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Abstract
Analytical buckling models are important for down-hole operations to ensure the structural

integrity of the drill string. A literature survey shows that most published analytical buckling

models do not address the effects of inclination angle, boundary conditions or friction. The

objective of this paper is to study the effects of boundary conditions, friction and angular

inclination on the helical buckling of coiled tubing in an inclined wellbore. In this paper, a

new theoreticalmodel is established to describe the buckling behavior of coiled tubing. The

buckling equations are derived by applying the principles of virtualwork andminimum

potential energy. The proper solution for the post-buckling configuration is determined

based on geometric and natural boundary conditions. The effects of angular inclination and

boundary conditions on the helical buckling of coiled tubing are considered.Many signifi-

cant conclusions are obtained from this study. When the dimensionless length of the coiled

tubing is greater than 40, the effects of the boundary conditions can be ignored. The critical

load required for helical buckling increases as the angle of inclination and the friction coeffi-

cient increase. The post-buckling behavior of coiled tubing in different configurations and

for different axial loads is determinedusing the proposed analytical method. Practical exam-

ples are provided that illustrate the influence of the angular inclination on the axial force.

The rate of change of the axial force decreases with increasing angular inclination.More-

over, the total axial friction also decreases with an increasing inclination angle. These

results will help researchers to better understand helical buckling in coiled tubing. Using this

knowledge, measures can be taken to prevent buckling in coiled tubing during down-hole

operations.

Introduction
Coiled tubing is widely used in drilling for oil or gas. The success or failure of typical down-
hole operations primarily depends on whether the coiled tubing will buckle [1]. Therefore,
research on buckling behavior in coiled tubing is verymeaningful.
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Based on certain simplifications, scholars have conductedmany studies on the buckling of
drill strings. However, the effects of friction, angular inclination, boundary conditions, and
gravity have often been ignored. The first paper concerning the helical buckling of a drill string
in a vertical well relied on the principle of minimum potential energy and was published by
Lubinski [2]. Bogy and Paslay [3] studied the stability of a pipe constrained in an inclined cyl-
inder by applying the principle of virtual work. In this way, the critical load for sinusoidal buck-
ling was obtained. Dawson and Paslay [4] determined an approximate solution for the linear
buckling of a pipe constrained in an inclined hole. Notably, the buckling behavior of a tubular
string in an inclined wellbore is more complicated than that in a horizontal well. Huang and
Pattillo [5] obtained an analytical solution for helical buckling without considering the effects
of friction using the Rayleigh-Ritzmethod.Mitchell [6–8] obtained buckling solutions for
extended reach wells and determined the stability criteria associated with helical buckling. Pat-
tillo and Cheatham [9] studied the helical buckling behavior of a circular column confined in a
vertical well and obtained the force-pitch relationship for axial loading.Mitchell [10] derived
an analytical solution for the buckling of a circular column constrained in a horizontal well-
bore. The effective boundary conditions on helical buckling were obtained while neglecting
friction.Kyllingstad and He [11] researched the critical load for the helical buckling of coiled
tubing constrained in a curvedborehole and determined the effect of the well curvature on the
critical load. Cunha and Miska [12] determined the critical load ignoring friction, gravity and
torque. Liu and Gao [13] investigated the critical force for sinusoidal buckling and helical buck-
ling without considering friction, and an approximate analytical solution was obtained.Wang
et al. [14] investigated the buckling behavior model for a tube in an inclined well by applying a
discrete singular convolution method. The results showed that helical buckling will occur when
the axial load exceeds the critical load. McCann et al. [15] experimentally investigated the heli-
cal buckling of a horizontal rod in a pipe. The effects of gravity, torsion, and axial compression
on buckling for an oil drill pipe constrained in a horizontal cylinderwere experimentally stud-
ied by Wicks et al. [16]. Yinchun Chen et al. [17] investigated the axial force transfer when the
coiled tubing constrained in a horizontal wellbore. The experimental results indicated that
coiled tubing’s axial force transfer efficiency is reduced with the growth of annular clearance.
Feng Guan et al. [18] the mechanical behavior of coiled tubing when it is in a helical buckling
state. The experimental results show that the pipe deformation is advanced with the growth of
the axial force. Deli Gao et al. [19] obtained the effect of residual bending. They pointed out
that the residual bending of coiled tubing makes it easier to take helical buckling. J.T. Miller
et al. [20–21] researched the effect of friction on the helical buckling of coiled tubing through
the numerical simulations and experiments.Wenjun Hang et al. [22] derived a new buckling
equation of the tubular string when the friction is neglected. The article focuses on the influ-
ence of the boundary conditions on the helical buckling. These findings have been widely used
in engineering practice. However, most of these models ignore the effects of inclination angle,
boundary conditions, and friction, among other factors. In an inclined wellbore, coiled tubing
typically undergoes first sinusoidal buckling and then helical buckling, and friction, inclination
angle, and gravity are all important factors affecting the critical buckling load.
The influences of boundary conditions, friction, and inclination angle are discussed in this

work. The energymethod is used to obtain various critical loads by assuming different buckling
configurations. Firstly, the equations for the buckling of coiled tubing in an inclined wellbore
under an axial load are developed. Secondly, an approximate analytical solution for the static
buckling problem is obtained using the perturbationmethod. Finally, a detailed analysis of the
effects of friction and inclination angle on the critical load for helical buckling is performed.
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Abbreviations: α, lateral angular displacement; FL,
axial compressive force at the top of the coiled tubing
(N); k, number of half-sinusoidal waves; L, length of
the coiled tubing (m); m, dimensionless axial
compressive load; n, dimensionless normal contact
force; f, friction coefficient; rc, clearance between the
coiled tubing and the wellbore (m); N, distributed
normal contact force (N/m); rp, inner radius of the
coiled tubing (m); q, effective weight per unit length of
the coiled tubing (N/m); f1, axial component of the
friction coefficient; Rp, outer radius of the coiled
tubing (m); ς, dimensionless length; u, axial
displacement (m); f2, lateral component of the friction
coefficient; κ⃗, unit vector in the tangential direction; θ,
angular displacement.
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TheoreticalModel

Assumptions

1. We assume that the inner diameter and inclination angle of the wellbore are constants.

2. We assume that the coiled tubing and wellbore are round and maintain continuous contact.

3. We ignore the effects of torque and the heat generated by friction.

4. The clearance (rc, see Fig 1) between the axis of the coiled tubing and the borehole axis is
assumed to be small.

5. The coiled tubing is assumed to remain within the elastic deformation regime.

Geometry andmechanical analysis
Fig 1 shows the coordinate system. At a point O0 on the Z axis, the angular, radial linear, and
axial linear displacements can be expressed as θ(z), r(z), and u(z), respectively. α is used to indi-
cate the angle between the vertical line and the Z axis. u represents the axial displacement from
the load end to the bottom end of the coiled tubing. The vector ro0 ðzÞ represents the spatial
position of the coiled tubing’s axis.

ro0 ðzÞ ¼ rcosy i!þ rsiny j!þ ðz � uÞ k
!
: ð1Þ

The forces acting on the coiled tubing include the compressive force FL, the normal contact
force N, the friction force f, and the weight q of the coiled tubing and the fluid contained
therein.We assume that the axial displacement of the coiled tubing at z = 0 is zero. ua(z)

Fig 1. Coiled tubing in an inclinedwellbore (side view).

doi:10.1371/journal.pone.0162741.g001
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represents the displacement induced by the axial force. ub(z) represents the displacement
caused by buckling or lateral bending. Therefore, the total axial displacement u(z) is

uðzÞ¼ uaðzÞ þ ubðzÞ ¼
1

EA

Zz

0

FðzÞdz þ
1

2

Zz

0

dr
dz

� �2

þ r
dy

dz

� �2
" #

dz; ð2Þ

whereA ¼ pðR2
P � r2

PÞ is the cross-sectional area of the pipe inm
2.

Fig 2 shows the angular displacement (θ(z)) of the pipe. For a coiled tubing and wellbore in
continuous contact, rc represents the distance between the axial line of the coiled tubing and
the Z axis. f1(z) is the axial component of the sliding friction coefficient,whereas f2(z) is the lat-
eral component. The directions of the lateral friction force � f2N k! and k! are opposite when
the coiled tubing slides upward toward the right-hand side (θ(z)> 0), as shown in Fig 2. By
contrast, the directions of the lateral friction force and k! are the same when the coiled tubing
is sliding upward toward the left-hand side (θ(z)< 0)(again, see Fig 2).

Buckling equations for coiled tubing and their normalization
This paper consider the elastic deformation energy (U) and the total work (W) (see Appendix
A in S1 File). The total energy (П) of the system is the difference between the total work and
the elastic potential energy. For r< rc, there is no contact between the coiled tubing and the
borehole wall. We assume that the tubing and wall are in continuous contact. Therefore, the
value of r is a constant, rc, and N(z)> 0. Thus, the total energy is

Q
¼ U � W ¼

EIr2
c

2

ZL

0

d2y

dz2

� �2

þ
dy

dz

� �4
" #

dz �
ZubðLÞ

0

FLdubðLÞ þ
ZL

0

ZubðzÞ

0

f1ðzÞNðzÞduaðzÞdz

�

ZL

0

ZubðzÞ

0

qcosaduaðzÞdz þ qsinarc

ZL

0

ð1 � cosyÞdzþ
ZL

0

signðyÞ
ZyðzÞ

0

f2Nrcdφdz

:ð3Þ

Fig 2. Angular displacement of the coiled tubing.

doi:10.1371/journal.pone.0162741.g002
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When the buckled coiled tubing changes to a new equilibrium configuration, the net work is
converted into elastic potential energy. Therefore, we use the concept of virtual work to deter-
mine δ∏ = 0. Considering the effects of the inclination angle and friction, the buckling equa-
tions are derived as shown in Appendix A in S1 File.
The buckling equation for coiled tubing in an inclined wellbore can be expressed as

EIr2

c
d4y

dz4
� 6EIr2

c
dy

dz

� �2 d2y

dz2
þ r2

c
d
dz

F
dy

dz

� �

þ qsinarcsinyþ f2NrcsignðyÞ ¼ 0: ð4Þ

The first two terms in Eq 4 represent the elastic potential energy. The third term represents
the work done by the axial force. The fourth term arises from the effect of gravity. Finally, the
last term represents the work done by friction.
The normal contact force is

N ¼ EIrc 3
d2y

dz2

� �2

þ 4
dy

dz
d3y

dz3
�

dy

dz

� �4
" #

þ qsinacosyþ Frc
dy

dz

� �2

: ð5Þ

The first term in Eq 5 represents the elastic force. The second term is the gravity component.
The last term represents the effect of the axial force.
The axial force can be expressed as

dFðzÞ
dz
¼ f1ðzÞNðzÞ � qcosa: ð6Þ

Therefore, the axial force is the interaction between the components of gravity and friction.
Given the proper boundary conditions, the normal contact force N(z), the angular displace-

ment θ(z), and the axial force F(z) can be determined by solving Eqs 4–6.When the friction is
zero and α = 90°, Eqs 4 and 5 are identical to the results derived by R. F. Mitchell [6]. Because
these forces remain unchanged for virtual displacements, Eq 3 can be simplified to

