) of the United
States and have been used as artificial flavorings and preservatives. EOs are often diluted in sol-
vents for sprays and rinses or are heated to volatilize them to prohibit bacterial growth and
eliminate unpleasant odors. Many EOs contain terpenoids, which include phenols, aldehydes,
ketones, alcohols, ethers, and hydrocarbons. Generally, phenolic EOs have stronger antibacte-
rial activity than other constituents. The antibacterial activities of the terpenoids are affected by
their functional groups, hydrophobicity, and environmental conditions.

The antibacterial activity of the constituents in EOs against cariogenic bacteria has been exten-
sively discussed [6,7]. Hinokitiol is a natural component isolated from Chamacyparis taiwanensis.
It has already been demonstrated that an oral care gel (therapeutic dentifrice) containing hinoki-
tiol improved the quality of life for oral lichen planus patients [8] and effectively for reduced oral
malodor [9]. The EO of Lippia gracilis Schauer leaves has significant synergism with several antibi-
otics [10]. The bioactive fractions of Lippia sidoides disrupt the integrity and weaken the structure
of biofilms [11]. Using L. sidoides-based essential oil mouth rinse for one week was efficacious in
reducing bacterial plaques and gingival inflammation in patients [12], and it reduced the salivary
Streptococcus mutans levels in children with caries after five days of treatment [13].

The major constituents of L. gracilis and L. sidoides are carvacrol and thymol [10,14]. Carva-
crol and thymol have been used as food additives because of their antimicrobial and antioxi-
dant activities [15,16]. Thymol can also be used in varnish to prevent caries [17], and carvacrol
has well-known anti-Candida potential and can prevent denture stomatitis [14]. Menthol is
either made synthetically or obtained from mint. Menthol is used in confections, chewing gum,
and oral-care products, such as toothpaste and mouth rinse, to reduce bacterial growth [18]
and oral malodor [19]. These four phenolic EO compounds are valuable for application as food
additives or oral health care products.

Dental caries and periodontitis represent the major oral infectious diseases. Bacterial pla-
ques composed of native oral flora accumulate on dental surfaces and are the primary etiologi-
cal agents of periodontal disease and dental caries [20]. In dental plaques, S. mutans and
Aggregatibacter actinomycetemcomitans are respectively considered to be highly cariogenic and
periodontopathic microorganisms. Staphylococcal food poisoning is caused by consuming
foods contaminated with enterotoxins produced by Staphylococcus aureus [21]. Methicillin-
resistant Staphylococcus aureus (MRSA) are facultative-anaerobic Staphylococci, and they have
been reported to colonize 77.8% of oral cancer patients following surgery [22]. Escherichia. coli
can cause serious food poisoning in humans. Fecal-oral transmission is the major route by
which E. coli is transmitted to induce enteric diseases. E. coli has been used as an ideal indicator
organism to test environmental samples for fecal contamination.

Hinokitiol, carvacrol, thymol, and menthol have similar structures and molecular weights
(Fig 1). Carvacrol and thymol are structural isomers but have distinct physical characteristics.
Carvacrol is a liquid at room temperature because it has a low melting point, while the others
are powders at room temperature. Menthol melts near human body temperature, and
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hinokitiol and thymol both melt at 50°C. The vapor pressure of hinokitiol is lower than that of
the other compounds. Carvacrol, thymol, and menthol tend to evaporate or volatilize easily at
moderate temperatures, while hinokitiol does not (Table 1). These phenolic EO compounds
are used in combination with other materials at different concentrations, pH, and temperatures
in various health care products. The antibacterial activity of hinokitiol is synergistically
increased when combined with zinc oxide, and the combination of carvacrol with thymol was
also shown to have synergistic effects [23,24].

Fully understanding the antibacterial activities of these four phenolic EO compounds in differ-
ent states and under different conditions would be helpful for choosing suitable additives for vari-
ous health care products. In this study, A. actinomycetemcomitans , S. mutans, MRSA, and E. coli
were used as disease indicators for periodontal disease, caries, infection, and enteric diseases,
respectively, to test the antibacterial potential of hinokitiol, carvacrol, thymol, and menthol in the
liquid and vapor phases under various temperature and pH conditions and at different mix ratios.
The results of these studies provide information that can help to generate effective new applica-
tions for novel dental formulations, food additives, oral health foods, and infection control.

