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Abstract
Circulating Anti-Müllerianhormone (AMH) is derived from the gonads, and is a mixture of

the prohormone (proAMH), which does not bind to AMH receptors, and receptor-competent

AMH. The functions of a hormoneare partially defined by the factors that control its levels.

Ovarian reserve accounts for 55~75% of the woman-to-woman variation in AMH level, leav-

ing over 25% of the biological variation to be explained. Pregnancy has been reported to

decrease circulating AMH levels, but the observations are inconsistent, with the effect of

pregnancy on the bioactivity of AMH being unknown. We have therefore undertakena longi-

tudinal study of circulating proAMH and total AMH during pregnancy. Serum samples were

drawn at 6–8 gestational time-points (first trimester to post-partum) from 25 healthy women

with prior uneventful pregnancies. The total AMH and proAMH levels were measured at

each time-point using ELISA. The level of circulating total AMH progressively decreased

during pregnancy, in all women (p<0.001). On average, the percentage decline between

the first trimester and 36–39 weeks’ gestation was 61.5%, with a standard deviation of

13.0% (range 30.4–81.2%). The percentage decline in total AMH levels associated with

maternal age (R = -0.53, p = 0.024), but not with the women’s first trimesterAMH level. The

postpartumtotal AMH levels showed no consistent relationship to the woman’s first trimes-

ter values (range 31–273%). This raises the possibility that a fundamental determinantof

circulating AMH levels is reset during pregnancy. The ratio of proAMH to total AMH levels

exhibited little or no variation during pregnancy, indicating that the control of the cleavage/

activation of AMH is distinct from the mechanisms that control the total level of AMH.
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Introduction
Anti-Müllerian hormone (AMH) is a member of the TGFβ superfamily, which are pleiotropic
context-dependent regulators [1]. The AMH in the circulation is of gonadal origin [2],
although paracrine production of AMH occurs in the uterus, mature brain and possibly other
sites [3, 4]. TGFβ ligands are synthesised as proproteins, which are enzymatically cleaved at the
site of synthesis. Some proproteins are bioactive [5, 6], althoughmost are simply precursors,
with bioactivity only occurring after cleavage. The cleavage of proAMH appears to be physio-
logically regulated as the extent of cleavage varies with the stage of development in a gender-
specificmanner, with additional variation occurring between similar individuals [7, 8]. In all
instances, the cleavage of proAMH is inefficient, with circulating AMH being a mixture of both
AMHN,C and proAMH [7]. Commercial AMH ELISAs do not distinguish between proAMH
and AMHN,C, and therefore provide an aggregate measure of two AMH species (Total AMH)
[9]: one of which is bioactive on AMH receptors (AMHN,C), with the bioactivity of the other
(proAMH) being unknown, beyond its inability to activate AMH receptors [10]. ProAMH is
not cleaved by human serum in vitro [9], and no AMHN,C accumulates in the circulation after
intravenous injection of proAMH to mice [11]. This suggests that the extent of cleavage of cir-
culating AMH is regulated by the state of the gonads [11].

AMH derives its name from its role in the regression of the uterine precursor in male
embryos [12]. AMH has a broad role in the generation of the male phenotype [13], and imma-
ture males have uniquely high levels of AMH [14]. However, the AMH gene appears to have
evolutionary-conservedroles in both sexes [13, 15]. In females, AMHmodules the ovarian
response to follicle stimulating hormone (FSH) [16], but it is unknownwhether the underlying
mechanism involves a local paracrine action of AMH or whether the ovarian functions of
AMH are mediated by circulating AMH. AMH receptors are present in the uterus [3, 17], the
breast [18] and other tissues, suggesting that circulating AMHmay have physiological func-
tions that are currently unknown.

The physiological functions of hormones are partly defined by the factors that determine
their levels. Ovarian reserve is the major determinant of AMH levels in women, with AMH
being extensively studied as a biomarker for this reason [19]. However, variation in antral follicle
count only accounts for 55~75% of the woman-to-woman variation in AMH levels [20–22],
indicating that other determinants of circulatingAMH levels exists. Vitamin D status [23, 24]
and the stage of the ovarian cycle [25] are determinants of circulating AMH levels, but their
influence is minor. Pregnancy has been reported to decrease circulating AMH levels, but the
observations are inconsistent and only include partial time courses [26–30]. We have therefore
undertaken a longitudinal study to verify if and when AMH levels decline during pregnancy,
and whether the cleavage state / bioactivity of maternal circulating AMH varies during gestation.

