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Abstract
Pathway analysis has become popular as a secondary analysis strategy for genome-wide

association studies (GWAS). Most of the current pathway analysis methods aggregate sig-

nals from themain effects of single nucleotide polymorphisms (SNPs) in genes within a

pathway without considering the effects of gene-gene interactions. However, gene-gene

interactions can also have critical effects on complex diseases. Protein-protein interaction

(PPI) networks have been used to define gene pairs for the gene-gene interaction tests.

Incorporating the PPI information to define gene pairs for interaction tests within pathways

can increase the power for pathway-based association tests. We propose a pathway asso-

ciation test, which aggregates the interaction signals in PPI networks within a pathway, for

GWAS with case-control samples. Gene size is properly considered in the test so that

genes do not contributemore to the test statistic simply due to their size. Simulation studies

were performed to verify that the method is a valid test and can have more power than other

pathway association tests in the presence of gene-gene interactions within a pathway

under different scenarios.We applied the test to theWellcome Trust Case Control Consor-

tiumGWAS datasets for seven common diseases. The most significant pathway is the

chaperonesmodulate interferon signaling pathway for Crohn’s disease (p-value = 0.0003).

The pathway modulates interferon gamma, which induces the JAK/STAT pathway that is

involved in Crohn’s disease. Several other pathways that have functional implications for

the seven diseases were also identified. The proposed test based on gene-gene interaction

signals in PPI networks can be used as a complementary tool to the current existing path-

way analysis methods focusing on main effects of genes. An efficient software implement-

ing the method is freely available at http://puppi.sourceforge.net.
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Introduction
Genome-wide association studies (GWAS) have identified thousands of single nucleotide poly-
morphisms (SNPs) significantly associated with complex diseases [1], such as Crohn’s disease
and type 2 diabetes [2, 3]. Traditional GWAS analyses focused on testing the associations
between individual SNPs and the disease. However, for SNPs with modest effects, GWAS has
low power to detect such SNPs because of the high multiple testing correction burden resulting
from the large number of tests (e.g., 1 million tests) typically performed in GWAS. Moreover,
the power for GWAS can be limited by the sample size for a study. For example, more than
5,000 cases and the same number of controls are required for a GWAS to achieve power> 80%
at the genome-wide significance level for SNPs with effect sizes between 1.3 and 1.5 [4].

Pathway analysis has become popular as a secondary analysis strategy for GWAS data. Path-
way analysis hypothesizes that SNPs in genes in the same pathway have a joint effect on the dis-
ease. One of the advantages of pathway analysis is that the statistical power for identifying
disease susceptibility genes can be increased by the joint modeling of the effects of SNPs.
Another advantage is that the results can provide biologicallymeaningful insights into the
complex diseasemechanism. Furthermore, multiple testing correction burden can be reduced
in pathway analysis by testing hundreds or thousands of pathways instead of testing hundreds
of thousands or a million of SNPs.

Current statistical methods for pathway analysis using GWAS data can be divided into two
categories (i.e., competitive tests and self-contained tests) based on their null hypotheses [5]. The
competitive tests compare the distribution of statistics for genes within a given pathway to the
distribution of statistics for other genes across the genome. Some examples for this type of meth-
ods include Wang’s method [6] extended from the gene-set enrichment analysis (GSEA) [7],
ALIGATOR [8], and Pathway-PDT [9]. In contrast, the self-contained tests compare the distri-
bution of statistics for genes within the given pathway to the statistics for the same genes under
the null. Methods such as the set-based test in PLINK [10], GRASS [11] and OPTPDT [12] are
in this category. The self-contained tests can be more powerful than the competitive tests, due to
the more restrictive null hypothesis for the tests than the null for the competitive tests [13]. The
statistics for the aforementioned methods were constructed based on the individual effects of
SNPs. However, gene-gene interaction effect, which is referred to as the departure from a combi-
nation of individualmarginal effects [14], can also play a role in complex disease etiology [15].
Incorporating gene-gene interactions in pathway analysis thus becomes important.