Materials and Methods

Antimicrobial agents and chemicals

Hinokitiol (469521), carvacrol (282197), thymol (T0501), menthol (M2772), zinc oxide (ZnO,
721077), and chlorhexidine (CHX, 282227) were purchased from Sigma-Aldrich (St. Louis,

Fig 1. The chemical structures of the phenolic EO compounds. (A) hinokitiol; (B) carvacrol; (C) thymol; (D) menthol.

doi:10.1371/journal.pone.0163147.g001

Table 1. The physical characteristics of hinokitiol, carvacrol, thymol, and menthol.

Hinokitiol Carvacrol Thymol Menthol

Molecular weight 164.2 150.22 150.22 156.27

Formula C10H12O2 C10H14O C10H14O C10H20O

Density, 25˚C (g/cm3) 1.127 0,977 0,965 0,89

Vapor pressure, 25˚C (mm/Hg) 8.9×10−5 2.96×10−2 3.76×10−2 3.20×10−2

Boiling point, 1 atm (˚C) 303.4 236 ~ 237 231~ 232 214 ~ 216

Melting point, 1 atm (˚C) 48~53 3~4 49~51 34~36

doi:10.1371/journal.pone.0163147.t001
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MO, USA). The EOs were dissolved or diluted in DMSO, and ZnO was dissolved in 2.5 N HCl.
All of the compounds were made as stock solutions of 100 mg/mL and were stored at -20°C.
The chemical structures and physical characteristics of these four phenolic EO compounds are
shown in Fig 1 and Table 1.

Microorganisms and media

A. actinomycetemcomitans (ATCC number: 33384), S. mutans (ATCC number: 25175), Methi-
cillin-resistant S. aureus (MRSA, ATCC number: 33591), and E. coli (ATCC number: 10798)
were used in the study. A. actinomycetemcomitans was cultured in brain heart infusion (BHI)
broth, S. mutans and MRSA were cultured in tryptic soy broth (TSB), and E. coli was cultured
in Lysogeny broth (LB). The bacteria were inoculated by loop transfer from frozen tubes into 3
mL slant nutrient broth, then were subjected to 200 rpm shaking culture at 37°C for 24 h. Bac-
teria from these cultures were transferred onto an appropriate solid medium and incubated
overnight. Selected colonies were transferred to the appropriate liquid medium and were incu-
bated for 4–6 h to achieve log phase growth. The optical density of each culture at 600 nm
(OD600) was adjusted to 1.0 using fresh broth to give a standard inoculum of 106 cfu/mL.
Stock cultures were maintained at -80°C in growth broth containing 25% sterile glycerol.

Direct contact agar diffusion tests

For direct contact agar diffusion tests, 5 mL of fresh broth agar was prepared in 6-cm Petri
dishes, and bacteria were spread at 5×105 cfu on the broth agar surface. Aliquots (4–10 μL) of
the different test compounds (200 μg-1000 μg) were placed on 6-mm diameter filter discs.
Using the direct contact method, the discs were placed on the center of the solidified agar sur-
face. The cultures were incubated for 24–96 h at 37°C, and the diameter of the inhibition zone
was then recorded.

Minimum inhibitory concentration (MIC) and minimum bactericidal

concentration (MBC) of phenolic EO compounds determined by the

broth dilution method

Cell suspensions were prepared in 2 mL of broth with various concentrations of the phenolic
EO compounds in 15 mL culture tubes by inoculation with 2 μl of 106 cfu/mL from each glyc-
erol stock. The cultures were incubated at 37°C at 200 rpm for 24 h. Tubes showing no visible
turbidity were considered to represent the MIC and were subsequently inoculated onto sterile
6 cm nutrient agar plates without any phenolic EO compound and incubated for 24 h. The low-
est concentration at which no growth was observed was considered to be the MBC [23].