Materials andMethods

Participant selection
The study sample included 25 healthy women with a history of at least one uneventful term
pregnancy prior to the index pregnancy, who had participated in another observational study
of pregnancy reported elsewhere [31]. Participants were only selected for this study if they had
at least 6 serum samples drawn throughout the index pregnancy and post-partum period.All
pregnancies were uneventful and resulted in live-term babies. Demographic data, gestational
outcome, and hematocrit measures in each trimester were collected by chart review. Fetal sex
was not an experimental variable, but has been recorded in Table 1, as the relationship between
maternal AMH levels and fetal sex is a matter of current interest [27, 32]. All participants
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provided written informed consent. The Institutional ReviewBoard at Mount Sinai Hospital,
Toronto, Canada approved the study. The study conforms to the principles expressed in the
Declaration of Helsinki.

Sample collection and handling
Serumwas collectedmonthly starting at the first prenatal visit following a positive βhCG test,
between 11.5 and 12.5 weeks gestation, until 36–39 weeks gestation. Gestational timing and
fetal heartbeat were confirmed by Doppler ultrasound at the first visit. Whenever possible, a
final post-partum serum sample was collected.All samples were stored at -80°C until tested.
Samples had been thawed and frozen twice: once during the previous study [31] and once to be
aliquoted and shipped on dry ice from Toronto to Otago for AMH testing. AMH is stable
throughmultiple freeze-thaw cycles [33, 34].

AMH assay
Total AMHwas measured in duplicate using the AMHGen II assay (BeckmanCoulter, Cat#
A79765, following field safety notice FSN-20434-3, June 2013) according to the manufacturer’s

Table 1. Characteristics of the participants.

Age Total AMH (pmol/L) PP/1st trimester (%) Fetal sex BF pp

1st trimester 3rd trimester PP AMH Hematocrit

Woman with no significant PP AMH rebound

33 17.7 5.7 5.5 31 104.6 M N 9

42 10.7 2.8 3.8 36 102.6 M Y 14

37 38.2 14.0 18.9 49 112.2 F N 7

37 5.5 2.1 2.8 51 112.0 M Y 6

38 9.4 3.1 5.3 57 120.6 F Y 6

Woman with a PP rebound to near 1st trimester value

29 2.3 1.6 2.2 98 92.7 F Y 8

37 29.9 (9.0) 29.5 (99) 103.4 F Y 12

32 60.5 (19.7) 59.7 (99) 114.6 M Y 7

21 33.3 13.8 33.6 101 107.9 M Y 5

43 13.3 2.5 14.1 106 102.7 M Y 8

33 16.3 4.2 17.5 107 107.9 M Y 12

38 19.2 9.7 22.4 117 108.4 F Y 14

39 13.8 4.9 16.3 118 111.1 M Y 6

30 11.2 7.1 13.2 118 112.6 M Y 5

24 8.0 NA 9.5 119 113.8 M N 28

34 22.1 (13.5) 27.3 (124) 119.4 F Y 10

Woman with a PP rebound to well above 1st trimester value

35 20.9 5.5 31.2 150 105.4 M Y 28

32 2.1 0.8 3.2 150 104.0 M Y 8

35 6.6 2.1 11.2 169 105.8 F Y 12

35 18.3 7.6 41.7 227 105.1 F Y 7

36 10.9 3.7 26.1 239 NA M Y 12

26 32.2 13.4 88.1 273 108.4 M Y 14

The women’s ages are in years. BF is whether the mother was breastfeeding when the post-partumsample was collected (Y = yes; N = no). PP is week’s

post-partum. The sex of the fetuses are recorded as M for male and F for female.

doi:10.1371/journal.pone.0162509.t001

AMH duringPregnancy

PLOSONE | DOI:10.1371/journal.pone.0162509 September 9, 2016 3 / 13



specifiedprotocol. ProAMHwas measured according to a modified protocol of the Gen II
assay, as previously described [35]. The AMHGen II calibrators (BeckmanCoulter, Cat#
A79766) were used for quantification in total AMH immunoassays and a recombinant human
proAMH standard was used for quantification in proAMH immunoassays [35]. A recombi-
nant human AMHN,C negative control [35] was included in the ELISA run. All samples were
measured in two batches on consecutive days, to minimise assay variation. The intra-assay %
coefficients of variations were 5.4 and 5.2 for the total AMH and proAMH ELISAs, respec-
tively. ELISA sample concentrations were calculated from standard curves fitting to quadratic
equations (Prism 6, Graphpad Software).