Testing gene-gene interactions in GWAS is challenging because a very large number of
interaction pairs needs to be examined, which is computationally expensive and results in a
high multiple testing correction burden. For example, there are hundreds of billions of possible
SNP pairs for a GWAS with 1 million SNPs. With the increased biological knowledge of pro-
tein-protein interactions (PPI), several public PPI databases are available, such as STRING [16]
and BioGRID [17]. PPI has been defined as functional epistasis, while gene-gene interaction
discussed here has been defined as statistical epistasis [18]. PPI has been found to be associated
with complex diseases [19]. Moreover, experimental results from the yeast studies have sug-
gested a connection between functional and genetic epistasis [18]. For example, in the study by
St. Onge et al. [20], which examined the genetic interactions influencing the resistance of yeast
to the DNA-damaging agent methyl methanesulphonate, nine of the ten genetic interactions
that they identified encoded or were predicted to encode physical protein interactions. More-
over, a genome-wide construction of a genetic interaction map for the budding yeast has also
identified 10–20% overlap between genetic interactions and protein-protein interactions [21].
PPI can also be used in human disease studies as an informative prior for searching disease
genes [22, 23]. For example, some studies have performed gene-gene interaction analysis for
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GWAS incorporating PPI information by only testing SNPs at genes in the same PPI network
[24–27], and significant SNP interaction pairs have been identified for complex traits such as
Crohn’s disease, bipolar disorder, hypertension, rheumatoid arthritis, and high-density lipo-
protein cholesterol levels.

Several network-based tests have been proposed to identify gene networks associatedwith the
disease also based on PPI networks, without using prior knowledge of pathway definitions [28]. For
example, a dense module searching (DMS) methodwas developed to identify genes in a subnet-
work with low p-values compared to background genes from the entire PPI networks, while the p-
value for each gene is the minimum association p-value for SNPs within the gene [29]. In NIMMI
[30], the GooglePageRank algorithm was used to calculate weights for genes in the same PPI net-
works. The weights, along with association p-values for genes, were used to calculate weighted gene
scores. Genes with high gene scores were then analyzed for functional relationship using DAVID
[31]. These methods, however, still used association p-values from the tests for the main effects of
SNPs without specifically considering statistical evidence from gene-gene interactions.

As multiple gene-gene interactions can occur within a pathway [32], combining gene-gene
interaction signals within the pathway can increase the power to detect the effects. Previously
we developed the Pathway analysis method Using Protein-Protein Interaction network for
case-control data (PUPPI) [33]. PUPPI only considers pairs of genes in the PPI network within
a pathway for the interaction analysis, and an overall statistic for the pathway is calculated. The
main difference between the PUPPI and existing pathway or network-basedmethods is that
the PUPPI statistic is constructed based on gene-gene interaction test statistics, instead of the
test statistics for main effects. Therefore, the PUPPI is able to identify pure epistasis (i.e., inter-
action without main effects) within a pathway. Here, we performed a more comprehensive
simulation study to evaluate the type I error rates for the PUPPI and compare the power for
the PUPPI with other methods.We then applied the PUPPI to the Wellcome Trust Case Con-
trol Consortium (WTCCC)GWAS datasets [34] for seven common diseases, and identified
several significant pathways that have implications in the diseases.

Materials andMethods

The PLINK interaction statistic
We first review the PLINK interaction statistic (i.e., the—fast-epistasis option in PLINK) as the
PUPPI was developed based on the statistic. Two 2 by 2 allele tables, collapsed from two 3 by 3
genotype tables, are created separately for cases and controls. For example, assume we catego-
rize all cases into a 3 by 3 table based on their genotypes at two SNPs, where one SNP has geno-
typesAA,Aa, and aa, and the other SNP has genotypes BB, Bb, and bb, as shown in Table 1. A
2 by 2 table for alleles can be subsequently constructed by collapsing the 3 by 3 table, as shown
in Table 2, where each cell count is the observednumber of alleles in the sample. An odds ratio
is calculated based on each of the 2 by 2 tables. The interaction statistic is then calculated as:

Z ¼
logðORcaseÞ � logðORcontrolÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var ½logðORcaseÞ � logðORcontrolÞ�
p ð1Þ

Table 1. Genotype table for two SNPs. Each cell count is the number of individuals with the specific
genotype.