Growth curve assay

The growth curve assay was conducted in a 96-well format that was adapted from a previously
described method [25]. Bacterial suspensions prepared with various concentrations of phenolic
EO compounds in 1 mL of liquid broth in 1.6 mL microcentrifuge tubes were inoculated with
1 μL of 106 cfu/mL from the glycerol stocks, 200 μL were then transferred to 96-well plates for
testing, and 200 μL of sterile liquid broth was used as a blank. The 24-h growth curve analyses
were performed for the four oral pathogens at 37°C. The kinetic analysis included a 10-s shak-
ing step before each of the time point measurements of the OD600, which were recorded at 30
min intervals. The data were analyzed using the VersaMaxTM and Softmax1 Pro (version
5.4.1, California, US) software programs.
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Heat stability test

To evaluate the stabilities of the phenolic EO compounds at different temperatures, the test com-
pounds were pre-incubated at 4°C, 25°C, 50°C, 80°C, and 100°C for 1 h for a heat stability test,
followed by direct contact diffusion tests. The diameter of the inhibition zone was recorded.

Vapor phase agar diffusion tests

The agar diffusion test was used to evaluate the antibacterial activities of the phenolic EO com-
pounds in the vapor phase, and it was technically similar to the direct contact diffusion test, with
the same 6 cm Petri dish format, bacterial culture, filter disc size, and EO compound loading [26].
However, the filter discs were placed in the center of the cover of the Petri dish in this experiment.
The dishes were then sealed using laboratory parafilm to avoid evaporation of the test compounds,
followed by incubation at 37°C for 24–96 h. The diameter of the inhibition zone was recorded.

Stability of the phenolic EO compounds under various pH conditions

The pH of the water was adjusted to pH 3, pH 5, pH 7, pH 9, and pH 11 by adding HCl or
NaOH, and it was measured by a pH meter before use. A total of 500 μg of each phenolic EO
compound was dissolved in 5 μL DMSO, which was then mixed with 5 μL of water with differ-
ent pH values (pH 3 to pH 11). Then, the vapor phase agar diffusion test was performed. The
diameter of the diffusion zone was recorded.

Statistics

All of the assays were performed in duplicate or triplicate. Differences between specific means
were analyzed by a one-way analysis of variance (ANOVA). Group means were compared
using a one-way ANOVA and Tukey’s test. The data are shown as the means ± standard devia-
tion (SD). Differences between the variants were considered significant when P< 0.05. The
CompuSyn software (Version 1.0, ComboSyn Inc., USA) was used to quantify synergism and
antagonism for the drug combinations. All the raw data was showed in S1 File.

Results

Antibacterial activity of the four phenolic EO compounds

All of the test compounds were used at 500 μg in the direct contact diffusion tests. Hinokitiol
showed the largest inhibition zone, and menthol showed little inhibition in this study.
Although carvacrol and thymol are structural isomers, they showed different inhibition zones
for all of the bacteria tested. Fig 2A shows the results of the direct contact agar diffusion test of
the four phenolic EO compounds against MRSA. A. actinomycetemcomitans was more sensi-
tive to the phenolic EO compounds than the other bacteria. The inhibition zones for A. actino-
mycetemcomitans, S. mutans, and MRSA were the largest for hinokitiol, followed by thymol,
carvacrol, then menthol. However, E. coli was more sensitive to carvacrol than thymol. The
diameter of the inhibition zone for menthol was 0.667 ± 0.116 cm in A. actinomycetemcomitans
and 0.667 ± 0.058 cm in E. coli, but there was no inhibition zone in the dishes with S. mutans
and MRSA (Fig 2B). The diameter of the inhibition zone in our analysis is shown by the solid
column/symbol and hollow column/symbol representing the direct contact and vapor phase
agar diffusion method, respectively. The dotted line represents the 0.6 cm diameter of the filter
disc used in the direct contact agar diffusion method, while this was not used in the vapor
phase agar diffusion method. Because the diameters of the inhibition zones were totally formed
by the gaseous phenolic compounds in the vapor phase studies, we did not include the filter
disc coverage for those samples.
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The MIC and MBC of the four phenolic EO compounds

