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Abstract
A challenge when interpreting replications is determining whether the results of a replication

“successfully” replicate the original study. Looking for consistency between two studies is

challenging because individual studies are susceptible to many sources of error that can

cause study results to deviate from each other and the population effect in unpredictable

directions and magnitudes. In the current paper, we derive methods to compute a predic-

tion interval, a range of results that can be expected in a replication due to chance (i.e.,

sampling error), for means and commonly used indexes of effect size: correlations and d-

values. The prediction interval is calculable based on objective study characteristics (i.e.,

effect size of the original study and sample sizes of the original study and planned replica-

tion) even when sample sizes across studies are unequal. The prediction interval provides

an a priori method for assessing if the difference between an original and replication result

is consistent with what can be expected due to sample error alone. We provide open-

source software tools that allow researchers, reviewers, replicators, and editors to easily

calculate prediction intervals.

Introduction

“The people who told us about sun block were the same people who told us, when I was a kid,
that eggs were good. So I ate a lot of eggs. Ten years later they said they were bad. I went,
“Well, I just ate the eggs!” So I stopped eating eggs, and ten years later they said they were
good again! Well, then I ate twice as many, and then they said they were bad. . . Then they
said they’re good, they’re bad, they’re good, the whites are good. . . –make up your mind! It’s
breakfast I’ve gotta eat!”

Black [1]

The exasperation conveyed by comedian Lewis Black, above, may be similar to what many peo-
ple experiencewhen reading or hearing about science in the news. Studies with inconsistent
findings on the same issue are frequently reported in the media [2,3]. The pain of having to
digest inconsistent findings is not isolated to the general public, but can also afflict researchers
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and their respective fields of study. A number of disciplines–including psychology, biology,
neuroscience, and medical research–have reported, what many consider to be, disquieting lev-
els of variability in results [4–10].

Variability in findings across studies can be uniquely troubling when replications are con-
ducted. Because replications are often used to assess the trustworthiness of an effect (e.g., Open
ScienceCollaboration [11]), if an effect cannot be replicated, the finding, and sometimes the
associated researchers, may be viewed as questionable. As a result, a replication being inter-
preted as a success or a failure can have severe consequences for the area of study and percep-
tions of the researchers’ integrity [12–13]. However, a problem with interpreting replications is
that single studies, even if competently executed and properly analyzed, are inherently imper-
fect pieces of information [14–16]. Specifically, individual studies are susceptible to many
sources of error that can greatly influence results [17–18]. By implication, no single study is a
pure reflection of the underlying truth. In order to obtain even a judicious estimate of the
truth, we must aggregate across a large number of studies on the same phenomena via meta-
analysis. As Hunter et al [14] wrote, “Scientists have known for centuries that a single study
will not resolve a major issue. Indeed, a small sample study will not even resolve a minor issue.
Thus, the foundation of science is the cumulation of knowledge from the results of many stud-
ies” (p.10).

If every study contains error, two studies on the same phenomena are likely to differ from
the true/population effect as well as from each other in unpredictable directions and magni-
tudes. Therefore, when interpreting replications, the question is not if deviation across studies
is permissible, but instead “how much deviation is permissible?”On this issues, Estes [19]
stated, “The principal difficultywith widespread dependence on replication experiments is not
that conducting replications is tedious but that judging the success of replications poses an
almost intractable problem [20]” (p. 331).

It is becoming increasingly common for researchers to attempt to replicate published effects
[11]. There are several large-scale replication initiatives (e.g., “Many Labs” replication project,
Reproducibility Initiative, Reproducibility Project: Psychology, Reproducibility Project: Cancer
Biology) and many top-level psychology journals are accepting replication articles (e.g., Journal
of Abnormal Psychology, Journal of Counseling and Clinical Psychology, Journal of Personality
and Social Psychology, Perspectives on Psychological Science). As a result, there is a growing
need for an objectivemethod for evaluating replication attempts.

One approach for evaluating replications has been to compare the p-value of the original
study to that of the replication study. An application of this approach involves checking
whether the direction of an effect and its classification as statistically significant or statistically
non-significant are consistent across the replication and original study. If there is consistency,
the replication is deemed successful; however, if there is inconsistency the replication is a fail-
ure. Aside from the well-expressed issues of relying solely on p-values to interpret results [16,
21–24], Cumming [25] illustrates that this is a flawed approach because p-values fluctuate so
considerably across replication attempts, due to sampling error, making it a poor criterion to
evaluate replications.

Instead of using p-values, in rare cases, meta-analytic estimates based on just the original
and replicating study have been calculated (see Open Science Collaboration [11] for an exam-
ple). These meta-analytic estimates are then tested to see if they are different from zero. How-
ever, this approach been largely ignored because it is assumed that the effect size estimate from
the first study is inflated due to publication bias.

On occasion, confidence intervals have been used to evaluate replications. If interpreted
correctly, confidence intervals can offer inferential information not available with p-values.
That is, confidence intervals provide a plausible range of population values (e.g., population
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correlations) that could have produced the study result (e.g., study correlation; [26]). Unfortu-
nately, confidence intervals can often be misinterpreted [27–28]. Many misinterpretations
involve the incorrect assignment of probabilities to the population parameter rather than the
method of constructing the interval (see [28] for a review).However, confidence intervals can
also be incorrectly interpreted as representing a capture percentage of study results. This is
what Cumming et al [27] referred to as the confidence-levelmisconception. For example, some
researchers may incorrectly interpret a 95% confidence interval for a correlation as indicating
the range correlations that can be expected in a replication 95% of the time [27, 29]. Interpret-
ing confidence intervals as being representative of replication probabilities is incorrect and can,
therefore, lead to improper interpretations of a replication results.