BB Bb bb

AA a b c

Aa d e f

aa g h i

doi:10.1371/journal.pone.0162910.t001
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whereORcase and ORcontrol are the odds ratios calculated based on the 2 by 2 tables for cases
and controls, respectively. Assuming that the two SNPs are in Hardy-Weinberg Equilibrium
(HWE) and linkage equilibrium (LE), the statistic follows a standard normal distribution
under the null hypothesis of no gene-gene interaction for the two SNPs.

The PUPPI algorithm
The PUPPI algorithm was previously described in our conference paper [33]. Here, we provide
more details in the algorithm. Assume ψ is a set of pairs of genes with known protein-protein
interactions within pathways, and the same two genes are either on different chromosomes or
more than k MB apart on the same chromosome. Because the PLINK interaction statistic
assumes there is no LD between SNPs tested for interaction, we consider pairs of genes that are
not linked if they are on the same chromosome. The value of k was set as 1 in our real data
analysis. For each pair of genes in ψ, the PLINK interaction statistics are calculated for all possi-
ble pairs of SNPs between the two genes. Then the maximum statisticM from the statistics for
all pairs of SNPs between the two genes is selected.

A gene pair with large gene sizes can generate largerM than a gene pair with small gene
sizes becauseM was selected from a larger set of interaction statistics for the pair of large genes.
We therefore adjust M by gene size so that large genes do not contribute more to the pathway
statistic simply due to their size. The effective numbers [35] are used to adjust for gene size in
the statistics. Effective numbers are estimated based on the principal component analysis
(PCA) approach. The effective number estimates the number of independent SNPs for a set of
SNPs. Assume that the effective number is Seff estimated from a set of S SNPs. In Babron et al.
[36], an effective number of all pairwise SNPs in S was calculated as Seff (Seff -1)/2, which is the
number of all pairwise combinations from the set of Seff elements. Their simulation results sug-
gest that the number slightly overestimated the real effective number of independent SNP
pairs. Similarly, assume that m and n are the effective numbers for the SNPs in the gene pair,
where SNPs between the gene pair are independent, thenm×n estimates the number of inde-
pendent tests between the two genes. The adjusted statisticM0 for M is calculated as:

M0 ¼

(
F� 1ð1 � ðpvalue for MÞ �m� nÞ if ðpvalue for MÞ �m� n < l

0 otherwise
ð2Þ

where F(x) is the cumulative distribution function for the random variable x following a chi-
square distribution with 1 degree of freedom. In Eq 2, the Bonferroni correction is first applied
to the p-value for M, calculated based on a standard normal distribution. The adjusted statistic
M0 is the statistic corresponding to the p-value with the Bonferroni correction if the adjusted
p-value is less than l. The adjusted statisticM0 is set as 0 if the adjusted p-value is� l.

The PUPPI statistic X for pathway i is the sum of the adjusted statisticsM’ for gene pairs in
the pathway. A permutation procedure, which permutes the case-control affection status, was
used to approximate the distribution of X and calculate the p-value. The null hypothesis for the
PUPPI is that there are no interaction effects between genes on the disease within the pathway.

Table 2. Allele table for two SNPs. Each cell count is the number of alleles in the sample collapsed from
Table 1.

B b

A 4a+2b+2d+e 4c+2b+2f+e

A 4g+2h+2d+e 4i+2h+2f+e

doi:10.1371/journal.pone.0162910.t002
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As the PUPPI compares the test statistic to the same test statistics for the same genes under the
null, the PUPPI is also a self-contained test. The PUPPI algorithm is summarized in the follow-
ing steps:

1. For each gene in ψ, calculate the effective number for SNPs in the gene.

2. The PLINK interaction statistics are calculated for all pairs of SNPs between each pair of
genes in ψ.

3. The maximum statisticM from the statistics for all pairs of SNPs between two genes in ψ is
selected, and the adjusted statisticM0 is calculated based on Eq 2.

4. The PUPPI statistic X for pathway i is the sum of M0 for gene pairs in the pathway.

5. Perform permutations for K times. For each permutation, steps 2–4 are repeated and a per-
muted PUPPI statisticMp

0 is calculated. The p-value for pathway i is calculated as (# of
Mp
0 �M0)/K.