Different concentration ranges of the four phenolic EO compounds were tested by the broth
dilution method to determine the MIC and MBC. Hinokitiol was tested from 20 to 120 μg/mL,
carvacrol and thymol from 50 to 1000 μg/mL, and menthol from 250 to 2500 μg/mL. Chlorhex-
idine (CHX) is commonly used as an active ingredient in mouth rinse to reduce dental plaques
and oral bacteria. Hence, CHX was used as a positive control and was tested at concentrations
ranging from 0.5 to 4 μg/mL. The MIC and MBC of the test phenolic EO compounds against
the four oral pathogens are listed in Table 2. The results of the inhibition zone (Fig 2B) and
MIC/ MBC (Table 2) experiments were consistent. Hinokitiol was a strong antiseptic, carvacrol
and thymol were relatively moderate antiseptics, and menthol was a weak antiseptic.

Microorganism growth is delayed in a concentration-dependent manner

by the four phenolic EO compounds

The kinetic microplate method was used to analyze the bacterial growth inhibition for 24 h. A
log phase delay or a delay in the stationary phase of the growth curve after a 24-h incubation

Fig 2. The antibacterial activities of the phenolic EO compounds. (A) MRSA treated with 500 μg phenolic EO compounds, as assessed using

direct contact agar diffusion tests. (B) The phenolic EO compounds were all tested at 500 μg. The microorganisms examined were A.

actinomycetemcomitans (Aa), S. mutans (Sm), MRSA, and E. coli. Dotted line, the 0.6 cm diameter of the filter disc. * P < 0.05, ** P < 0.01, ***
P < 0.001 compared with A. a. in each compound group; a, b, c, and d were P < 0.05, compare with A. a., S. m., MRSA, and E. coli in the hinokitiol

group, respectively; e, P < 0.01 based on a comparison of the carvacrol and thymol groups.

doi:10.1371/journal.pone.0163147.g002
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implies that bacterial growth was inhibited or that the phenolic EO compounds killed the bac-
teria, respectively. Interestingly, the cultures with a delay in the stationary phase (based on the
OD600 of bacterial cultures) were more common in the samples treated with low concentra-
tions of phenolic EO compounds than in the control samples, which might have been caused
by bacterial aggregation in the culture, such as in MRSA cultures treated with 100 μg/mL carva-
crol. The results for the hinokitiol group were consistent with the MIC of each microorganism
examined in the study. In the carvacrol and thymol groups, the concentrations that affected the
microorganisms’ growth curves (less than 100–200 μg/mL) were lower than the MIC (100–
400 μg/mL), but this finding was inverted in the menthol group (Fig 3). Overall, the log phases
of the microorganisms’ growth curves were dose-dependently delayed, except for the S. mutans
groups treated with 10 and 20 μg/mL hinokitiol.

The phenolic EO compounds are heat stable

After 500 μg of hinokitiol, carvacrol, and thymol were pre-incubated at different temperatures
(4 to 100°C) for 1 h, the inhibition zones were not significantly different for the four oral patho-
gens based on the direct contact agar diffusion test (Fig 4). The antibacterial activities of the
heated phenolic EO compounds from strongest to weakest were consistent with previous find-
ings for the compounds (Fig 2B, Table 2). However, when two to three EO-loaded discs were
placed in a 10-cm dish to perform direct contact diffusion tests, the bacterial colony number
and size were decreased, and the inhibition zones increased. The phenomenon was not
observed in the CHX group (data not shown). These results suggested that the EO phenolic
compounds might evaporate to interfere with bacterial growth, and the molecular diffusion
could be excluded as a factor affecting the findings. The inhibition zones of 500 μg menthol
were excluded due to its weak antibacterial activity.

The vapor phenolic EO compounds display antibacterial activity

To verify the antibacterial activity of the phenolic EO compounds due to evaporation at 37°C,
the vapor phase agar diffusion test was performed (Fig 5A). Vaporous hinokitiol also showed
the best antibacterial activity out of the four compounds tested in the study. Vaporous carva-
crol and thymol showed small and clear inhibition zones in Gram-negative bacteria (A. actino-
mycetemcomitans and E. coli) but weak activity against Gram-positive bacteria (S. mutans and
MRSA). The S. mutans and MRSA colonies were small and thin, meaning that there was weak
inhibition by volatile carvacrol and thymol. The vaporous menthol did not show any inhibition
zone (Fig 5B). However, the indistinct margin of inhibition zone measurements may have led
to some error in determining the sizes of the inhibition zones (Fig 5C).