A useful but lesser-known approach to interpreting replications is to use prediction intervals
[25, 30]. In the replication context, this type of interval can be quite informative as it presents a
way of quantifying the extent to which a replication study may deviate from an original study.
To date, such intervals have been used to estimate what sample means are possible in replica-
tions when sample sizes are the same [19, 25]; and have recently been used to reanalyze the
results from the Reproducibility Project in Psychology [31]. Prediction intervals can be distin-
guished from confidence intervals.With confidence intervals, the emphasis is on the interval
capturing the population parameter whereas with prediction intervals the emphasis is on cap-
turing future sample statistics [31]. Consider for example, a single population mean and 1000
samples from that population. Constructing a 95% confidence interval for each of the 1000
samples would result in 950 (i.e., 95%) of those intervals capturing the population mean. In
contrast, consider a scenario where you have a single original sample mean and then obtain
1000 replication samples. A prediction interval constructed around the original study’s mean
would capture 95% of the replication sample means. Thus, confidence intervals are designed to
capture population parameters whereas prediction intervals are designed to capture sample sta-
tistics [32–33].

Having an interval that indicates the extent to which a future sample statistic (e.g., correla-
tion) may differ from the current sample statistics due to sampling error is incredibly useful in
the replication context. For instance, if a replication result falls within the prediction interval it
would suggest that the deviation that was observedbetween the two studies, was not greater
than could be expected due to sampling error alone. Conversely, a replication result that falls
outside the interval may be indicative of what is often referred to as a “replication failure,” such
that the deviation between results was greater than could be expected due to random sampling
alone.

In the current paper, we derivemethods to calculate prediction interval for means, and com-
monly used indexes of effect size: correlations and d-values, when sample sizes between studies
are not equal. Being able to accommodate different sample sizes in the calculations is important
for the application of the prediction interval because it is common for replication studies to
have different sample sizes than the original study. Previous applications of prediction intervals
to replications have largely focused on scenarios where the original and replication sample size
were the same [19, 25, 29–30]. Additionally, our methods accommodate skewed sampling dis-
tributions [34], which allows us to derive formulas that calculate prediction intervals for stan-
dardizedmean differences (d-values) and correlations (r). A key aspect of the prediction
interval is that it can be calculated before a replication study is conducted creating an a priori
statement of expectations [35]. An a priori statement of expected results enables planned repli-
cations and replication proposals to specify, in advance, the criteria that will be used to evaluate
the replication, independent of the results of the replication.

To illustrate the efficacy of the prediction interval, we present tests of the prediction inter-
val’s ability to capture replication results across a number of replication scenarios. To make the
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prediction interval’s calculation easier and to facilitate its use, we developed an online predic-
tion interval calculator and open source downloadable software that will allow anyone to freely
and easily calculate prediction intervals.

A Conceptual Introduction to Interpreting the Prediction Interval

Because sampling error is central to the calculation of the prediction interval, we beginwith a
simple demonstration of the effect of sampling error on data that illustrates the conceptual rea-
soning underlying the interpretation of a prediction interval. The potential sources of error in
research are vast and some sources of error are more controllable than others [18, 36–37]. Sam-
pling error, however, is present in every study and produces unpredictable effects on the results
of individual studies [18]. Sampling error is created through the random selection of some sub-
jects to participate in research over others. The inability of researchers to recruit sample sizes
approaching infinity ensures that sampling error is present in every study [18]. Because of its
prevalence and objective nature, we focus exclusively on the influence of sampling error when
calculating the prediction interval. Although studies are subject to other sources of error (e.g.,
imperfect validity, dichotomization of continuous variables, methodological confounds, etc.;
[18]) to different extents, these sources of error can be difficult to quantify based on objective
study characteristics. Sampling error, however, is readily quantifiable based on a study’s sample
size and effect size [17–18, 38–39].

Even when both the original and replication study are obtained from the same sampling dis-
tribution, the result of the two studies are expected to deviate from each other and from the
population value, due to sampling error. To illustrate the effect of sampling error and its impli-
cations for the prediction interval, consider Jane, a hypothetical researcher, who is interested in
determining if coffee consumption is related to anxiety levels. To test her question, Jane con-
ducts an observational study where she recruits 100 participants, measures coffee consumption
and anxiety levels, and then correlates the two variables.What correlation is Jane expected to
find?

To understand what correlation Jane is expected to find, it is important to recognize that a
population correlation exists between coffee and anxiety and that this population correlation
will be reflected in her study correlation. However, because of sampling error, Jane’s result will
not be a pure reflection of this underlying population correlation, but merely an estimate of it.
To illustrate the extent of the contamination Jane can expect due to sampling error, imagine a
scenario where the population correlation is known to be ρ = .20. We can use a computer simu-
lation to obtain 50,000 randomly sampled study data sets (N = 100) and obtain a correlation
for each of them.Many of these 50,000 study correlations differ from the population correla-
tion (ρ = .20) and from each other due to sampling error. Fig 1 presents the results of the simu-
lation and can be thought of as an empirically derived sampling distribution when the true
correlation is .20 and the sample size is 100. The results of the simulation illustrate a wide
range of study correlations.