Statistical analysis and calculations
The AMH prohormone index (API) was calculated as the relative proportion of proAMH,
expressed as a percentage of total AMH (API = [proAMH]/[total AMH] � 100). The percentage
change in AMH values and the API during pregnancy was calculated using natural logs. Values
in each woman’s series were normalised to her first trimester value. Three women lacked a
first-trimester sample, and were excluded from this analysis. Samples were not available for 2
women at 16–19 weeks, 5 women at 24–27 weeks, 2 women at 32–35 and 4 women at 36–39
weeks. The influence of gestational week on AMH level was therefore assessed using a repeated
measures mixed model. All women with a first-trimester sample had a post-partum sample.
Regression analysis was used to determine whethermaternal age, first trimester AMH or post-
partumAMH level influenced the magnitude of the decline in AMH during pregnancy or the
magnitude of the post-partum rebound. First trimester and post-partumAMH and hematocrit
values were directly compared by a paired t-test. Statistical analyses were performed using
either IBM SPSS Statistics or Sigma Plot 11.0 (Systat Systems, San Jose, CA). Power calculations
were made using G�power, with alpha error probability set at 0.05 [36].

Results

Participants and samples
The mean age of the women was 33.7 years (median: 34.5; range: 21–43). The 25 pregnancies
resulted in term deliveries of 15 male and 10 female infants. Nineteen women were breastfeed-
ing at the time of their post-partum sample. Three women lacked a first-trimester sample.
Their data was included in the descriptive analysis (Fig 1A) but was excluded from the statisti-
cal analysis, as the first-trimester value serves as the normalising variable.

Change in AMH during pregnancy
All women exhibited a progressive decline in AMH during pregnancy with a mean decrease at
36–39 weeks’ gestation of 61.5% (SD: 13.0; range 30.4–81.2%) compared to first trimester
AMH values (p<0.001, Fig 1). The magnitude of the pregnancy-associated loss in AMH values
varied greatly between individuals, with this variation being dissociated from the woman’s first
trimester AMH value (Fig 2). This suggests that ovarian reserve is not a determinant of the
pregnancy-associated decrease in circulating AMH. However, there was a statistically signifi-
cant trend for older women to exhibit a proportionally greater loss in AMH levels during preg-
nancy (R = -0.53, p = 0.024) (Fig 3). The combination of age and initial AMHwere not
stronger predictors of the decline in AMH in a multi-regression analysis than age alone: the
standardised β for age in the model was -0.61 (p = 0.016), whereas the standardised β for first
trimester AMHwas -0.24 (NS, p = 0.31).
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Pregnancy-related plasma volume increases have been proposed as a causal factor of AMH
declines in pregnancy [37]. Declines in hematocrit are negatively correlated with plasma vol-
ume increases [38] hence we investigated whether declines in hematocrit were associated with
declines in AMH. The mean decrease in hematocrit from the first to third trimesters was 7.6%

Fig 1. Change in total AMH levels duringgestation. (A) Each woman’s individual levels are shown. (B)
Box and whisker plots (medians, interquartile intervals, range) of AMH levels. (C) Percentage decline. Each
woman’s values were normalized to her first trimester (6–11weeks) sample, using log transformation. The
data is themean ± standard of error of themean. There is a significant decline with gestational age, p<0.001
(repeatedmeasures, mixed model). LSD post-hoc analysis indicated that all time points were significantly
different compared to the 6–11 week samples (p = 0.026 for the 16–19 week time-point and p < 0.001 for the
other gestational ages). 1 ng/ml of AMH = 7.14 pmol/L (pM).

doi:10.1371/journal.pone.0162509.g001

AMH duringPregnancy

PLOSONE | DOI:10.1371/journal.pone.0162509 September 9, 2016 5 / 13



(SD: 4.0%; range: 0–14.6%), but there was no correlation between the decrease in AMH and in
hematocrit (r2 = 0.058).