Table 2. The MIC and MBC of the four phenolic EO compounds against four microorganisms (μg/mL).

Aa Sm MRSA E. coli

MIC MBC MIC MBC MIC MBC MIC MBC

Hinokitiol 40 40 40 100 60 60 40 100

Carvacrol 200 200 400 600 400 600 400 400

Thymol 100 200 200 400 200 200 200 400

Menthol 500 1000 1000 1000 1000 1000 >2500 >2500

CHX 1 1 1 1 1 2 1 1

MIC and MBC data for phenolic EO compounds and chlorhexidine (CHX; positive control) in A. actinomycetemcomitans (Aa), S. mutans (Sm), MRSA, and

E. coli as determined in three independent experiments using the broth dilution method.

doi:10.1371/journal.pone.0163147.t002
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We used A. actinomycetemcomitans to compare the antibacterial activities of liquid and
vapor phenolic EO compounds pre-incubated at various temperatures by direct contact and
evaporation conditions, respectively. The inhibition zones of hinokitiol were not significantly
different between the direct contact and vapor phases after 24 h. The inhibition zones of both
direct contact and the vapor phase for hinokitiol were reduced after 96 h, and the inhibition
zones of the vapor phase were smaller than those in the direct contact group. The liquid and
vapor forms of hinokitiol were stable when subjected to freezing, refrigeration, room tempera-
ture, and high temperature, and the antibacterial activity of this EO was not significantly differ-
ent for the different forms or after storage at different temperatures (Fig 5D). The inhibition
zones of vapor carvacrol and thymol were smaller than those obtained by the direct contact

Fig 3. Phenolic EO compounds delay the microorganism growth curves in a concentration-dependent manner. Various concentrations of the

phenolic EO compounds were used to test their impact on the bacterial growth curves. The bacterial growth curves in the presence of various phenolic

EO concentrations (hollow diamond, triangle, square, and circle) were compared to each control (solid circle). Broth-only treatment served as a

negative control (solid square). Y axis, OD600; X axis, time (sec).

doi:10.1371/journal.pone.0163147.g003
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method at both 24 and 96 h. Although, the antibacterial activity of thymol was stronger than
that of carvacrol (Figs 2 and 4 and Table 2), carvacrol showed a more prolonged effect than
thymol (Fig 5E and 5F). The inhibition zone produced by vaporous carvacrol was approxi-
mately 0.6 cm, but the zone for vaporous thymol had disappeared by 96 h. The inhibition zone
of direct contact thymol decreased at 96 h in a temperature-dependent manner (Fig 5F). Carva-
crol was more stable than thymol when the temperature was higher than 80°C.

Hinokitiol is stable under different pH conditions

Most biochemical reactions occur at neutral pH. Environmental pH is a major factor that sup-
presses microbial colonization [27], but some enteric bacteria produce acid and have high pH
resistance [28]. The vapor phase method was used to test the stabilities of hinokitiol, carvacrol,
and thymol under various pH conditions to determine whether acidity or alkalinity in the
broth agar would interfere with bacterial growth. In the hinokitiol group, the inhibition zones
for all microorganisms were similar under the various pH conditions (Fig 6A). The inhibition
zone margins of S. mutans, MRSA, and E. coli were all cloudy. In the carvacrol and thymol
groups, there was no visible inhibition zone under various pH conditions (Fig 6B and 6C),
even when the number of inoculated bacteria was increased from 106 to 108 cfu. These results
showed that the antibacterial activity of vapor hinokitiol was not affected by pH or the presence
of water. The effects of vaporous carvacrol and thymol antibacterial activity were inhibited by
water, and the impact of pH on the activity of these compounds could therefore not be verified.