Now let’s imagine that Jane obtained a r = .28 correlations in her study as a result that is
consistent with what she could expect due to sampling error. She decides to conduct a replica-
tion of this study, with the same sample size (N = 100), and obtains a correlation of r = .07.
Even though Jane’s replication correlation (r = .07) appears to be substantially different from
her first correlation (r = .28), inspecting Fig 1 illustrates that the two results are consistent
with what can be expected due to sampling error when the population correlation is .20. If,
however, Jane’s replication correlation fell outside the histogram, then we know that something
other than sampling error may have been responsible for the deviation from the population
correlation.
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Admittedly, this example is an oversimplification because here we have knowledge of the
population correlation, something that is never known. Determining if the two sample correla-
tions differ due to sampling error (i.e., are sampled from the same population) is relatively triv-
ial when the population correlation is known. However, as Stanley and Spence [4] illustrated
researchers are continuously faced with the fact that the population correlation is unknown
when trying to interpret single correlations. To eliminate some of this inherent uncertainty, we

Fig 1. Histograms showing the range of possible study correlations obtained from replications when the population-level

correlation is .20. The vertical line indicates the population correlation of .20. The histogram illustrates the results of 50,000 replication studies

each with different participants. The variability in study correlations illustrated here is due only to the effects of sampling error.

doi:10.1371/journal.pone.0162874.g001
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can approach the question from a slightly different perspective.Namely, we can focus on the
difference between correlations. If pairs of correlations are repeatedly, randomly sampled from
the same population, any two randomly selected correlations are expected to differ from each
other. However, the average of all the differences will be zero–regardless of whether the popula-
tion correlation is known or unknown. Conceptually, we could create a histogram of all of the
differences (i.e., create a sampling distribution histogram like we did in Fig 1 above). We could
then use this histogram to determine what the largest difference could be, in either direction, as
a result of sampling error. If a difference between an original and replication correlations is
beyond the histogram, then something other than sampling error is likely responsible for the
magnitude difference. This is the basic reasoning that underlies the interpretation of the predic-
tion interval. In the sections below, we present methods for computing a prediction interval for
means, correlations, and d-values.

Prediction Interval for Means

To illustrate how a prediction interval can be computed for means, we will once again consider
hypothetical researcher, Jane. Imagine that Jane conducts an original study (N1 = 50) and
obtains a meanM1 = 98.50 and standard deviation SD1 = 14.76. She then sets out to conduct a
replication study with a sample size twice as large as her original study, N2 = 100, and wants to
know what range of means she can reasonably expect. To answer her question she needs to
compute a prediction interval. The prediction interval will tell her how much her replication
mean is expected to deviate from her original mean, due to sampling error.

To determine the extent of the difference that we can expect between two randommeans
from the same population (i.e., an original study, M1, and a replication study, M2), both of
which are affected by sampling error, we need to construct an interval on the difference
between two means. That is, we want an interval that describes (M1—M2) to determine how
large a difference in either direction is possible, as a result of sampling error. To obtain such
an interval, we need to know the variance of the (M1—M2) sampling distribution. Estes [19]
illustrated when the original and replication study have equal sample sizes the variance of
(M1—M2) can be estimated by 2ðSD2

1
=NÞ (also see [29]). We extend this approach by creating

a more generalizable solution, which allows for the possibility of having different sample sizes
in the original and replication study. Specifically, we estimate the variance of the sampling dis-
tribution of (M1—M2) where the sample sizes differ as:

SD2
1

N1

þ
SD2

1

N2

ð1Þ

N1 is the sample size of the original study, N2 is the sample size of the replication study, and
SD1

2 is the variance of the original study. Because the replication study has not been conducted,
we use the variance estimate from the original study (SD1

2) as the variance estimate for the rep-
lication study. Once the variance of the sampling distribution is obtained using the above for-
mula, the interval for the expected difference betweenmeans, due to sampling error, given
sample sizesN1 and N2, can be calculated using Eq 2, below. In Eq 2, we take the square root of
the variance of the sampling distribution above, resulting in the standard deviation of the sam-
pling distribution (i.e., standard error). In Eq 2,M1 is the mean observed in the original study, t
is the two-tailed critical value for t when degrees of freedom df = N1-1. Note, that the df is not
N1 + N2−2; this is because only SD1 is used in the formula instead of a pooled variance.We
note that computationally, this prediction interval is the equivalent of calculating a confidence
interval for the difference between two sample means (one real, one imaginary and identical to
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the first), based on the original and replication sample sizes.

Mean Prediction Interval

¼ M1 � tdf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

1

N1

þ
SD2

1

N2

s
ð2Þ

An application of the above formula to Jane’s situation—where her original study’s mean is
M1 = 98.59, SD1 = 14.76,N1 = 50, and her replication sample size will be 100 (N2 = 100)—pro-
vides the following solution:

95%Mean Prediction Interval

¼ M1 � t49

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SD2

1

N1

þ
SD2

1

N2

s

¼ 98:59� ð2:01Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð14:76Þ
2

50
þ
ð14:76Þ

2

100

s

¼ 98:59� 5:14

This solution, 98.59 +/- 5.14 is an estimate of the range of mean values Jane can expect in a
replication that uses a sample size of 100, given her initial study had a sample size of 50. This
interval indicates that, due to sampling error, Jane can expect to see a mean as low as 93.45 or
as high as 103.73 in her replication study. It is this interval that we call a prediction interval
and designate with the following notation 95% PI[93.45, 103.73]. It worth noting that the
above solution is a 95% prediction interval because of the t-value that was used in Eq 2. A
wider (higher percentage interval) or narrower (lower percentage interval) prediction interval
can be computed by using larger or smaller t-values, respectively.

Capture Performance Test of the Prediction Interval for Means

In the section below, we empirically demonstrate the ability of the prediction interval to cap-
ture 95% of replication means. We also compare the prediction interval’s performance against
the 95% confidence interval constructed around the original mean. The script to reproduce our
mean capture tests is available at https://github.com/dstanley4/prediction_interval_scripts/.

We tested the prediction interval’s performance using simulated data with the following
steps. (1) We obtained a random sample (N1 = 50), from a population with a mean of 100 and
standard deviation of 15 and calculated the “original study” mean (M1) and standard deviation
(SD1). (2) We computed a 95% prediction interval and a 95% confidence interval around the
original study’s mean (M1), using the methods and formulas presented above. (3) We then sim-
ulated the replication study by drawing a second random sample (N2 = 100) and obtaining the
replication mean,M2. (4) We compared the replication mean (M2) against the 95% prediction
interval and 95% confidence interval to determine if either (or both) captured it. (5) We
repeated steps one through five 50,000 times and counted how many prediction intervals and
confidence intervals contained the replication mean. Doing so revealed that the 95% prediction
interval captured 95.2% of replication means whereas the 95% confidence interval captured
89.7% of replication means.