Y
¼

EIr2
c

2

ZL

0

d2y

dz2

� �2

þ
dy

dz

� �4
" #

dz �
r2
c

2

ZL

0

FðzÞ
dy

dz

� �2

dz þ rc

ZL

0

signðyÞ
ZyðzÞ

0

f2Ndφdz

� rcqsina

ZL

0

ðcosy � 1Þdz: ð7Þ

By introducing the dimensionless total energyO ¼

Q

rcqsinaL, the dimensionless axial load

m ¼ qsina

EIrcm4, the dimensionless distance B = μz, the dimensionless normal contact force n ¼ N
EIrcm4,
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and the parameter m ¼
ffiffiffiffiffi
F

2EI

p
, Eqs 4–7 can be rewritten as

d4y

dB4
� 6

dy

dB

� �2 d2y

dB2
þ 2

d2y

dB2
þmsinyþ f2nsignðyÞ ¼ 0; ð8Þ

n ¼ 3
d2y

dB2

� �2

þ 4
dy

dB

d3y

dB3
�

dy

dB

� �4

þmcosyþ 2
dy

dB

� �2

; ð9Þ

1

m
dm
dB
¼ mf1nrc � mmcota; ð10Þ

O ¼
1

BL

1

2m

ZBL

0

d2y

dB2

� �2

þ
dy

dB

� �4

� 2
dy

dB

� �2
" #

dBþ
1

BL

1

m

ZBL

0

signðyÞ
ZyðBÞ

0

f2ndWdB

þ
1

BL

ZBL

0

ð1 � cosyÞdB: ð11Þ

BoundaryConditionAnalysis

Natural boundary conditions
For a pinned end at z = z�, the boundary conditions are

yðz�Þ ¼ 0; dyðz�Þ ¼ 0;
d2y

dz2

� �

z�
¼ 0; d

d2y

dz2

� �

z�
¼ 0: ð12Þ

For a fixed end at z = z�, the boundary conditions are

yðz�Þ ¼ 0; dyðz�Þ ¼ 0;
dy

dz

� �

z�
¼ 0; d

dy

dz

� �

z�
¼ 0: ð13Þ

Conditions corresponding to a frictionless,massless pipe that is freed at one end (z = L) and
pinned at the other end are considered and are expressed as follows:

yðzÞ ¼ 0;
d2y

dz2

� �

z¼0

¼ 0;
d2y

dz2

� �

z¼L

¼ 0; and
d3y

dz3

� �

z¼L

¼ 0: ð14Þ

Thus the buckling equation (Eq 4) for coiled tubing in an inclined wellbore can be simplified
to

d4y

dz4
� 6

dy

dz

� �2 d2y

dz2
þ

F
EI

d2y

dz2
¼ 0: ð15Þ

We assume that θ = υz satisfies both the boundary conditions (Eq 14) and the buckling
equation (Eq 15) for υ equal to any real number. The solution u ¼

ffiffiffiffiffi
F

2EI

p
representing the helical

buckling configuration for a piece of coiled tubing was obtained by A. Lubinski in 1962 by
applying the principle of minimum potential energy. However, for the given boundary condi-
tions, we cannot arrive at the same solution. This means that the definitions of the boundary
conditions that were previously used are not appropriate for the problem considered in this
paper. We must further study this problem to obtain the correct solution. In this case, θ = υz
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satisfies the boundary conditions for the free end. However, this solution does not satisfy the
other boundary conditions. For instance, it does not correspond to the conditions for fixed
and pinned ends. Therefore, at the loading end (z� = L), we arrive at θ(L) = υL 6¼ 0 and
dy

dz

� �

z¼L ¼ u 6¼ 0.
In this paper, the axial load work and the elastic deformation energy are given as shown

in Appendix B in S1 File. Substituting Eqs (A-10), (A-13), (B-2), and (B-4) into d
Q
¼

dUb � dWFz;b � dWG2
� dWf2

¼ 0 yields

d
Q
¼

ZL

0

d4y

dz4
� 6

d2y

dz2

dy

dz

� �2

þ
d
dz

F
EI

dy

dz

� �

þ
qsina

EIrc
sinyþ

f2NsignðyÞ
EIrc

" #

dydz

þ
d2y

dz2
d

dy

dz

� �� �L

0

�
d3y

dz3
þ

F
EI

dy

dz
� 2

dy

dz

� �3
 !

dy

" #L

0

¼ 0

: ð16Þ

Because δθ is arbitrary, δ∏ = 0 requires that the buckling equation for the coiled tubing and
the natural boundary conditions must satisfy the following relationships:

d4y

dz4
� 6

d2y

dz2

dy

dz

� �2

þ
d
dz

F
EI

dy

dz

� �

þ
qsina

EIrc
sinyþ

f2NsignðyÞ
EIrc

¼ 0; ð17Þ

d2y

dz2
d

dy

dz

� �� �L

0

�
d3y

dz3
� 2

dy

dz

� �3

þ
F
EI

dy

dz

 !

dy

" #L

0

¼ 0: ð18Þ

After nondimensionalization, Eq 17 becomes Eq 8, whereas Eq 18 becomes

d2y

dB2
d

dy

dB

� �� �BL

0

�
d3y

dB3
� 2

dy

dB

� �3

þ 2
dy

dB

 !