Simulations
We used computer simulations to evaluate the type I error rates for the PUPPI, and to compare
the power of the PUPPI with other methods under different scenarios. SeqSIMLA2 [37] was
used to generate simulated replicates of cases and controls. We first used HapGen2 [38] to sim-
ulate 10,000 haplotypes with similar frequencies and LD structures to those in the Utah Resi-
dents (CEPH) with Northern and Western European Ancestry (CEU) samples from the
HapMap3 project. Haplotypes in genes in the Glycolysis/Gluconeogenesis pathway (hsa00010)
and the Pentose phosphate pathway (hsa00030) defined in KEGG [39] were simulated. The
10,000 haplotypes were then adopted by SeqSIMLA2 to simulate unrelated cases and controls.
To generate SNP sets similar to a GWAS platform, SNPs that are on the Affymetrix 6.0 array
and with minor allele frequencies (MAF)> 1% were extracted from the simulated replicates.
For a pathway, SNPs in genes that are not in the PPI networks were excluded. The PPI net-
works were downloaded from the STRING database [16], which will be discussed in more
detail in the next section. A total of 366 SNPs in 44 genes and 138 SNPs in 15 genes were ana-
lyzed for the hsa00010 and hsa00030 pathways, respectively. The parameter l in Eq 2 was set as
0.05 in all simulation studies and real data analysis.

For type I error simulations, we simulated three different sample sizes, including 500 cases
and 500 controls, 1,000 cases and 1,000 controls, and 2,000 cases and 3,000 controls, for the
two pathways. For power studies, we simulated a scenario where there were both main effects
and interaction effects for the disease SNPs (Scen1).We also simulated another scenario where
there were only interaction effects (i.e., pure epistasis) for the disease SNPs (Scen2). For Scen1,
the four epistasis models (Models 1–4) used in Wan et al. [40] were adopted in our simulations.
The models included a model used to describe handedness and the color of swine (Model 1),
an exclusive OR model (Model 2), a multiplicative model (Model 3), and a classical epistasis
model (Model 4). We considered disease heritability of 0.01 and 0.025 for the four models,
which resulted in a total of 8 scenarios. The penetrance functions for the 8 scenarios are shown
in S1 File. For Scen2, six of the pure epistasis models without main effects in Wan et al. [40]
(i.e., Models epi 41, 42, 51, 52, 61, and 62) were used. Penetrance functions for the 6 models,
corresponding to heritability of 0.05, 0.025, and 0.01, were provided in the Supplementary
materials in Wan et al. [40]. To simulate multiple gene-gene interactions within a pathway, we
selected three pairs of SNPs from three different pairs of genes in the hsa00030 pathway as the
disease SNPs. The MAF for the disease SNPs were close to 0.2. We assumed 50%, 25%, and
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25% of cases were caused by the interactions from each of the three pairs of disease SNPs,
respectively, in each simulated replicate, which resulted in samples with genetic heterogeneity.

We compared the power of the PUPPI with three other self-contained tests, the PLINK set-
based test, HYST [41], and SKAT [42]. The pathway statistics for the PLINK set-based test and
HYST were constructed based on the statistics for testing the main effects of individual SNPs.
The PLINK set-based test considered SNPs in genes within a pathway as a whole set, without
specificallymodeling the relationship between SNPs and genes. HYST considered LD blocks as
test units and aggregated p-values for LD blocks within a pathway for the test. Both tests have
been shown to be powerful tests compared to other existing pathway association tests [11, 41].
SKAT is a kernel-based testing approach, which constructs a variance-component score test
statistic for SNP-set analysis. In contrast to the PLINK set-based test and HYST that consider
only main effects, the “2wayIX” kernel was specified in SKAT, which accounted for both main
effects and interaction effects.