We then tested different sample size configurations to examine how both the 95% predic-
tion interval and 95% confidence interval performed under different sample size combinations.
The results of these tests are reported in Table 1. When sample sizes were equal, the capture
percentage of the original study’s 95% confidence interval was roughly 83–84%. It is worth not-
ing that these values are virtually identical to the value of 83.4% reported by Cumming et al

Prediction Interval

PLOS ONE | DOI:10.1371/journal.pone.0162874 September 19, 2016 7 / 22

https://github.com/dstanley4/prediction_interval_scripts/


[29] who also tested the 95% confidence interval’s capture percentage with equal sample sizes.
As expected, the 95% confidence interval’s capture percentage varied as sample sizes varied.
The 95% confidence interval’s capture percentage was lowest (e.g., 32.9%) when the original
study had a large sample size relative to the replication, resulting in a narrow confidence inter-
val. In contrast, the 95% prediction interval’s capture percentage was virtually 95% in all
scenarios.

Prediction Interval for Correlations

We extend the above methods for calculating a prediction interval for means to calculate a pre-
diction interval for a commonly used index of effect size, the correlation coefficient (r). Funda-
mentally, the concept and logic behind the prediction interval’s calculation for a correlation is
the same as it is for means. However, because the sampling distributions of non-zero correla-
tions are not normally distributed, a modifiedprocedure must be used to account for distribu-
tional asymmetries [34].

To illustrate how we calculate a prediction interval for correlations, consider hypothetical
researcher, Richard, who conducts a study (N1 = 100) and obtains a correlation of r1 = .35. He
wants to conduct a replication of this finding and doubles his sample size to N2 = 200. To cali-
brate his own expectations, Richard wants to compute a prediction interval to determine what
he can reasonably expect to find in his replication. How might Richard calculate a prediction
interval?

Table 1. Capture percentage for means over 50,000 trials.

N Replication N 95% Confidence Interval Capture Percentage 95% Prediction Interval Capture Percentage

25 25 84.3 95.0

50 50 83.7 94.9

100 100 83.8 95.0

250 250 83.5 94.7

500 500 83.6 95.1

25 50 89.9 95.0

25 100 92.4 95.1

25 250 93.9 95.1

25 500 94.6 95.1

50 25 74.7 94.9

50 100 89.1 94.9

50 250 92.6 94.9

50 500 93.8 94.9

100 25 62.1 94.9

100 50 74.3 94.8

100 250 90.3 95.0

100 500 93.0 95.3

250 25 44.6 95.1

250 50 58.0 95.0

250 100 70.6 94.8

250 500 89.0 95.1

500 25 32.9 94.9

500 50 45.0 95.1

500 100 57.5 95.1

500 250 74.3 95.1

doi:10.1371/journal.pone.0162874.t001
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To compute a prediction interval for a correlation, we are interested in identifying the
expected difference between two correlations (i.e., the original study correlation and the hypo-
thetical replication study correlation) randomly sampled from the same population.We know
that, due to sampling error, both Richard’s original study and his, yet-to-be run, replication
study, are expected to differ from both the unknown population correlation and from each
other in random directions and magnitudes. To estimate how much the two correlations are
expected to differ from each other due to sampling error, Richard first needs an estimate of
how much two correlations, sampled from the same population, are expected to deviate from
each other. Specifically, he needs to calculate the variance of the sampling distribution for the
expected difference between two correlations.

When computing the prediction interval for means, we used a derivation of the sampling
distribution formula that accommodated different sample sizes in the original and replication
study (see Eq 1). In principle, we could use the same approach for correlations that we used for
means using Eq 3, below (adapted from [40]). This formula provides the standard error of the
difference between two correlations using the simple asymptotic method [31]:

SE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

1
þ SE2

2

p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 � r2
1
Þ

2

N1 � 1
þ
ð1 � r2

2
Þ

2

N2 � 1

s
ð3Þ

However, a drawback with this approach is that it assumes the sampling distributions of the
original and replicating study are normally distributed.When using correlations, this is not an
appropriate assumption as non-zero correlations have asymmetrical sampling distributions.
The asymmetry of correlations’ sampling distributions increases as effect sizes increase (i.e., the
further the correlations are away from zero). As a result, using the above formula will result in
increasingly inaccurate estimates as effect sizes increase.

Fortunately, Zou [34] illustrates how the asymmetry of correlations’ sampling distributions
can be taken into account by using what he referred to as a modified asymptotic method. He
developed this approach to generate a symmetrical confidence interval around the difference
between two known correlations, by accommodating the expected asymmetry. A consequence
of non-zero correlations having asymmetrical sampling distributions is that when confidence
intervals are created for correlations using the r-to-z approach [41], non-zero correlations may
have asymmetrical confidence intervals. Asymmetrical confidence intervals mean that the
upper and lower bounds of a confidence interval are not equidistant from the correlation they
bound. Zou’s [34] modified asymptotic method essentially computes a confidence interval for
the difference between two correlations from the two, likely asymmetrical, confidence intervals
that bound each of the correlations being compared.

We compute the prediction interval for correlations that is able to accommodate asymmet-
rical sampling distributions by adapting Zou’s [34] approach. Specifically, we create a predic-
tion interval based on a confidence interval, constructed around the known original correlation
(l1, u1) and a confidence interval constructed around the unknown, yet-to-be obtained replica-
tion correlation (l2, u2). These values are then used in our slightly modified version of Zou’s
[34] equations to create the lower-limit (LL) and upper-limit (UL) of the correlation prediction
interval (see Eqs 4 and 5 below).We note that computationally, this prediction interval is the
equivalent of calculating a confidence for the difference between two correlations (one real,
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one imaginary and identical to the first), based on the original and replication sample sizes.