Post-partumAMH levels
The first trimester and post-partum values of most women (16/22) were different, to a level
beyond assay variation (> 2 CV) (Table 1). Six women exhibited post-partum levels that were
very high relative to all of their pregnancy values, whereas five women exhibited the opposite
trend, with little or no rebound in AMH levels post-partum. The presence of two opposite
trends results in there being little difference on average between the time points (18.3 vs 22.0

Fig 2. Themagnitudeof pregnancy-relateddeclinewas dissociated from a woman’s level of AMH.
Each woman’s level of total AMH during the first trimester is plotted against the extent to which her total AMH
levels declined by 36–39weeks gestation. The two measures showed no significant correlation (R = - 0.04). 1
ng/ml of AMH = 7.14 pmol/L (pM).

doi:10.1371/journal.pone.0162509.g002

Fig 3. The influenceofmaternal age on the pregnancy-associateddecline in total AMH level. The
percentagedecrease in total AMH levels between the first trimester and the 36–39 week samples is plotted
against the women’s ages. The two parameters were significantly correlated, R = -0.53, p = 0.024.

doi:10.1371/journal.pone.0162509.g003
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pmol/L, n = 22, p = NS). Consequently, this is a rare occurrencewhere comparison of mean
values is misleading. The percentage change between third trimester and post-partum samples
did not correlate with the women’s age, first trimester AMH values, the number of post-partum
weeks, or the hematocrit rebound (Table 1).

Form of circulatingAMH
The proAMH concentrations generally declined during gestation at an equivalent rate to
AMHN,C, suggesting that pregnancy does not grossly influence the cleavage-activation of
proAMH (Fig 4A). The extent of cleavage of proAMH is most accurately examined using the
AMH prohormone index (API), which is the ratio of the proAMH and total AMH values [7].
The API was lower during weeks 24–31 than at other stages of pregnancy, but the magnitude
of the difference was small (Fig 4B). When all time points were examined, the stage of gestation
had no statistically significant effect on the API. The post-partumAPI values were not

Fig 4. Change in the proportionof the AMH forms duringgestation. (A) ProAMH levels during
pregnancy. Each woman’s values were normalized to her first trimester (6–11weeks) sample, using log
transformation. The data is the mean ± standard of error of the mean. There is a significant decline with
gestational age, p<0.001 (repeatedmeasures,mixed model). LSD post-hoc analysis indicated that all
gestational time points were significantly different compared to the 6–11 week samples (p < 0.001). (B) API.
The ratio of proAMH to total AMHwas calculated for each woman at each stage of pregnancy, and
normalised to her first trimester (6–11weeks) sample. The data is themean ± standard of error of themean.
Therewas no significant effect of gestational age (repeatedmeasures,mixed model).

doi:10.1371/journal.pone.0162509.g004
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significantly different to the women’s first trimester values, and did not exhibit the large per-
son-to-person variation that was present in the total AMH (Fig 4B).

Discussion
The decline in circulating AMH during pregnancy was progressive, large (mean 62%), univer-
sal (25/25 women) and statistically robust (p<0.001). These findings confirm and extend previ-
ously longitudinal studies by Nelson et al [28] and Koninger et al [29]. The two reports of total
AMH being invariant during pregnancy were cross-sectional [26, 27]. Cross-sectional studies
of total AMH levels are statistically less powerful than longitudinal studies, due to the large
inter-person variation in ovarian reserve. Power calculations from the current dataset indicate
that group sizes of greater than 60 would be needed to detect a difference in total AMH levels
between the first trimester and 36–39 week values, if a cross-sectional design was used.