Pathway analyses for theWTCCC datasets
We downloaded the pathway definitions based on the KEGG [39], REACTOME [43], and Bio-
carta (http://www.biocarta.com) databases from the Molecular Signatures Database (MSigDB)
on the GSEA website (http://www.broadinstitute.org/gsea).We downloaded the PPI informa-
tion from the STRING database [16]. Each pair of PPIs in STRING has a confidence score,
which was calculated based on the combination of probabilities of PPIs from different sources,
such as the KEGG database, public literatures, and functional genomics data [44]. A PPI with a
score> 0.7 was considered as high confidence in STRING. We extracted PPI pairs with
scores> 0.8 in STRING for the analysis to ensure a high quality set of PPIs. We downloaded
the hg18 gene annotations from the UCSC genome browser website [45]. We applied the
PUPPI to the WTCCC GWAS datasets for the pathway analyses. The datasets consisted of
about 3,000 shared controls and 2,000 cases for each of the seven diseases, including bipolar
disorder (BD), coronary artery disease (CAD), Crohn’s disease (CD), hypertension (HT), rheu-
matoid arthritis (RA), type 1 diabetes (T1D), and type 2 diabetes (T2D). The same quality con-
trol (QC) procedures as those used in the WTCCC studies were performed on the datasets.
The analysis in the present study was approved by the Institutional ReviewBoard of the
National Health Research Institutes in Taiwan (IRB protocol # EC1020503-E), and written
informed consent was obtained from all subjects.

Results and Discussion

Simulation results
Table 3 shows the type I error rates for the PUPPI under different scenarios. The PUPPI main-
tained proper type I error rates with different samples sizes and different sizes of pathways at

Table 3. Type I error rates for PUPPI with different sample sizes and pathways.

Type I error (95%CI)

Pathway Number of SNPs Sample size α = 0.05 α = 0.01

hsa00010 366 2000 cases and 3000 controls 0.0506 (0.0445,0.0566) 0.0078 (0.0050,0.0105)

hsa00010 366 1000 cases and 1000 controls 0.0490 (0.0430,0.0550) 0.0128 (0.0100,0.0156)

hsa00010 366 500 cases and 500 controls 0.0512 (0.0452,0.0572) 0.0126 (0.0098,0.0154)

hsa00030 138 2000 cases and 3000 controls 0.0526 (0.0465,0.0586) 0.0108 (0.0080,0.0136)

hsa00030 138 1000 cases and 1000 controls 0.0486 (0.04250.0546) 0.0128 (0.0100,0.0156)

hsa00030 138 500 cases and 500 controls 0.0524 (0.0464,0.0584) 0.0120 (0.0092,0.0148)

doi:10.1371/journal.pone.0162910.t003
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the 0.05 and 0.01 significance levels. All of the 95% confidence intervals (CI) shown in the
Table contained the expected values.

Fig 1 shows the power comparison in the presence of both main effects and interaction
effects for 2,000 cases and 3,000 controls. Different power patterns were observed for different
models. Under Model 1 that was used to describe some real traits, the PUPPI can have signifi-
cantly higher power than the other tests with either heritability (H) of 0.01 or 0.025. For the
XOR model (Model 2), SKAT had the highest power compared to the other three tests. PUPPI
and the PLINK set-based test had similar power, while HYST had a little more power com-
pared to them. HYST, the PLINK set-based test, and SKAT can have significantly higher power
in the multiplicative model (Model 3) and the classical epistasis model (Model 4) than the
PUPPI. Moreover, HYST had more power than the PLINK set-based test in all of the models.

Fig 2 shows the power comparison under the pure epistasis models also for 2,000 cases and
3,000 controls. The PLINK set-based test and HYST showed power close to the 0.05 signifi-
cance level across all models. This is as expected because there were no main effects for the dis-
ease SNPs, which was under the null hypothesis for the two tests. Although interaction effects
were considered, SKAT only had somewhat higher power than 0.05 under most of the models.
In contrast, the PUPPI can have high power in some models, such as EPI41 and EPI42. The
power results demonstrated the advantage of using the PUPPI for detecting pure epistasis
within pathways, which cannot be identified by pathway methods based on testing for the
main effects of SNPs.