dy

" #BL

0

¼ 0: ð19Þ

Without considering the effect of friction,Miska analyzed the boundary conditions for a
bottom hole assembly in 1986. However, the natural boundary conditions for this problem
were not investigated. The natural boundary conditions can be expressed as

d2y

dB2

� �

B¼B�

¼ 0; or d
dy

dB

� �� �

B¼B�

¼ 0; ð20Þ

d3y

dB3
� 2

d y

dB

� �3

þ 2
d y

dB

" #

B¼B�

¼ 0 ; or ½dy�
B¼B�
¼ 0: ð21Þ

For instance, d2y

dB2

h i

B¼B�
¼ 0 and ½dy�

B¼B�
¼ 0 are the boundary conditions for a pinned end,

whereas the equations ½dy�
B¼B�
¼ 0 and d dy

dB

� �h i

B¼B�
¼ 0 are the boundary conditions for a

fixed end. The equations d2y

dB2

h i

B¼B�
¼ 0 and d3y

dB3 � 2 dy

dB

� �3

þ 2 dy

dB

� �

B¼B�

¼ 0 are the boundary con-

ditions of the free end. The natural boundary condition can apply to a fixed or a pinned end.
At the same time, the natural condition (Eq 19) must satisfy the solution for the buckling equa-
tion (Eq 17).
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Now, let us analyze the boundary conditions for weightless coiled tubing. Because d2y

dz2 ¼

d3y

dz3 ¼ 0 for any real constants υ and z, d2y

dz2 d dy

dz

� �� �L
0
¼ d3y

dz3 dy
� �L

0
¼ 0. Notably, δθ = Lδυ 6¼ 0 at z = L

and δθ = zδυ = 0 at z = 0. Therefore, u u2 � F
2EI

� �
Ldu ¼ 0 can be determined using Eq 18 because

δυ is not equal to zero. Thus, the following conclusions are obtained: υ = 0 is a trivial solution.
It represents the coiled tubing without any buckling.Meanwhile, u ¼ dy

dz ¼ �
ffiffiffiffiffi
F

2EI

p
is an also

valid, non-trivial solution. This is the same conclusion obtained by Lubinski et al. in 1962.

Critical loads for helical buckling with different boundary conditions
For boundary conditions corresponding to two pinned ends, the total dimensionless energy for
a length of helically buckled coiled tubing constrained in an inclined wellbore at the onset of
helical buckling is derived as follows (see Appendix C in S1 File):

Oh ¼
1

2m
�

pf2
10m

� �

p4

h þ
pf2
3m
�

1

m

� �

p2

h þ
2f2
p
þ 1; ð22Þ

where ph is the angular frequency of the angular displacement.
As helical buckling begins, we can arrive at the following conclusions based on the law of

energy conservation. Part of the work is converted into heat energy by friction. Because the
coiled tubing is raised, part of the energy is also converted into gravitational potential energy.
The rest of the work is converted into elastic deformation energy. Thus, the total energy satis-
fies the relationshipP ¼ Ub � Wf � WG2

� WFb ¼ 0, i.e.,Oh = 0. Therefore,

m ==
pf2
10
� 1

2

� �
p4
h þ 1 �

pf2
3

� �
p2
h

� �
p

2f2 þ p
: ð23Þ

Given a helically buckled coiled tubing, the maximum value ofm is the critical load. The
critical value of ph can be obtained by considering the beginning of helical buckling. Substitut-
ing dm

dph
¼ 0 into Eq 23 yields

ph;crh ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5pf2 � 15

3pf2 � 15

s

: ð24Þ

Boundary conditions corresponding to two pinned ends. We assume that the coiled tub-
ing is slowly sliding. The integer k is used to represent the number of helical buckling points
for a section of coiled tubing of length BL. For the case in which both ends are pinned, we can
determine that θ(BL) = phBL = 2kπ. Substituting ph ¼ 2kp

BL
into both Eqs 23 and 24 yields

m ¼

pf2
10
� 1

2

� �
2kp

BL

� �4

þ 1 �
pf2
3

� �
2kp

BL

� �2
� �

p

2f2 þ p
; ð25Þ

kcrh ¼ max 1; int

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5pf2 � 15

3pf2 � 15

s
BL

2p
þ 0:5

" #( )

: ð26Þ

For a given friction coefficient and dimensionless length, the critical value kcrh can be calcu-
lated using Eq 26. The dimensionless critical loadmcrh for helical buckling can be obtained by

substituting Eq 26 into Eq 25. As BL!1, ph ¼ 2kp

BL
approaches ph;crh ¼

ffiffiffiffiffiffiffiffiffiffiffi
5pf2 � 15

3pf2 � 15

q
. When BL!

1, the value ofmcrh approaches
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mcrh ¼
5p3f 2

2
� 30p2f2 þ 45p

� 36pf 2
2
þ ð180 � 18p2Þf2 þ 90p

: ð27Þ

Boundary conditions corresponding to a free end and a pinned end. In this section,
we consider the boundary conditions corresponding to a length of coiled tubing with a free end
(B = BL) and a pinned end (B = 0). It can be assumed that the form of the helix is θ(B) = phB.
Substituting θ(B) = phB into Eq 19 yields ph = 1. Then, substituting ph = 1 into Eq 22 yields

Oh ¼
7pf2
30m

�
1

2m
þ

2f2
p
þ 1: ð28Þ

Thus, we can apply the law of conservation of energy (Oh = 0) to determine the dimension-
less critical buckling load for helical buckling from Eq 28.

mcrh ¼
15p � 7p2f2
60f2 þ 30p

: ð29Þ

FrictionalAnalysis and Axial Load Transfer
A length of coiled tubing constrained in an inclined wellbore can assume three types of equilib-
rium states: helical, sinusoidal, and straight-lined. Because of the influence of the inclination
angle and axial friction, buckling behavior will initially occur near either the bottom or loading
end. The angle of inclination can be divided into two regimes based on the self-locking angle
due to friction. The maximum axial force will occur near the loading end when the angle of
inclination is greater than the self-locking angle, whereas the maximum axial force will appear
at the bottom end when the angle of inclination is less than the self-locking angle.