The phenolic EO compounds exhibit synergistic antibacterial effects

Combination treatment with hinokitiol and ZnO resulted in strong synergistic antibacterial
activity and cytotoxicity [29–31]. A. actinomycetemcomitans was used to study the potential
synergistic antibacterial effects of different combinations. The size of the inhibition zones in
the direct contact method (from largest to smallest) was 250 μg hinokitiol, followed by 250 μg
hinokitiol combined with 500 μg ZnO, then 500 μg ZnO. There was no inhibition zone in the
samples treated with 500 μg ZnO, or in the samples treated with 500 μg ZnO combined with
250 μg vaporous hinokitiol as determined by vapor phase method detection (Fig 7A). It has
previously been reported that EOs containing carvacrol and thymol can have synergistic effects
in combination with antibiotics [32]. The combination of 50% thymol and 50% carvacrol was
found to have the highest synergistic antimicrobial activity in another study [33]. However,
two different combinations (200 μg carvacrol + 200 μg thymol, and 500 μg carvacrol + 500 μg

Fig 4. The phenolic EO compounds were heat stable. The phenolic EO compounds (500 μg) were pre-incubated at 4–100˚C for 1 h before the direct

contact agar diffusion test. (A) Hinokitiol; (B) carvacrol; (C) thymol. Dotted line, the 0.6 cm diameter of the filter disc.

doi:10.1371/journal.pone.0163147.g004
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thymol) showed no synergistic effects in the direct contact method in the present study
(Fig 7B).

Discussion

The strengths of the antibacterial activities for the EOs were hinokitiol> thymol >
carvacrol> menthol. The antibacterial working dose and phenotype of carvacrol and thymol
were similar, consistent with the findings of Xu et al. [34]. Based on the MIC range, which can
be used as a parameter to determine the activity of essential oils [18,35], hinokitiol (MIC = 40–
60 μg/mL) had very strong activity, carvacrol and thymol (MIC = 100–400 μg/mL) had strong
activities, and menthol (MIC = 500–1000 μg/mL) had relatively moderate activity in this study

Fig 5. The vaporous phenolic EO compounds display antibacterial activity. (A) The vapor phase agar diffusion experimental device. (B) MRSA treated

with 500 μg phenolic EO compounds was examined by vapor phase agar diffusion tests. (C) The vapors from 500 μg phenolic EO compounds were tested

by vapor phase agar diffusion. The liquid and vapor phases of (D) hinokitiol, (E) carvacrol, and (F) thymol showed different antibacterial activities after

incubation at different temperatures. *P < 0.05, compared with 4˚C in each curve. Dotted line, the 0.6 cm diameter of the filter disc.

doi:10.1371/journal.pone.0163147.g005
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(Table 2). The kinetics of microbial inactivation depend on the type of microorganism; the
type and concentration of biocide; and environmental conditions, such as the temperature, pH,
and presence of organic matter [36]. The culture container, shaking rate, air exchange, and
visual or ELISA reader interpretation are different between the broth dilution method and
kinetic microplate method. These factors can all affect bacterial growth and may lead to differ-
ent interpretations of the antibacterial activities of the phenolic EO compounds. The microor-
ganism growth and antibacterial activity of the test compounds might be affected by the
shaking rate and air exchange during culture. Reducing broth liquid disturbance and air expo-
sure might enhance the antibacterial activity of carvacrol and thymol (Fig 3), but the opposite
finding would be expected for menthol. The MIC of menthol was detectable in the broth

Fig 6. The antibacterial activity of vaporous hinokitiol was stable under different pH conditions. The antibacterial activities of (A) vaporous

hinokitiol, (B) vaporous carvacrol, and (C) vaporous thymol were analyzed under different pH conditions.

doi:10.1371/journal.pone.0163147.g006

Fig 7. Synergistic antibacterial effects of the phenolic EO compounds. (A) The synergistic effects of hinokitiol (H) and zinc oxide (ZnO) against A.

actinomycetemcomitans (A. a.) were tested by direct contact and vapor phase agar diffusion tests. (B) The synergism of the anti-MRSA activity of

carvacrol (C) and thymol (T) was tested by direct contact agar diffusion tests. a, P < 0.01 compared with the direct contact 250H group.

doi:10.1371/journal.pone.0163147.g007
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dilution method (Table 2), although the bacterial growth was not completely inhibited (Fig 4),
and the inhibition zone was small or even undetectable (Fig 3).