Fig 1. Power comparison for the PUPPI with the PLINK set-based test, HYST, and SKAT at the significance levels (alpha) of 0.05 and 0.01
undermodelswith bothmain effects and interactioneffects.

doi:10.1371/journal.pone.0162910.g001
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Overall results for theWTCCC pathway analyses
A total of 1,078 pathways were downloaded from the GSEA website. There were 423,220 PPI
pairs with scores> 0.8 in the STRING database. After QC, the WTCCC datasets consisted of
2,938 shared controls, 1,868 BD cases, 1,926 CAD cases, 1,748 CD cases, 1,952 HT cases, 1,860
RA cases, 1,963 T1D cases, and 1,924 T2D cases. There were 457,710 SNPs left for the analysis.
After adjusting for multiple testing based on the familywise error rates (FWERs) or false dis-
covery rates (FDRs) using the methods described in Wang et al. [6], none of the pathways were
significant. Therefore, we defined pathways with the PUPPI p-values< 0.05 as significant
pathways and focused on functional interpretations for the significant pathways. The most sig-
nificant pathways identified by the PUPPI which have functional implications in the seven dis-
eases are shown in Table 4. A majority of the pathways shown in Table 4 are actually the most
significant pathways in the individual disease analyses. The significant pathways with p-
values<0.05 for each disease are shown in S2 File. The significant pathway with functional
implications for each disease is discussed as follows.

BD
For BD, the significant pathway, Metal ion SLC transporters, contains the pathways which
transport ions such as Cu2+, Fe2+, Fe3+, Mg2+, Mn2+, Zn2+, etc. The solute carrier (SLC) is a

Fig 2. Power comparison for the PUPPI with the PLINK set-based test, HYST, and SKAT at the significance levels (alpha) of 0.05 and 0.01
undermodelswith only interaction effects.

doi:10.1371/journal.pone.0162910.g002
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group of membrane transport proteins. The genes solute carrier family 30 member 3, member
6 and member 7 (SLC30A3, SLC30A6, and SLC30A7), and solute carrier family 39 member 6
(SLC39A6) encoding zinc transporters are expressed in the brain [46–49]. The essential metal
ion zinc can induce oxidative damage in the brain and the strict regulation of zinc can protect
the brain from injury [50].

CAD
The functions for the significant pathway for CAD are acetylation and deacetylation of RelA in
the nucleus. RelA (p65) is a member of the NFκB family, consisting of transcription factors
regulating mainly the immune response, and having some functions in heart. RelA has been
implicated in cardiac remodeling [51], which is the expansion and shrinkage of coronary ves-
sels. RelA can be acetylated by the CREB-binding protein (CBP) and p300 protein in this path-
way. In fact, CBP and p300 have significant gene-gene interaction (M’ = 7.26) in the PUPPI
test. Moreover, the interaction betweenRelA and CBP/p300 is modulated by protein kinase A
(PKA), which can phosphorylate RelA. Such reaction may induce cardiac remodeling, an
important process in the development of coronary artery disease [52].

CD
The chaperone modulate interferon signaling pathway for CD is the most significant pathway
in the overall analyses. The protein hTid-1 is a chaperone that modulates interferon signaling
and can also repress NFκB [53]. Persistent inhibition of NFκB leads to inappropriate immune
cell development [54]. Moreover, interferon gamma is a member of the macrophage activating
factor, which is a lymphokine that can activate macrophages. In Crohn’s disease patients, the
defective macrophage functionmay play a role [55]. More interestingly, one of the actions of
interferon in this pathway is to induce mitochondria to activate apoptosis, which has been
found to increase in Crohn’s disease patients [56]. This pathway can also induce the down-
stream JAK/STAT pathway, which can regulate certain immune systems.

Table 5 shows the significant gene pairs withM’ values not equal to 0 in the chaperone path-
way. The most significant gene pair, interferon gamma receptor 1 (IFNGR1) and interferon
gamma receptor 2 (IFNGR2), are the receptors of interferon gamma. A cross-linking experi-
ment has shown that IFNGR2 is associated with interferon gamma only when the IFNGR1
chain is present [57]. If interferon gamma fails to bind to IFGR1 and IFGR2, it cannot trigger
many functions of the pathway. The three genes, v-rel avian reticuloendotheliosisviral onco-
gene homolog A (RELA), nuclear factor of kappa light polypeptide gene enhancer in B-cells 1
(NFKB1), and inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta

Table 4. Themost significant pathways that have functional implicationsfor the seven diseases.