Correlation Prediction Interval Lower Limit

¼ r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 � l1Þ
2
þ ðu2 � r1Þ

2

q ð4Þ

Correlation Prediction Interval Upper Limit

¼ r1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 � l2Þ
2
þ ðu1 � r1Þ

2

q ð5Þ

To illustrate how the prediction interval approach works, we revisit Richard’s scenario and
calculate a prediction interval using Eqs 4 and 5. We begin by calculating the lower (l1) and
upper (u1) limits of the 95% confidence interval for Richard’s original correlation (r1 = .35)
using the original sample size (N1 = 100) via an r-to-z transformation resulting in a 95% CI
[.16, .51]. Without rounding l1 = .1649195 and u1 = .5112702. The next step is to create a hypo-
thetical confidence interval for the imaginary replication correlation (r2), using the standard
Fisher r-to-z process. We assume that both the original study correlation (r1) and the replica-
tion study correlation (r2) are estimates of the same underlying population correlation. Conse-
quently, the original correlation, r1, can be used in place of r2 when calculating the confidence
interval for the replication correlation. However, we use the replication sample size to create
the confidence interval around this hypothetical correlation (N2 = 200). To calculate the lower
(l2) and upper (u2) limits of the 95% confidence interval for Richard’s replication, using the
estimated replication correlation (r2 = .35) and replication sample size (N2 = 200) via an r-to-z
transformation we find the 95% CI[.22, .47]. Without rounding the values are l2 = .2220412
and u2 = .4661072. Lastly, we compute the upper and lower limits of the prediction interval by
combining the upper and lower limits of the two previously calculated intervals into the Eqs 4
and 5, above. Doing so results in the following solution:

95%Correlation Prediction Interval Lower Limit

¼ r1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 � l1Þ
2
þ ðu2 � r1Þ

2

q

¼ :35 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð:35 � :1649195Þ
2
þ ð:4661072 � :35Þ

2

q

¼ :1315151

¼ :13

95%Correlation Prediction Interval Upper Limit

¼ r1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr1 � l2Þ
2
þ ðu1 � r1Þ

2

q

¼ :35þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð:35 � :2220412Þ
2
þ ð:5112702 � :35Þ

2

q

¼ :5558678

¼ :56

Thus, for Richard, the prediction interval for his initial study where he found a correlation
of .35, (N1 = 100) if a replication uses a sample size of 200 is 95% PI[.13, .56]. This means that
Richard can expect to observe a correlation between .13 and .56, due to sampling error alone. If
a replication correlation falls outside the prediction interval, it suggests that factors other than
sampling error may be responsible for the deviation.

Prediction Interval
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We note that the approach we present above is not the only method available. Others have
recently created an alternate approach to calculate prediction intervals for correlations. Specifi-
cally, Patil et al. [31] derived a formula for the correlation prediction interval that addresses the
sampling distribution asymmetry issue in an entirely different way. Specifically, Patil et al. [31],
used an r-to-z transformation on the original correlation, then calculated a prediction interval
around the z-value using the simple asymptotic method, and then transformed the interval
from zs back rs.

Capture Performance Test of the Prediction Interval for Correlation

To test the capture percentage performance of the 95% prediction interval and the 95% confi-
dence around the original study’s correlation using Richard’s example above, we followed the
same testing procedure we used for means. (1) We obtained a sample (N1 = 100), from a popu-
lation with a correlation of ρ = .50 and calculated the “original study” correlation, r1. (2) Then,
we computed a 95% prediction interval and a 95% confidence interval around the original
study’s correlation (r1), using the methods and formulas presented above. (3) We then simu-
lated the replication study by drawing a second random sample (N2 = 200) and obtained the
replication correlation, r2. (4) We compared the replication correlation (r2) against the 95%
prediction interval and 95% confidence interval to determine if either (or both) captured it. (5)
We repeated steps one through four 50,000 times and counted how many prediction intervals
and confidence intervals contained the replication correlation. Doing so revealed that the 95%
prediction interval captured 94.8% of replication correlations whereas the 95% confidence
interval captured only 89.3% of replication correlations.

We also tested the prediction interval and 95% confidence interval’s capture performance
using different effect size and sample size configurations. The results of these tests are reported
in Table 2. The 95% confidence interval’s capture percentage fluctuated as a function of sample
size and, to a small extent, due to the population correlation. The confidence interval captured
the fewest replication correlations (e.g., 44.2%) when the original study had a large sample size
compared to the replication study. When sample sizes were equal, roughly 83–84% of replica-
tions are captured by the 95% confidence interval. In contrast, the 95% prediction interval’s
capture percentage was nearly exactly 95% in all scenarios.We note that this was true for sam-
ple sizes of 100 or higher. The script to reproduce our correlation capture tests is available at
https://github.com/dstanley4/prediction_interval_scripts/.