All microorganisms were sensitive to vapor hinokitiol, regardless of whether they were
Gram-positive or Gram-negative. Hinokitiol was previously shown to reduce the microorgan-
isms’ cellular respiration, nucleic acid synthesis, and protein synthesis [37] without damaging
the cell membrane or cell wall [23]. The mechanisms by which the phenolic EO compounds
exert their antibacterial activity might be correlated with differences in the structures of the
cells. The Gram-negative E. coli. and A. actinomycetemcomitans were sensitive to vapor carva-
crol and thymol, but the Gram-positive S. mutans and MRSA were not (Fig 6B). The antibacte-
rial effects of carvacrol and thymol were previously attributed to their ability to permeabilize
and depolarize the cytoplasmic membrane [34], increasing the levels of reactive oxygen species
(ROS) and inducing membrane damage in bacteria [38]. The antibacterial phenotypes of hino-
kitiol, carvacrol, and thymol were consistent with previous mechanistic studies. However, it is
interesting that the antibacterial activities of the EOs towards Gram-positive bacteria in direct
contact and for the vapor phase compounds were quite different for carvacrol and thymol.
Future detailed physical and biochemical studies are needed to elucidate the mechanisms.
Menthol is used more often than other EO compounds in food, oral health products, and den-
tal materials. The mechanism of action of menthol may be related to membrane disruption,
leading to cell leakage [18]. However, the antibacterial activity of menthol was the weakest of
the four compounds evaluated in this study. These results indicate that the role of menthol in
these products may be to induce a fresh and cooling effect instead of antibacterial ability.

The activity of antibiotics might be reduced by heat [39]. Plant-based therapeutics with
improved antimicrobial activity and less toxicity are increasingly being accepted as alternatives
to conventional antibiotic therapy. The antibacterial activities of hinokitiol, carvacrol, and thy-
mol were stable at various temperatures (Fig 4), and carvacrol was more stable than thymol.
The vapor pressures of carvacrol and thymol are 2.96×10−2 mmHg and 3.76×10−2 mmHg,
respectively. The anti-E. coli activity of thymol gas was previously shown to be strong [40]. In
the present study, the antibacterial activity of liquid thymol was slightly decreased when it was
assessed at the more than 80°C condition after 96 h, and the antibacterial activity of vaporous
thymol was significantly decreased after 96 h (Fig 5F). The relative instability of thymol at high
temperatures and its decreased antibacterial activity might have been because the evaporation
rate of thymol is faster than that of carvacrol. The antibacterial activity of vaporous hinokitiol
was not affected by pH, which was assessed from pH 3 to pH 11, when it was diluted by half
with water. However, the antibacterial activities of vaporous carvacrol and vaporous thymol
completely disappeared after dilution (Fig 6). These results indicated that hinokitiol is more
stable and has higher antibacterial activity at various temperatures in either the liquid or vapor
phase, at various pH values, and in different solvents. Dissolving carvacrol and thymol, or the
presence of moisture in a hermetic space, might influence their antibacterial efficiency. Modify-
ing these compounds using liposomal and noisome-based diallyl disulfide formulations [24,41]
or microcells [42] might improve their solubility, penetration, or bioactivity. Combining the
EO with ethyl acetate would also increase EO evaporation to enhance the antibacterial activity
and anti-oxidation of vapor phase EO compounds [43]. Using a suitable chemical carrier or
combining hinokitiol, carvacrol, and thymol with ethyl acetate might enhance the evaporation
and bioactivities of these EO phenolic compounds.