Disease Database Pathway names P-value Rank1

BD REACTOME Metal ion SLC transporters 0.0030 1

CAD BIOCARTA Acetylation and deacetylation of RelA in the nucleus 0.0036 1

CD BIOCARTA Chaperones modulate interferon signaling pathway 0.0003 1

HT REACTOME Mitochondrial protein import 0.0014 3

RA KEGG Complement and coagulation cascades 0.0072 2

T1D BIOCARTA IL-7 signal transduction 0.0044 1

T2D REACTOME Signaling by FGFR3mutants 0.0008 1

1The rank of the pathways based on the p-values in the individual disease analysis

doi:10.1371/journal.pone.0162910.t004
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(IKBKB), in other significant gene pairs in Table 5 have been identified to have signal-induced
protein interactions in the in vivo screen tests [58]. These three genes are all highly associated
with inflammatory response [58]. Therefore, interactions among the three genes can also have
effects on the disease.

HT
The function of the significant pathway for HT is related to the import of mitochondrial pro-
tein. Hypertension is associated with the elevation level of reactive oxygen species (ROS) [59],
and the reactions of ROS take place mainly in mitochondria.Mitochondria dysfunction may
cause hypertension, and then generate excessive ROS to damage mitochondrial DNA, which
causes a vicious cycle in the hypertension state.

RA
The Complement and coagulation cascades pathway has three stages: the complement cascade,
the Kallikrein-Kinin cascade, and the coagulation cascade. For the complement cascade, the com-
plement activation can recruit the inflammatory and immunocompetent cells to kill the patho-
gens. This cascade has three pathways: the alternative pathway, the lectin pathway and the
classical pathway. All three pathways are related to the complement system, which helps the anti-
bodies and phagocytic cells to remove the pathogen from the body. In the lectin pathway, the
gene pair mannose-binding lectin 2 (MBL2)-mannan-binding lectin serine peptidase 1 (MASP1)
has a significant interaction in the PUPPI test (M’ = 10.42). The gene MBL2 encodesmannose-
binding lectin, which can recognizemicroorganisms.MASP1 can play a role as an enzyme to
interact with MBL2 to activate the lectin pathway [60]. The second cascade is the kallikrein-kinin
system. When this system is triggered, it will release vasoactive kinin. Kallikrein–kininproteins
play an important role in the pathophysiology of rheumatoid arthritis [61]. In the coagulation
cascade, coagulation factor II (thrombin) can activate the coagulation factor II receptor (also
known as the protease-activated receptor, PAR). PAR can regulate inflammation. Thus activation
of coagulationwill enhance PCR and then promote the inflammation [62].

T1D
The IL-7 signal transduction pathway can lead to immune response. Interleukin-7 (IL-7) is a cyto-
kine which can trigger the immune system to develop B-cells and T-cells. In the etiologyof type 1
diabetes, IL-7 is believed to be involved in the infiltration of the effector T-cells into pancreatic beta
cells [63]. Two studies suggested that blockage of the IL-7 receptor can help to treat type 1 diabetes
in non-obesemice [64, 65]. Thus, the pathway is a candidate pathway for type 1 diabetes.

T2D
The Signaling by FGFR3mutants pathway for T2D is also promising. T2D patients have dys-
functional β-cells in the islets [66]. Fibroblast growth factor receptor 3 (FGFR3) signaling can

Table 5. Significantgene pairs in the chaperone pathway for CD.

Significant gene pair M’

(IFNGR2)(IFNGR1) 6.750239

(IKBKB)(NFKB1) 5.65706

(RELA)(NFKB1) 5.199413

(TNF)(IFNG) 5.131393

(IKBKB)(TP53) 4.686214

doi:10.1371/journal.pone.0162910.t005
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inhibit the expansion of pancreatic epithelial cells. It has been suggested that some of the pan-
creatic epithelial cells (the precise type is unclear) can differentiate β-cells [67]. FGFR3 is also
involved in the regulation of pancreatic growth when the mature islet cells emerge [68].