Prediction Interval for d-Values

In this section, we illustrate how the prediction interval can be calculated for another com-
monly used index of effect size, the standardizedmean difference (i.e., d-value):

d ¼
M1 � M2

sp

sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1
ðN1 � 1Þ þ s2

2
ðN2 � 1Þ

N1 þ N2 � 2

s

The calculation of a prediction interval for d-values follows the same logic and procedure
that we used to calculate a prediction interval for correlations because we are, once again, faced
with asymmetrical sampling distributions. Specifically, non-zero d-values have sampling distri-
butions that follow non-central t-distributions and non-central t-distributions are asymmetri-
cal. Because of these asymmetrical non-central t-distributions, we sought to generalize Zou’s
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Table 2. Capture percentages for correlations over 50,000 trials.

rho N Replication N 95% Confidence Interval Capture Percentage 95% Prediction Interval Capture Percentage

.10 100 100 83.8 94.7

.10 250 250 83.4 94.7

.10 500 500 83.7 94.9

.10 1000 1000 83.4 95.1

.10 100 250 90.5 94.7

.10 100 500 92.7 94.9

.10 100 1000 93.9 95.0

.10 250 100 70.2 94.7

.10 250 500 89.2 94.9

.10 250 1000 91.9 94.7

.10 500 100 57.4 94.8

.10 500 250 74.0 95.0

.10 500 1000 89.0 95.0

.10 1000 100 44.3 94.9

.10 1000 250 61.6 94.9

.10 1000 500 74.6 95.1

.30 100 100 83.4 94.4

.30 250 250 83.2 94.7

.30 500 500 83.6 95.1

.30 1000 1000 83.7 95.1

.30 100 250 90.4 94.8

.30 100 500 92.6 94.7

.30 100 1000 94.0 95.1

.30 250 100 70.3 94.6

.30 250 500 89.0 94.9

.30 250 1000 92.1 94.9

.30 500 100 57.3 94.5

.30 500 250 74.3 94.9

.30 500 1000 89.0 94.9

.30 1000 100 43.9 94.7

.30 1000 250 61.7 94.8

.30 1000 500 74.1 94.9

.50 100 100 83.5 94.7

.50 250 250 83.4 94.9

.50 500 500 83.5 94.9

.50 1000 1000 83.6 95.0

.50 100 250 90.3 95.0

.50 100 500 92.8 95.0

.50 100 1000 93.9 95.0

.50 250 100 70.5 94.5

.50 250 500 89.3 95.1

.50 250 1000 92.1 95.0

.50 500 100 57.3 94.3

.50 500 250 74.2 95.0

.50 500 1000 89.0 94.9

.50 1000 100 44.2 94.3

.50 1000 250 62.0 94.8

.50 1000 500 74.2 95.0

doi:10.1371/journal.pone.0162874.t002
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[34] modified asymptotic approach to d-values. Although Zou [34] only investigated correla-
tions (via r-to-z transformations) we surmised that his work could be applied to standardized
mean differences (via d-to-t transformations). Specifically, we used the logic behind Zou’s [34]
proof to generate a newmodified asymptotic formula for d-values; however, the resulting equa-
tion was identical in nature to the correlation formula, demonstrating that Zou’s [34] formula
generalizes to d-values. Our application of thismodified asymptotic approach d-value formula
to calculate the prediction interval is presented below in Eqs 6 and 7. We note that computa-
tionally, this prediction interval is the equivalent of calculating a confidence interval for the dif-
ference between two d-values (one real, one imaginary and identical to the first), based on the
original and replication sample sizes.

d � value Prediction Interval Lower Limit

¼ d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd1 � l1Þ
2
þ ðu2 � d1Þ

2

q ð6Þ

d � value Prediction Interval Upper Limit

¼ d1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd1 � l2Þ
2
þ ðu1 � d1Þ

2

q ð7Þ

To illustrate how to compute a prediction interval for d-values, we will work through
another hypothetical example, this time with hypothetical coffee researcher, Ted. Ted is begin-
ning research on the relation between coffee and attraction to the color red. He expects that
drinking coffee will make the color red more appealing. To test his expectation, he conducts an
experiment,manipulating coffee intake across two conditions (i.e., a coffee condition and
water condition) and recording participants’ preference for the color red. In his study, Ted
runs 50 participants in his experimental coffee group and 50 participants in his water control
group (i.e., an overallNoriginal = 100,Norig1 = 50, Norig2 = 50). His results indicated that coffee
participants preferred the color red more than those who drank water, d = 0.65. Ted is very
excited by this finding; however, he wants to follow it up with a replication to confirm his find-
ing before attempting to publish it. To replicate his finding Ted will use the same sample sizes
as the original study (i.e.,Nreplication = 100,Nrep1 = 50,Nrep2 = 50).

What range of d-values can Ted expect to observe in a replication? To answer this question,
Ted will need to compute a prediction interval. In doing so, we will be determining how much
two random d-values sampled from the same population are expected to deviate from one
another. Following the modified asymptotic method we used to compute the prediction inter-
val for correlations, Ted first calculates a confidence interval for his original study’s d-value.
Second, he needs to compute a confidence interval for his yet to be conducted replication
study. And lastly, he needs to enter the upper and lower limits of each of these confidence
intervals into Eqs 6 and 7, above. As was the case with correlations, this process accommodates
the presence of asymmetrical confidence intervals around d-values that arise from asymmetri-
cal non-central t-distributions [41–43].

Computing a 95% confidence interval for Ted’s original study’s result of d = 0.65, with a
sample size of 100 (Norig1 = 50, Norig2 = 50) results in 95% CI [0.25, 1.05] (i.e., l1 = 0.2460344,
u1 = 1.050815). To create a hypothetical confidence interval for Ted’s, yet-to-be observed, repli-
cation d-value, he assumes that both the original study and the replication study are estimates
of the same underlying population d-value. Consequently, he can use the original d-value
(d1) as his estimate of d2. Doing so results in a 95% CI [0.25, 1.05] (i.e., l2 = 0.2460344, u2 =
1.050815) for d2. Plugging the upper and lower limits for d1 and d2 into our prediction interval
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formula results in:

95% d � value Prediction Interval Lower Limit

¼ d1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd1 � l1Þ
2
þ ðu2 � d1Þ

2

q

¼ 0:65 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:65 � 0:24603444Þ
2
þ ð1:050815 � 0:65Þ

2

q

¼ 0:08093008

¼ 0:08

95% d � value Prediction Interval Upper Limit

¼ d1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd1 � l2Þ
2
þ ðu1 � d1Þ

2

q

¼ 0:65þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:65 � 0:2460344Þ
2
þ ð1:050815 � 0:65Þ

2

q

¼ 1:21907

¼ 1:22

These values constitute the upper and lower limits of the prediction interval 95% PI[0.08,
1.22]. If Ted’s replication d-value differs from the original d-value (d = .65) due to sampling
error alone, he can expect a replication d-value between 0.08 and 1.22. Consequently, if a repli-
cation d-value falls outside the prediction interval factors other than sampling error may be
responsible for the deviation.