The first case of inclination angle
Only a portion of the coiled tubing will form a sinusoidal shape near the loading end when
arctan 1

f � a. Therefore, the next section addresses the case in which arctan 1

f � a.
The first case of compressive force. When

0 < FL < Fcrs ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4:348f 2=3

2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsinaEI=rc

p
, the coiled tubing retains a straight shape. In

this case, θ(z) = 0 is a stable solution. Because the coiled tubing does not undergo sinusoidal
buckling, the contact force N remains constant. When FL is applied at the loading end (z� = L),
the axial force on the coiled tubing at any location can be expressed as

FðzÞ ¼ maxf0; FL þ ðqcosa � fqsinaÞðzL � zÞg: ð30Þ

In the case of FL� (fq sin α − q cos α)zL, the axial force is zero in the section of the coiled tub-
ing where 0 < z � z� ¼ zL �

FL
fqsina� qcosa because of friction.Only when FL> (fq sin α − q cos α)zL

can the axial force be transmitted to the bottom of the coiled tubing (z� = 0). Therefore, the axial
load at the dead end can be expressed as

Fð0Þ ¼ maxf0; FL þ ðqcosa � fqsinaÞzLg: ð31Þ
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The second case of compressive force. When Fcrs� FL< Fcrh, the periodic solution is a
stable solution (see Appendix D in S1 File) and can be expressed as

yðB; tÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � mÞ

3

r

sinB: ð32Þ

It is worth noting that the axial force on the coiled tubing may be a function of time. Substi-
tuting Eq 32 into Eq 9 yields

n ¼
1

6
þ

5m
6
�

17

9
�

41m
18
þ

7m2

18

� �

cos2B �
1þm2 � 2m

18
cosð4BÞ: ð33Þ

Neglecting the periodic terms, the equation for the dimensionless contact force can be sim-
plified to

n ¼
1

6
þ

5m
6
: ð34Þ

Therefore, the axial force on the coiled tubing at any location can be describedby

N ¼
rcF2

24EI
þ

5qsina

6
; ð35Þ

dFðzÞ
dz
¼

frc
24EI

F2 þ
5fqsina

6
� qcosa: ð36Þ

By substituting Eq 35 into Eq 36, the solution for F(z) can be expressed as follows.
For the case of 5

6
f � cota,

FsðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð5f sina � 6cosaÞ

frc

s

tan
z � zL

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð5f sina � 6cosaÞ

EI

r

þ arctan
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð5f sina � 6cosaÞ

s !" #

:ð37Þ

For the case of 5

6
f < cota,

FsðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zL—z

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð38Þ

In the case of F(0)< Fcrs, only a portion of the coiled tubing (zcrs� z� L) will exhibit a
sinusoidal buckling shape near the loading end, whereas the remainder of the coiled tubing
(0� z� zcrs) will retain a straight shape near the bottom of the wellbore. The point at which
sinusoidal buckling is induced (zcrs) in the coiled tubing can be determined by solving Eq 37 or
38. The axial load on the coiled tubing in the straight-line state can be calculated using Eq 39.
Thus, the axial load F(0) at the dead end can be obtained from Eq 40.

FðzÞ ¼ maxf0; Fcrs þ ðqcosa � fqsinaÞðzcrs � zÞg; ð39Þ

Fð0Þ ¼ maxf0; Fcrs þ ðqcosa � fqsinaÞzcrsg: ð40Þ

The third case of compressive force. When FL� Fcrh, part of the coiled tubing is in a heli-
cal buckling state. The helical solution is a stable solution (see Appendix E in S1 File).

yðBÞ ¼ B: ð41Þ
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Substituting Eq 41 into Eq 9 yields

n ¼ 1þmcosB: ð42Þ

Compared to the linear term, the periodic term is very small. Therefore, we can ignore the
periodic term when calculating the axial force. Substituting both Eq 42 and n ¼ N

EIrcm4 into Eq 6
yields

dFðzÞ
dz
¼

frc
4EI

F2 � qcosa: ð43Þ

When FL is applied at the loading end, the axial force on the coiled tubing can be expressed
as

FhðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqcosa

frc

s

tanh
zL � z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqcosa

EI

r

þ arc tanh
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqcosa

s !" #

: ð44Þ

When Fh(0)> Fcrh, the entirety of the coiled tubing is in a helical buckling state. When
Fh(0)< Fcrh, only part of the coiled tubing near the loading end (zcrh< z� zL) is in a helical
buckling state, whereas the section toward the bottom of the coiled tubing (0� z� zcrs) will be
straight or sinusoidal. The point at which sinusoidal buckling is induced (zcrs) in the coiled tub-
ing can be determined by solving Eq 37 or 38. The critical point for helical buckling (zcrh) can
be calculated using Eq 44, as follows:

zcrh ¼ zL � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI

frcqcosa

s

arc tanh
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqcosa

s !

� arc tanh
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqcosa

s !" #

: ð45Þ

In the case of Fh(0)< Fcrh, only part of the pipe is in a helical buckling state. Therefore, we
first calculate F�s ðzÞ.
For the case of 5

6
f � cota,

F�s ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð5f sina � 6cosaÞ

frc

s

tan
z � zcrh

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð5f sina � 6cosaÞ

EI

r

þ arctan
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð5f sina � 6cosaÞ

s !" #

:ð46Þ

For the case of 5

6
f < cota,

F�s ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zcrh—z

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð47Þ

If F�s ð0Þ > Fcrs, this indicates that the remainder of the coiled tubing experiences sinusoidal
buckling and Fð0Þ ¼ F�s ð0Þ. Otherwise,we must calculate z

�
crs using Eq 48 or 49.