Some pathways, while not the most significant for a given disease in our analyses for the
WTCCC data, are nonetheless also functionally promising for that disease. For HT, the fourth
(the downregulation of TGF-β receptor signaling pathway with p-value = 0.0014) and fifth (the
TGF-β receptor signaling activates Smad pathway with p-value = 0.0018) significant pathways
are both related to TGFβ signaling. In fact, the fourth significant pathway is a part of the TGF-
β receptor signaling, which activates the Smad pathway. TGFβ is expressed more in patients
with hypertension than in the normal controls [69]. The TGFβ/Smad signaling pathway can
induce vascular fibrosis, which is a pivotal aspect of vascular remodeling in hypertension [70,
71]. For RA, the phosphoinositides and their downstream targets pathway is the third significant
pathway, with p-value = 0.0088. This pathway shows the downstream target of phosphoinosi-
tides, which can be added to a phosphate molecule on the 3 position of inositol by phosphoino-
sitide 3-kinase (PI3K), which is a subfamily of lipid kinase. The target downstream of PI3K can
control many cell functions, such as proliferation, migration, and survival [72, 73]. PI3Kγ and
PI3Kδ can trigger several immune responses, and have crucial roles in the progress in RA [73].

The pathways we found based on gene-gene interaction tests are different from those found
by the single-locus strategy, which focused on testing main effects [74]. However, some of
them have similar functions. For example, the JAK/STAT pathway was previously found to be
associated with Crohn’s disease based on signals from single-locus SNPs [5]. Interestingly,
hTid-1 (in the chaperone pathway identified in our analysis) modulates interferon gamma,
which induces the JAK/STAT pathway. Therefore, both pathways may be involved in the etiol-
ogy of Crohn’s disease.

Conclusions
We performed simulation studies to verify that the PUPPI has correct type I errors for path-
ways with different numbers of genes and for different sample sizes. As PPI information is
independent from the statistical tests, it is important to note that using PPI information in the
PUPPI does not bias the test statistics. The power simulation results suggested that the PUPPI
can have higher or comparable power to that of PLINK, HYST, and SKAT in some models
when there were both main effects and interaction effects.Moreover, for the pure epistasis
models, the PUPPI can have high power while tests based on main effects would not have
power to identify the effects. Therefore, the major advantage of the PUPPI over other pathway
analysis methods based on testing for main effects is that pure epistasis within a pathway can
be identified. The PUPPI can be used as a complementary test to the tests based on main
effects. That is, PLINK and HYST can be used to identify pathways containing SNPs with main
effects on the disease, and the PUPPI can be further used to identify pathways with gene-gene
interaction effects. Furthermore, it is possible to incorporate main effects of SNPs in the PUPPI
algorithm. For example, statistics for main effects can be calculated for individual SNPs in Step
2 in the PUPPI algorithm, and a statistic combining statistics for gene-gene interaction and
main effects can be calculated in Step 3. Further research will be required to evaluate the statis-
tical properties for the method.

The Bonferroni correction in Eq 2 can be a conservative correction for the p-value. A similar
procedure to the modified Simes procedure [75] may be adopted in the PUPPI as an alternative
approach to correcting for the p-value. However, using the procedure will require the calcula-
tions of effective numbers for subsets of SNPs, which will increase the computational burden in
the PUPPI. Moreover, the modified Simes procedure was designed for p-values from individual
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SNPs. More research will be required to investigate the extension of the procedure to the gene-
gene interaction p-values.

The application of the PUPPI to the WTCCC datasets identified several promising path-
ways. However, their p-values were not significant after correcting for multiple testing. Some
methods or algorithms to improve the power for pathway association tests for GWAS have
been discussed extensively in the literature [5, 76, 77]. For example, the identification of an
optimal p-value threshold l to calculate the PUPPI statisticM0 may increase the power. This
can be achieved by algorithms using multiple p-value thresholds [12]. Moreover, with prior
biological knowledge,more weights can be assigned to damaging SNPs in the pathway statistic.
Furthermore, increasing the SNP density by imputing untyped SNPs based on a reference
panel such as the 1000 Genomes Project [78] data may also increase the power for the analysis
[8].

In conclusion, our analyses demonstrate that pathway analysis using gene-gene interactions
can be useful for identifying pathways associated with the disease. The analysis can comple-
ment the pathway analysis using only signals from single-locus SNPs. The PUPPI is imple-
mented with C++ incorporating POSIX Threads (Pthreads) to parallelize the code. The
program can be downloaded for free from the website: http://puppi.sourceforge.net.

Supporting Information
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