Capture Performance Test of the Prediction Interval for d-Value

To test the capture percentage performance of the 95% prediction interval and the 95% confi-
dence around the original study’s d-value we again conducted a series of simulations. Because a
study d-value can be biased estimator of the population-level d-value, we tested the 95% predic-
tion interval and 95% confidence interval’s capture performance using both d and a biased
corrected d we will term dunbiased. Bias in this context means that the average of a d-value’s sam-
pling distribution does not equal the population d-value. Therefore, adjusting the d-values to
be unbiased (see 44) means that the average of the unbiased sampling distribution of d-values
equals the population d-value. A value for dunbiased can be approximated with the equation
below [44]. This equation makes the largest adjustment when converting d to dunbiased when
the sample size (i.e., degrees of freedom) is low.

dunbiased ¼ d
3

4ðdf Þ � 1

� �

The script to reproduce our d-value capture tests is available at https://github.com/
dstanley4/prediction_interval_scripts/. To test the prediction intervals ability to capture repli-
cation d-values: (1) We randomly sampled, from two populations that differed by .80, data
for two cells (N1 = 50 and N2 = 50) and calculated the “original study” standardizedmean dif-
ference (d1). (2) We computed a confidence and prediction intervals around the original
study’s standardized mean difference (d1), using the methods and formulas presented above.
(3) We then simulated the replication study by drawing a second random sample (Nrep1 = 50,
Nrep2 = 50) and obtained the replication standardized mean difference, d2. (4) We compared
the replication standardized mean difference (d2) against the 95% prediction interval and
95% confidence interval to determine if either (or both) captured it. (5) We repeated steps
one through four 50,000 times and counted how many prediction intervals and confidence
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intervals contained the replication correlation. This process was followed for both d and
dunbiased. For d, the 95% prediction interval captured 94.9% of replication correlations
whereas the 95% confidence interval captured 83.6% of replication correlations (see script for
command). The results were similar for dunbiased, the 95% prediction interval captured 95.0%
of replication correlations whereas the 95% confidence interval captured 83.9% of replication
correlations.

We also tested the capture percentage performance of the confidence and prediction inter-
val across a range of cell sizes and population d-values (Table 3). The confidence interval per-
formed in the same manner with d-values as it did with means and correlations; that is, there
was wide variability in capture percentage of the confidence interval across the scenario. The
confidence interval captured the fewest replication correlations (e.g., 32.7%) when the original
study had a large sample size compared to the replication study. When sample sizes were
equal, roughly 83–84% of replications are captured by the 95% confidence interval.When the
original study cell sizes were large (e.g., 500) and the replication cell sizes were small (e.g., 25)
the prediction interval for the biased d-value captured slightly less than 95% of replication
results (e.g., 94.4%). However, when dunbiased was used, the capture percentage for the 95% pre-
diction interval closely approximated 95% (e.g., 94.8%). Overall, the 95% prediction interval’s
capture percentage was approximately 95% in all scenarios.

Prediction Interval Calculators

To facilitate easy calculation of the prediction interval, we have created software and a web-
based calculator that computes prediction intervals for means, correlations, and d-values.
The web-based calculators can be found at https://replication.shinyapps.io/mean/ for means,
https://replication.shinyapps.io/correlation/ for correlations, and https://replication.shinyapps.
io/dvalue/ for d-values.We also created a prediction interval package for R, called predictionIn-
terval, that users can download for free and use within R. The package is currently available in
the R CRAN repository.

Below, are examples of the R commands one would enter to compute the prediction interval
for means, correlations, and d-values using the predictionInterval package. The package would
need to be installed, with install.packages("predictionInterval"), and activated, with library(pre-
dictionInterval), before using the commands below.

Mean

> pi.m(M = 98.59,SD= 14.76,n = 50,rep.n= 100)
Originalstudy: M = 98.59, SD = 14.76, N = 50, 95% CI[94.40,102.78]
Replicationstudy: N = 100
Predictioninterval:95% PI[93.45,103.73].

Correlation

> pi.r(r = .35,n = 100,rep.n= 200)
Originalstudy: r = 0.35, N = 100, 95% CI[0.16,0.51]
Replicationstudy: N = 200
Predictioninterval:95% PI[0.13,0.56].

d-Value

> pi.d(d = .65,n1 = 50,n2 = 50,rep.n1= 100,rep.n2= 100)
Originalstudy: d = 0.65, N1 = 50, N2 = 50, 95% CI[0.25,1.05]
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Replicationstudy: N1 = 100, N2 = 100
Predictioninterval:95% PI[0.16,1.14].

Discussion

Replication research is on the rise and a major problem faced by replication researchers is how
to decide if the results of a replication are reasonable given the results of a previous study. Arti-
facts such as sampling error make it so that even the most exquisitely executed and designed
studies can be poor reflections of the underlying truth. Consequently, results are expected to
vary across replications. Given that variability in results is expected,what range of values is per-
missible in a replication? The prediction interval is a way to illustrate what range of results can
be expected between studies due to sampling error.