When 5

6
f � cota,

Fcrs ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð5f sina � 6cosaÞ

frc

s

tan
z�crs � zcrh

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð5f sina � 6cosaÞ

EI

r

þ arctan
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð5f sina � 6cosaÞ

s !" #

:ð48Þ

When 5

6
f < cota,

Fcrs ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zcrh—z�crs

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð49Þ

The coiled tubing is in a sinusoidal buckling state over the interval ðz�crs; zcrhÞ. Therefore, the
axial load on the coiled tubing over the interval ðz�crs; zcrhÞ can be determined by solving Eq 46
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or 47. Meanwhile, the coiled tubing remains straight over the interval ð0; z�crsÞ, and the axial
load on the coiled tubing over this interval can therefore be determined by solving Eq 50. In
this case, the axial force at the dead end can be determined using Eq 51.

FðzÞ ¼ maxf0; Fcrs þ ðqcosa � fqsinaÞðz�crs � zÞg; ð50Þ

Fð0Þ ¼ maxf0; Fcrs þ ðqcosa � fqsinaÞz�crsg: ð51Þ

The total axial friction can be expressed as

DF ¼ FL � Fð0Þ: ð52Þ

The second case of inclination angle
The first case of compressive force. Now, let us analyze the case of a < arctan 1

f . When
0< FL< Fcrs − (q cos α − fq sin α)zL, the coiled tubing takes on a straight shape and θ(z) = 0 is
a stable solution. Therefore, the contact force between the pipe and wellbore remains at a con-
stant value. When FL is applied at the loading end, the axial force over the interval (0< z� zL)
is

FðzÞ ¼ FL þ ðqcosa � fqsinaÞðzL � zÞ: ð53Þ

In this situation, the total dissipated axial force is a constant.

DF ¼ Fð0Þ � FL ¼ ðqcosa � fqsinaÞzL: ð54Þ

The second case of compressive force. When Fcrs − (q cos α − fq sin α)zL� FL< Fcrs −
(q cos α − fq sin α)(zL − zmax), only part of the coiled tubing ð0 < z � z0

crsÞ assumes a sinusoidal
buckling shape near the bottom end. The parameter zmax represents the maximum length
when the coiled tubing is in buckling state. The remainder of the coiled tubing retains a straight
shape. The points zmax and z0

crs can be calculated using Eqs 55 and 56, respectively:

Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zmax
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
Fcrs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

; ð55Þ

and

z0

crs ¼ zL �
Fcrs � FL

qcosa � fqsina
; ð56Þ

where z0
crs is the position of buckling-induced.

Over the interval ð0; z0
crsÞ, the coiled tubing takes on a sinusoidal shape, which can be deter-

mined from the axial force along the tubing.

F�crsðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
z0
crs—z
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
Fcrs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð57Þ

Over the interval ðz0
crs; zLÞ, the coiled tubing assumes a straight-line shape, and the axial load is

FðzÞ ¼ maxf0; FL þ ðqcosa � fqsinaÞðzL � zÞg: ð58Þ
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The third case of compressive force. When Fcrs − (q cos α − fq sin α)(zL − zmax)� FL<
Fcrs, only the part of the coiled tubing near the bottom end (0< z� zcrh,1) takes on a helical
shape, whereas the middle section (zcrh,1< z� zcrs,1) forms a sinusoidal shape. Near the load-
ing end (zcrh,1< z� zL), the coiled tubing exhibits a straight-line shape. The points zcrs,1 and
zcrh,1 can be obtained by solving Eqs 59 and 60, respectively.

zcrs;1 ¼ zL �
Fcrs � FL

qcosa � fqsina
; ð59Þ

Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zcrs;1—zcrh;1

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
Fcrs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð60Þ

Similarly, the coiled tubing takes on a helical shape over the interval (0, zcrh,1). Therefore, the axial load
along this section of the coiled tubing is

Fcrh;1ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqcosa

frc

s

tanh
zcrh;1 � z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqcosa

EI

r

þ arc tanh
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqcosa

s !" #

: ð61Þ

Over the interval (zcrh,1, zcrs,1), the coiled tubing takes on a sinusoidal shape and the axial
force is

Fcrs;1ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zcrs;1 � z

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
Fcrs

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð62Þ

Over the interval (zcrs,1, zL), the coiled tubing remains straight and the axial force is

FðzÞ ¼ maxf0; FL þ ðqcosa � fqsinaÞðzL � zÞg: ð63Þ

The fourth case of compressive force. When FL> Fcrs, the pipe takes on a helical shape
near the bottom end (0< z� zcrh,2). However, the remainder (zcrh,2< z� zL) assumes a sinu-
soidal shape. The point zcrh,2 can be calculated from

Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zL � zcrh;2

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð64Þ

Over the interval (0, zcrh,2), the coiled tubing takes on a helical shape and the axial force is

Fcrh;2ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqcosa

frc

s

tanh
zcrh;2 � z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqcosa

EI

r

þ arc tanh
Fcrh

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqcosa

s !" #

: ð65Þ

Over the interval (zcrh,2, zL), the coiled tubing is sinusoidal in shape and the axial force is

Fcrs;2ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqð6cosa � 5f sinaÞ

frc

s

tanh
zL � z

12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqð6cosa � 5f sinaÞ

EI

r

þ arc tanh
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqð6cosa � 5f sinaÞ

s !" #

:ð66Þ

The fifth case of compressive force. When FL> Fcrh, the entirety of the coiled tubing
takes on a helical shape. The axial load along the coiled tubing can be expressed as

Fcrh;3ðzÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIqcosa

frc

s

tanh
zL � z

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frcqcosa

EI

r

þ arc tanh
FL

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
frc

EIqcosa

s !" #

: ð67Þ
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In the case of α< arctan(1 / f), the total axial friction is