PostpartumAMH levels
The post-partum changes in circulating total AMH levels exhibited extreme variation between
women. The existence of this phenomenon is not apparent when cohort means are examined,
as the AMH levels of some woman rise whereas those of other women decline, creating a range
of post-partum values that spanned 31% to 273% of the woman’s first trimester levels. AMH is
a determinant of the rate of recruitment of primordial follicles [39], and this data may therefore
indicate that the pattern of use of ovarian follicles is reset during pregnancy. The current study
examined a single post-partum time point, as the existence of this phenomenon was not antici-
pated. Additional studies are needed to determine whether there is a sustained change in the
woman’s AMH levels after pregnancy. If so, the determinants of the post-partum changes will
need to be examined, as they may explain part of the variation in AMH levels which is unre-
lated to ovarian reserve. There was no apparent effect of breastfeeding or maternal age on the
post-partum rebound in the current cohort, although this needs to be verified in studies that
are specifically designed to test this. In particular, we suggest that there is a need to determine
whether a change in post-partumAMH rebound correlates with a change in fecundity and/or
is influenced by parity or gravidity. Until information such as this is known, we suggest that
caution is neededwhen using AMH levels to measure ovarian reserve during pregnancy or
after either an abortion or birth.

ProAMH
In cross-sectional studies of healthy individuals, the API index does not correlate with total
AMH levels, suggesting that the control of the activation of AMH is independent on the mech-
anisms that control the total level of AMH [7]. Similarly, in this study, the marked decline in
total AMH levels during pregnancy was not matched by a concordant change in the cleavage-
state of AMH, although a slight increase in the cleavage of circulating AMHwas observeddur-
ing the middle period of pregnancy. The extent of cleavage of AMH varies in other physiologi-
cal circumstances [7, 40], with the regulation of this being currently unknown. The
concentrations of ovarian steroid hormones change markedly during pregnancy [41]. If these
hormones influence the cleavage of proAMH, then the API should vary during pregnancy,
which was not the case. Hence, the cleavage of proAMH appears to be largely or totally inde-
pendent of estrogens and progesterone.

The levels of total AMH fell markedly during pregnancy without a concordant increase in
the API. Total AMH and the API exhibit minimal correlation in other physiological circum-
stances, indicating the amount of ovarian proAMH does not exceed the capacity of the
enzymes to cleave it. ProAMH is putatively cleaved by furin, PCSK5 and plasmin. These
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enzymes have broad specificities and cleave multiple procytokines within the ovary (reviewed
[13]). Consequently, the API is potentially a proxy for the activation of ovarian cytokines that
are not released to the circulation.

Mechanistic considerations
The pregnancy-related changes in AMH could arise through the accumulative effects of multi-
ple physiological changes. LaMarca et al [37] suggests that the increase in plasma volume dur-
ing pregnancy leads to hemodilution of total AMH levels. This may be relevant to the initial
decline in AMH levels, but it is not a complete explanation, as the increase in plasma volume is
near complete by 25 weeks’ gestation [42–44], whereas total AMH levels continued to decline
steadily from the 24–27 week time-point onwards. Large antral follicles are depleted during
pregnancy, due to suppression of FSH-release, but this would only cause a minor decline in
AMH levels as small antral follicle are retained during pregnancy [45–47]. The small antral fol-
licles are the main producers of AMH in non-pregnant women [48], but this is not necessarily
the case during pregnancy, as the physiological state of these follicles changes during preg-
nancy, as evidencedby an alteration in their morphology [45, 49]. In addition to the physiolog-
ical state of the follicles, which may be hormonally regulated, there may be direct regulation of
AMH production by reproductive hormones, such as estrogen, which putatively regulates
AMH synthesis [50]. Levels of other reproductive hormones, such as LH, prolactin, activin and
inhibin are also altered during pregnancy, each with differing rates of postpartum reversion to
normal levels [41, 51–53]. The relationship between these hormones and AMH synthesis is not
well characterised but the possibility that they are involved in regulating gravid AMH levels
cannot be excluded.

The decline in circulating AMH during pregnancy begs the question of whether the decline
in AMH has physiological consequences. AMH receptors are present in the uterus [3, 17], the
placenta [54] and the breast [18], giving credence to this possibility, but experimental investiga-
tion is currently lacking.We emphasise, however, that successful pregnancy occurs across a
wide range of AMH values, and that any pregnancy-related role for AMHwould be to produce
quantitative changes in physiological processes occurring in either the mother or her fetus.