Our work extends the literature by deriving prediction interval formulas for means, correla-
tions, and d-values that allow for sample sizes differences between the original and replication
studies.We addressed the challenge of asymmetrical sampling distributions by deriving formu-
las based on Zou’s [34] modified asymptotic method. This allows us to calculate prediction
intervals for correlations and d-values. Additionally, we created an R package and website to
facilitate easy calculation of these intervals.

To increase researchers intuitive understanding of the prediction interval (and illustrate it
behaves as we claim) we conducted a series of capture simulations. As discussed previously,
confidence intervals are frequently misunderstood and often interpreted as prediction intervals
(i.e., the confidence-levelmisconception). Consequently, a key component of our capture tests
simulations was contrasting the performance of the prediction interval against that of a tradi-
tional confidence interval constructed around a sample mean or effect size estimate. We hope
that by presenting these simulations we will increase intuitive understanding of both the pre-
diction interval and the confidence interval. These simulations illustrate the prediction inter-
val’s ability to consistently capture replication results 95% of the time for each statistic (mean,
r, d-value) across a range of sample size configurations, and population effect sizes. In contrast,
the 95% confidence interval around the original study’s estimate demonstrated inconsistent
performance capturing different percentages of replication results depending on sample size
configurations.

In addition to the prediction interval’s ability to accurately capture 95% of replication results
that are due to sampling error, the prediction interval has a number of desirable characteristics
that are important to highlight. The prediction interval is quantitative, which reduces the need
for subjectivity when interpreting replications. It is also easy and intuitive to interpret, which
reduces the likelihood that it will be misinterpreted and incorrectly applied. The prediction
interval is calculable before a replication study is run, which means its calculation and applica-
tion will be free of post hoc biases.

We note, however, that a prediction interval should be applied in a thoughtful, rather than
rule-basedway, when reconciling a replication result with the original study. If the sample sizes
of the original and replication study are more or less similar then interpretation of the predic-
tion interval is relatively straight forward as discussed above. However, to the extent that the
sample size for the replication study is substantially larger than the original study then the pre-
diction interval should be interpreted in a more nuanced manner. Consider a scenario where a
small sample size original study (e.g., r = .30,N = 50) is followed by a very large sample size rep-
lication study (e.g., r = .04,N = 1000). Here the prediction interval for the original study is
PI[.02, .54] and the replication correlation, .04, clearly falls within the prediction interval. The
fact that the replication correlation, .04, falls within the prediction interval indicates that this
much weaker replication correlation may well have occurred due to random sampling alone.
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Although this is an accurate conclusion, it might not be wise to classify this replication as a
“success”. Why not?

Simply put, classifying the r = .04 replication as a success implicitly gives toomuch weight
to the original study that observed a moderate effect (r = .30) based on a very small sample size
(N = 50). Calling this replication study a success suggests that the original r = .30 effect size esti-
mate was accurate. However, the replication effect size (r = .04) seemsmore likely to provide
an accurate estimate of the population correlation given the substantially larger sample size
(N = 1000; a 20-fold increase). Consequently, in this scenario, the best conclusion may be that
there is a weak relation, as indicated by the replication study, and that the original study pro-
vided little information.

When interpreting prediction intervals, it is important to keep in mind that the width of the
prediction interval is dependent on the sample sizes of both the original and replicating studies.
If the sample size of either study is small, the prediction interval will be wide. Consequently,
when sample sizes differ substantially across the original and replication studies, interpretation
of replication as a success or failure needs to be done in a thoughtful and well-reasoning way
that considers the relative sample sizes of the two studies.

Implications of the Prediction Interval for Programmatic Researchers

We expect that individual researchers conducting programmatic research may benefit from the
prediction interval. Consider the scenario in which a researcher begins to investigate a new
topic and comes across an interesting finding. A natural next step for the researcher may be to
run a follow-up study. If the follow-up produced an effect that deviates substantially from the
original study, the researcher might be tempted to abandon research in this new area. In con-
trast, if this same researcher calculated a prediction interval before conducing the second
study, s/he might have a very different reaction to the second finding if s/he could conclude,
using the prediction interval, that it was not inconsistent with the first finding. Indeed, in this
scenario, the researcher may bemore motivated to conduct additional research. In this context,
the prediction interval can be used to help researchers operationalize the effect of sample size
on the expected variability of results. Specifically, if a prediction interval is computed and is
uncomfortably wide, a researcher can increase the sample size of the replication study to nar-
row the interval. The ease of calculating the prediction interval means that many different sam-
ple size configurations can be explored. We hope that this use of prediction intervals will be of
substantial value to programmatic researchers moving forward.

Implications of the Prediction Interval for Registered Replications

The most important implication of the prediction interval is that it can aid in the empirical
interpretation of registered replication results. Critically, the prediction interval can be calcu-
lated during the planning stage of replication research. This allows researchers, and registered
replication reviewers, to recognize the range of results that are possible due to sampling error
alone prior to conducting a replication. We suspect a priori use of the prediction interval by
registered replication reviewersmay result in requests for increased replication sample sizes.
Ideally, the authors of replication studies would include the prediction interval, but even if they
did not, the replication reviewers could calculate it using the tools we have provided. Specifi-
cally, replication reviewers would only need to enter the original effect size (r or d), original
sample size, and the proposed replication sample size into our website or R package to obtain
the prediction interval.
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Conclusion

We have presented the prediction interval as a way to gauge, before a replication is conducted,
how much the replication result may deviate from the original study, due to sampling error
alone. The application of the prediction interval to replication research will allow researchers
to objectively assess if the result of a replication is statistically consistent or inconsistent with
the original finding. Given the history of researchers underestimating the impact of sampling
error [45] prediction intervals are a useful tool for calibrating expectations around the preci-
sion of interpreting replication research. The prediction interval provides researchers with an
objective statistic for interpreting replication results.
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