DF ¼ Fð0Þ � FL: ð68Þ

Results and Discussion

Effects of the boundary conditions and friction on the dimensionless
critical load
For the pinned-end boundary conditions, the dimensionless axial load can be expressed as in
Eq 25. Whenm<mcrh, the number of helical turns k increases from kcrh to kcrh + 1, kcrh + 2,
etc., as the dimensionless axial load decreases. The dimensionless axial loadm corresponding
to k> kcrh can be calculated by replacing k in Eq 25 with kcrh + 1, kcrh + 2, etc.
Fig 3 shows the relationship between the dimensionless axial force on the coiled tubing and

the number of helical turns. For a given dimensionless length of BL = 100, the dimensionless
critical load ismcrh = 0.243 when f2 = 0.3. The critical number of the helical turns kcrh is 15.
Whenm decreases to 0.234, the number of helical turns increases to 16, and whenm further
decreases to 0.214, the number of helical turns increases to 17. The corresponding relationships
for the cases of f2 = 0, f2 = 0.1, and f2 = 0.2 are also clearly illustrated in Fig 3. For a given value
ofm, the number of helical turns k decreases as the friction coefficient increases.
As seen from Fig 4, the critical load for helical buckling is affected by the friction coefficient

and the length of the coiled tubing. The dashed lines in Fig 4 represent the dimensionless criti-
cal loads for helical buckling in coiled tubing of infinite length (Eq 27). For a given friction
coefficient, the dimensionless critical load approaches a stable value as BL!1. Therefore, for
practical engineering applications, we can ignore the influence of the boundary conditions
when BL> 40. When BL!1, the dimensionless critical loadm decreases as the friction coeffi-
cient increases.
There is an inverse relationship between the dimensionless axial loadm and the axial load F.

In fact that, friction should increase the load from an intuitional perspective. The critical load
is advanced with the growth of friction coefficient. If we want to prevent the buckling, we hope
to increase the friction coefficient.
A comparison between the critical loads (Eqs 27 and 29) for two different sets of boundary

conditions is shown in Fig 5. When f2< 0.3, Eqs 27 and 29 give nearly the same critical load
for helical buckling, whereas a difference appears between the results of Eqs 27 and 29 for f2�
0.3. This may be because the periodic terms were ignored during the calculation process (see
Appendix E in S1 File). Another possible reason is that the boundary conditions for two pinned
ends were applied to calculate the total energy.

Effect of angular inclination on the critical load for helical buckling
In the case of the boundary conditions for two pinned ends, the critical load for helical buckling
can be expressed using the termsm ¼ qsina

EIrcm4 and m ¼
ffiffiffiffiffi
F

2EI

p
in Eq 27.

Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qsinaEI½� 36pf 2

2
þ ð180 � 18p2Þf2 þ 90p�

rcð5p3f 2
2
� 30p2f2 þ 45pÞ

s

: ð69Þ

Here, an example of a 31
2= —inch length of coiled tubing in a 63

4= inch inclined wellbore is
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considered. In this example, E = 2.1×1011 (N/m2), I = 1.81×10−6 (m4), rc = 0.041272(m),

q = 206.0(N/m), and Fcrh ¼ 87113:4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½90p� 36f 2

2
pþf2ð180� 18p2Þ�sinðaÞ

45p� 30f2p2þ5f 2
2

p3

r

(see Fig 6). Fig 6 shows the com-

bined effect of the friction coefficient and the inclination angle on the critical load for helical
buckling.
For f2 = 0.3, the critical load for helical buckling is Fcrh ¼ 176593:7

ffiffiffiffiffiffiffiffiffi
sina
p

. The relationship
between the critical axial force (Fcrh) and the inclination angle (α) is shown in Fig 7. The critical
load (Fcrh) is positively correlated with the angle of inclination (α), meaning that the critical
load for helical buckling is affected by the contact force, because an increase in the angle of
inclination causes the contact force to increase. For α = π / 4, the critical load for helical buck-
ling is Fcrh ¼ 78415:8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½5pþ f2ð10 � p2Þ � 2f 2

2
p�=ð9 � 6f2pþ f 2

2
p2Þ

p
. Similarly, the relation-

ship between the critical load (Fcrh) and the lateral friction coefficient (f2) is shown in Fig 8.
The critical load for helical buckling increases with an increasing the friction coefficient.
The buckling shape depends on the ratio of r / R. Thus, this ratio will impact on the critical

load for helical buckling. The parameter rc is the distance which is between the axis of the
coiled tubing and the borehole axis. Therefore, we can discuss the impact of the distance rc on
the critical load for helical buckling. Eq 27 shows that the critical load will increase along with
the decrease of the distance rc. If R is equal to r, then rc is zero. The critical load for helical buck-
ling will tend to infinity. The buckling will never happen. Therefore, we usually want to use the
column diameter as large as possible in the project.