Limitation statement
This current study does not include a pre-pregnancy time point, and therefore does not neces-
sarily show the full magnitude of the pregnancy-related change in circulating AMH. As noted
above, the study is designed to detect the presence/absence of a change in circulating AMH,
but is only able to provide indicative data regarding the influence of factors such as breastfeed-
ing and maternal age.

Fetal AMH
The sexes of the fetuses were recorded in this study, as several research groups have postulated
an effect of fetal sex on maternal AMH levels [1–3]. This data has therefore been placed in the
public domain, but no conclusions have been drawn for the reasons outlined below.
Size difference between the mother and fetus. The difference in the size of the mother

and fetus limits the ability of a fetal blood protein to accumulate in the maternal circulation.
When AMH is injected intravenously to mice, it rapidly disperses from the blood to the extra-
cellular fluids [4], indicating that total maternal extracellular fluids need to be taken into
account. During pregnancy, the average maternal extracellular fluid volume (Vm) is approxi-
mately 15 L [5]. Fetal blood volume (Vf) increases with gestational age rising from approxi-
mately 30 ml at 21 weeks gestation to approximately 190 mL by 35 weeks gestation [6]. The
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diluting effect of maternal fluids can be calculated from the formula Vm.Cm = Vf.Cf; Cm = Cf.
(Vf/Vm), where C is concentration. At 21 weeks, the maternal concentration will be 30/15,000
(0.2%) of the fetal concentration rising to 1.3% at 35 weeks. The upper extreme of AMH in the
fetal circulation of males is approximately 700 pmol/L, with most male fetuses have less than
half of this level [1, 7–9]. At the upper extreme, the maternal concentration would rise by a
maximum of 1.4 pmol/L at 21 weeks, increasing by a maximum of 9.1 pmol/L (1.3 ng/ml) near
term. Female fetuses lack detectable levels of AMH during the first and second trimesters, with
levels being below 15 pmol/L near term [1, 10]. Therefore, the upper limit for fetal AMH in the
maternal circulation is less than 1 pmol/L. AMH levels range from 3–60 pmol/L for women in
their twenties, failing to below 7 pmol/L in women older than 40 years [11].
Placental barrier. The above calculations indicate that if AMH in the maternal and fetal

circulation were in equilibrium then AMH from a male fetus would have limited effect on
maternal AMH levels, except when the male fetus is in the upper percentiles of AMH values
and the mother’s AMH levels are in the lower percentiles. However, the placenta is a barrier to
the free movement of proteins. Consequently, the level of fetal AMH in the maternal circula-
tion will only rise above trace levels if AMH is actively transported from the fetal to the mater-
nal circulation. To date, no theoretical rationale has been advanced for this existence of active
transport of fetal AMH. The observational data produced to date is also insufficient to test
whether fetal AMH is present in maternal circulation. AMH levels in women are highly vari-
able [11], with the standard deviation for AMH in young women is greater than 20 pmol/L,
which is large relative to the possible influence of fetal AMH. Hence, an extraordinarily large
sample size will be need to prove/disprove the hypothesis that fetal AMH reaches the maternal
circulation, unless both maternal and fetal AMH levels are known.
Pregnancy-relateddecline. The transport of fetal AMH to the maternal circulation could

theoretically be detected by comparing pre-pregnancy and gestational blood samples, provided
maternal AMH levels were constant during pregnancy. However, maternal AMH levels decline
in all women during pregnancy, with the magnitude of the decline varying from woman-to-
woman. This variation precludes using maternal AMH levels to predict the sex of a fetus. The
above argument assumes that male fetuses do not regulate maternal AMH levels, and that pla-
cental-derivedAMH [12] is not a significant determinant of circulatingmaternal AMH levels.
The observation that maternal AMH levels decline during pregnancy is consistent with this.

Conclusions
In conclusion, pregnancy leads to a change in total AMH level, without a concordant change in
the activation of AMH. The magnitude of this phenomenon was large compared to all other
known determinants of AMH levels, with the exception of the primary determinant, ovarian
reserve. It is currently uncertainwhether AMH levels return to a woman’s pre-pregnancy level
during the post-partumperiod, creating significant uncertainty about the interpretation of
total AMH as a biomarker of ovarian reserve. The physiological mechanism underlying the
pregnancy-related decline in AMH is uncertain.
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