The combination of hinokitiol and ZnO (mass concentration ratio: 1:4, 1:8, 1:32) enhanced
the bactericidal activity against clinically isolated Staphylococci [30] and showed strong syner-
gistic (mass concentration ratio: 1:2) cytotoxicity [29]. However, combining hinokitiol and
ZnO (mass ratio: 1:2) did not cause synergistic antibacterial effects for either liquid or vaporous
hinokitiol (Fig 7A). For yeast, there was a synergistic effect only when carvacrol and thymol
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were used in equal proportions at 100% of the MIC. At 50% of the MIC, no synergistic effect
was found for any of the microorganisms [33]. In our study, the MICs of carvacrol and thymol
for MRSA were 400 μg/mL and 200 μg/mL, respectively. Treatment with equal mass propor-
tions of 200 μg/mL and 500 μg/mL did not show synergistic effects in the direct contact agar
diffusion test. We speculate that this may have been due to the following factors: (1) the work-
ing mass concentration ratio was not equal to the working mass ratio, and the synergistic effect
disappeared at the incorrect concentration ratio [29]; (2) the ZnO was dissolved in 2.5 N HCl.
The hinokitiol can react with strong acid and may have lost its vaporous antibacterial activity.
We only confirmed that the hinokitiol was stable from pH 3 to 11 (Fig 6A); (3) ZnO and hino-
kitiol may combine to form a new product, Zn(hinokitiol)2 [44], which may have lost its vapor-
ous antibacterial activity; (4) different methods were used for the analyses. The agar diffusion
test may not have been sufficiently sensitive to show the synergistic effects.

Dental patients and dental health-care workers may be exposed to a variety of microorgan-
isms via blood, saliva, and respiratory secretions. In dentistry, besides personal protection,
such as eyewear, gloves, gowns, and rubber dams, other considerations, such as a pretreatment
mouth rinse and reducing bioaerosols, are vital for infection control in the workplace [45]. The
EO of L. gracilis has significant synergism with several antibiotics. Eugenol has a long history
of successful therapeutic use in dentistry, but it can cause allergic reactions in sensitized
patients [46]. For patients who are allergic to eugenol, eugenol-free alternatives are available.
Carvacrol and thymol showed inhibitory activity against both oral pathogens and food-borne
microorganisms [47–49]. The anti-Candida activity of carvacrol and thymol were better than
that of eugenol, and thymol has previously been used in Orabase [11,50], varnish [51], nano
wound dressing [52], and for raw shrimp preservation [53]. Carvacrol was used in apple films
[54]. Menthol is widely used in mouth rinse, toothpaste, chewing gum, drinks, and food. How-
ever, the antibacterial activity of menthol was relatively weak in this study, but it is often used
to modify a food’s flavor, relieve pain, and improve oral malodor.

Hinokitiol has already been used in a mouth cleaning gel [55] and root canal sealer [29].
Liquid and vaporous hinokitiol had the best antibacterial activity, stability, and long-term
effects in this study. Hinokitiol exhibits no developmental toxicity [56], no carcinogenic effects
[57], no inflammatory response [58], and has low cytotoxicity against normal oral cells [23].
Via in vitro genotoxicity testing, carvacrol was shown to have a low genotoxic potential even at
a high dose (700 μM), and thymol also did not lead to a genotoxic response [59]. Carvacrol and
thymol can bind to the major and minor grooves of B-DNA, but DNA remains in the B-family
structure [60]. Hinokitiol, carvacrol, and thymol are safe and have the potential to be applied
in dental materials, oral health care products, and food preservation. However, these phenolic
EO compounds must be further analyzed in detail prior to their clinical application in dental
materials, oral health care products, and for the prevention of food contamination.

Conclusions

The results of the present study can serve as a guideline for using phenolic EO compounds
(hinokitiol, carvacrol, thymol, and menthol) for oral health care products and food preserva-
tion. The antibacterial activities of both liquid and vaporous hinokitiol were stable and strong
under various temperature and pH conditions. The antibacterial activities of liquid and vapor
carvacrol and thymol were also stable at room temperature. The antibacterial activity of thymol
was better than that of carvacrol, but the working time and high temperature stability of carva-
crol were better than those of thymol. If vaporous carvacrol and vaporous thymol are to be
used for antibacterial growth, it is necessary to avoid mixing them with water. Of note, only
Gram-negative bacteria were sensitive to vaporous carvacrol and thymol. Menthol had weak
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antibacterial activity in this study. Continuous agitation decreased the antibacterial effects of
menthol but increased those of carvacrol and thymol. The synergistic antibacterial effects of
hinokitiol and ZnO, and combinations of carvacrol and thymol, need to be subjected to further
analysis in the future. The present antimicrobial and stability data obtained with liquid and
vaporous phenolic EO compounds can serve as a guide for the selection of appropriate condi-
tions to be applied in oral health care, food preservation, and infection control in dental
hospitals.
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