Fig 3. The relationship between the dimensionless axial force of the coiled tubingand the number of helical
turnswith the different frictioncoefficient.

doi:10.1371/journal.pone.0162741.g003
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From the analysis above, it is easily seen that the friction coefficient, the distance rc, and the
inclination angle are important factors. Therefore, we must consider these factors when we
designed the well trajectory and downhole operation.
When α = 90° and f2 = 0, the inclined wellbore degenerates into a horizontal wellbore, and

Eq 69 becomes Fcrh ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qEI=rc

p
. This result is the same as that obtained by Chen et al. Many

different solutions for helical buckling under different conditions have been derived by many
investigators [12, 23, 24,25]. Fig 9 clearly illustrates these differences. Gao and Miska [23],
Miska and Cunha [12], Wu et al. [24], and Chen et al. [25] have performed detailed studies of
the problem of the critical load for helical buckling. Their conclusions are, respectively,

Fcrh ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30ðpþ 2f Þ EIq
prcð15 � 7pf Þ

s

; Fcrh ¼ 4

ffiffiffiffiffiffiffiffiffi
2EIq
rc

s

; Fcrh ¼ ð8 � 2
ffiffiffi
2
p
Þ

ffiffiffiffiffiffiffi
EIq
rc

s

; and Fcrh

¼ 2

ffiffiffiffiffiffiffiffiffi
2EIq
rc

s

: ð70Þ

The conclusions of Chen et al. (1990), Wu et al. (1993), and Miska and Cunha (1995) were
derived without considering friction. Therefore, these critical load values are not affected by
the friction coefficient, and the results appear as horizontal lines. By contrast, the effect of fric-
tion was considered by Gao et al. as well as in the present work. When f2� 0.5, the result

Fig 4. The relationship between the dimensionless critical load for helical buckling and the dimensionless
lengthwith the different frictioncoefficient.

doi:10.1371/journal.pone.0162741.g004
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obtained by Gao et al. is in good agreement with that of this paper. When f2 = 0, the results
reported by Chen et al. and Gao et al. are both consistent with the result derived in this paper.

Effect of the inclination angle on the axial load during helical buckling
The contact force between the coiled tubing and the wellbore is a constant when the coiled tub-
ing remains straight. However, the contact force increases with increasing axial load in buckled
coiled tubing. The analytical solutions for the axial load in the different post-buckling configu-
rations are derived above. From the loading end to the dead end, the axial load slowly decreases
as a result of frictionwhen arctan 1

f � a, whereas the axial load on the coiled tubing gradually
increases when a < arctan 1

f .
To investigate the effect of the inclination angle on the axial load during helical buckling,

the axial load is analyzed for these two load cases (arctan 1

f � a and a < arctan 1

f ). As an exam-
ple, a 31

2= inch coiled tubing in a 63
4= inch inclined wellbore is considered. The length of the

coiled tubing is 1000 m. In this example, E = 2.1×1011 (N/m2), I = 1.81×10−6 (m4), q = 206.0
(N/m), rc = 0.041272(m), and the friction coefficient is f = 0.3. The force at the loading end is
FL = 85 kN. The inclination angle satisfies a < arctan 1

f . The axial load on the helically buckled
coiled tubing can be obtained in accordance with the above analysis.
Fig 10 illustrates the distinction between the different axial load conditions. The solid lines

in Fig 10 represent cases in which the shape of the coiled tubing becomes helical, whereas the
dashed lines represent the axial force conditions under which the coiled tubing undergoes sinu-
soidal buckling or remains in an unbuckled state. The following conclusions can be drawn

Fig 5. The effects of frictioncoefficient on the dimensionless critical load for helical buckling with different
boundaryconditions.

doi:10.1371/journal.pone.0162741.g005
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from an analysis of Fig 10. Firstly, as the angular inclination (α) increases, the critical location
for helical bucklingmoves closer to the bottom of the wellbore. Secondly, as the angular incli-
nation increases, the axial force increases nonlinearly from the loading end to the other end,
with a continually decreasing growth rate. Finally, as the angular inclination increases, the axial
force at the bottom is gradually reduced. Therefore, the total axial friction decreases as the
angular inclination grows.
In summary, the angular inclination has a great impact on the helical buckling of coiled tub-

ing.With the increase of angular inclination, the length of coiled tubing which is a helical
shape is becoming increasingly shorter. The reason for this phenomenon is that the z axis com-
ponent of gravitational force has changed. According to these findings, we could help better
predict the helical buckling of coiled tubing. We can clearly understand the forces downhole
string. This has important implications for the prevention of the fails of downhole operation.

Conclusions

1. Equations for the buckling of coiled tubing under the influence of an axial load were devel-
oped in this work. The buckling behavior of the coiled tubing was illustrated by solving
strongly nonlinear ordinary differential equations.

2. An analytical solution to the coiled tubing buckling equation was obtained for a helical
post-buckling configuration using the perturbationmethod. Thus, a complete quantitative

Fig 6. The combinedeffects of frictioncoefficient f2 and inclination angle α on the critical load for helical
buckling Fcrh.

doi:10.1371/journal.pone.0162741.g006
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Fig 7. Variation in the critical load for helical buckling Fcrh as a functionof angle of inclination α.

doi:10.1371/journal.pone.0162741.g007

Fig 8. Variation in the critical load for helical buckling Fcrh as a functionof lateral frictioncoefficient f2.

doi:10.1371/journal.pone.0162741.g008
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description of the helical buckling behavior of coiled tubing in an inclined wellbore was
derived.

3. The effect of the boundary conditions on the helical buckling of coiled tubing is very small.
For practical engineering applications, it can be ignored when the dimensionless length of
the coiled tubing is greater than 40. Moreover, the influence of the boundary conditions on

Fig 9. The effect of frictioncoefficient f2 on the critical load for helical buckling Fcrh.

doi:10.1371/journal.pone.0162741.g009

Fig 10. Variation of the axial load F(z) as functions of the depth z and the angular inclination α.

doi:10.1371/journal.pone.0162741.g010
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the dimensionless critical load can be ignored when f2< 0.3. The effects of lateral friction
and angular inclination on the critical load were obtained for a helical configuration by ana-
lyzing the critical load. The critical load for helical buckling increases with increasing lateral
friction and with an increasing angle of inclination.

4. The axial force was studied for different inclination angles. It was determined that as the
angle of inclination increases, the length of the coiled tubing that is in the helical buckling
state decreases, the axial force varies gradually, and the total axial friction decreases.
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