
RESEARCH ARTICLE

Quantifying the Twitter Influence of Third
Party Commercial Entities versus Healthcare
Providers in ThirteenMedical Conferences
from 2011 – 2013
Tejas Desai1,2*, Vibhu Dhingra3, Afreen Shariff4, Aabid Shariff5, Edgar Lerma6,

Parteek Singla7, Swapnil Kachare8, Zoheb Syed9, Deeba Minhas10, Ryan Madanick11,

Xiangming Fang12

1 Division of Nephrology, W.G. (Bill) VA Medical Center, Salisbury, North Carolina, United States of

America, 2 NOD Analytics, Charlotte, North Carolina, United States of America, 3 Department of Internal

Medicine, East Carolina University – Brody School of Medicine, Greenville, North Carolina, United States of

America, 4 Division of Endocrinology, Duke University, Durham, North Carolina, USA, 5 Monsanto

Company, Raleigh, North Carolina, United States of America, 6 Division of Nephrology, University of Illinois

at Chicago College of Medicine, Chicago, Illinois, United States of America, 7 Department of Internal

Medicine, Barnes Jewish Hospital, St. Louis, Missouri, United States of America, 8 Department of Surgery,

East Carolina University – Brody School of Medicine, Greenville, North Carolina, United States of America,

9 College of Arts and Sciences, College of William and Mary, Yorktown, Virginia, United States of America,

10 Division of Rheumatology, Cedars-Sinai Medical Center, Los Angeles, California, United States of

America, 11 Division of Gastroenterology, University of North Carolina, Chapel Hill, North Carolina, United

States of America, 12 Department of Biostatistics, East Carolina University – Brody School of Medicine,

Greenville, North Carolina, United States of America

* tejas.p.desai@gmail.com

Abstract

Introduction

Twitter channels are increasingly popular at medical conferences. Many groups, including

healthcare providers and third party entities (e.g., pharmaceutical or medical device com-

panies) use these channels to communicate with one another. These channels are unregu-

lated and can allow third party commercial entities to exert an equal or greater amount of

Twitter influence than healthcare providers. Third parties can use this influence to promote

their products or services instead of sharing unbiased, evidence-based information. In this

investigation we quantified the Twitter influence that third party commercial entities had in

13 major medical conferences.

Methods

We analyzed tweets contained in the official Twitter hashtags of thirteen medical confer-

ences from 2011 to 2013. We placed tweet authors into one of four categories based on

their account profile: healthcare provider, third party commercial entity, none of the above

and unknown. We measured Twitter activity by the number of tweet authors per category
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and the tweet-to-author ratio by category. We measured Twitter influence by the PageRank

of tweet authors by category.

Results

We analyzed 51159 tweets authored by 8778 Twitter account holders in 13 conferences that

were sponsored by 5 medical societies. A quarter of all authors identified themselves as

healthcare providers, while only 18% could be identified as third party commercial entities.

Healthcare providers had a greater tweet-to-author ratio than their third party commercial

entity counterparts (8.98 versus 6.93 tweets). Despite having less authors and composing

less tweets, third party commercial entities had a statistically similar PageRank as health-

care providers (0.761 versus 0.797).

Conclusion

The Twitter influence of third party commercial entities (PageRank) is similar to that of

healthcare providers. This finding is interesting because the number of tweets and third

party commercial entity authors required to achieve this PageRank is far fewer than that

needed by healthcare providers. Without safety mechanisms in place, the Twitter channels

of medical conferences can devolve into a venue for the spread of biased information rather

than evidence-based medical knowledge that is expected at live conferences. Continuing

to measure the Twitter influence that third parties exert can help conference organizers

develop reasonable guidelines for Twitter channel activity.

Introduction

Medical conference organizers must strike a balance with commercial entities (e.g., pharma-
ceutical companies and device manufacturers). Third parties are needed to offset the cost of
many national scientificmeetings and provide valuable information about the latest develop-
ments in the field [1,2]. Concurrently, conference organizers must mitigate “detailing”: the pro-
cess in which third parties have direct and unregulated access to conference attendees
(learners) [3,4]. Organizers have reached this balance in live conferences by: 1) not allowing
third parties to select speakers at plenary and other sessions, 2) not allowing third parties to
pass out literature in-and-around classrooms, and 3) restricting learner access to third parties
to one geographic location ("exhibition hall") and only during specific periods of time that do
not conflict with other scientific sessions [2]. Theoretically, these safety mechanisms allow a
learner to experience a live medical conference without ever exposing him/herself to a third
party.

This model has not been replicated in the increasingly popular Twitter hashtag channels
(channels) [5,6]. Twitter channels are open and freely accessible online Twitter streams that
allow learners, conference organizers, and third parties to share information with each other
[5,6]. These channels are not covert; conference organizers encourage attendees to use these
channels through official publications and signage at the conference itself. In part because they
are freely available to the public, Twitter channels enhance live conferences and an increasing
number of medical conferences are incorporating them into their annual meetings [7–18].
Although promoted by conference organizers, the medical conference Twitter channels are
unregulated; this allows third parties direct access to learners that they cannot achieve at a live
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conference. Detailing on Twitter exposes learners to third parties and facilitates the transfer of
biased information in an environment that does not have established safety mechanisms in
place [1,3,4]. Theoretically, third parties can exert a greater influence over learners through
Twitter detailing.

In this investigation, we used established methods to explore the Twitter influence that
third parties have in the Twitter channels of thirteen prominent medical conferences from
2011–2013. In the unregulated realm of Twitter channels, we hypothesized that third parties
have a comparable Twitter influence score as any other group.

Methods

Data Set

We identified five (5) medical societies that promoted the Twitter channels of their respective
annual meetings. These societies assigned a conference-specifichashtag for each channel and
registered each with the Healthcare Hashtag Project (HHP; symplur.com). We queried the
HHP database for all conference-specific tweets using the pre-assigned hashtags. Table 1 shows
the thirteen conferences that were included in the data set. We collected a) date and time of
tweet, b) Twitter username of the tweet author, c) content of the tweet, and d) Twitter user-
name(s) of individuals/organizationsmentioned within the body of a tweet (@mentions).

Content Analyses

We performed five (5) separate analyses to identify the types of content within our data set.
First we categorized each tweet as an “original” or “retweet”. We defined “original tweets” as

Table 1. Baseline Data.

Medical Society / Conference Organizer(s) Dates Hashtag Healthcare Hashtag Project URL

(shortened)

Tweets

(No.)

Conference Name

American College of Cardiology* 8505

2012 Annual Meeting 3/24/2012–3/27/2012 #acc12 http://goo.gl/Os3f0C 2951

2013 Annual Meeting 3/9/2013–3/11/2013 #acc13 http://goo.gl/nnwEPK 5554

American Society of Nephrology 4299

Kidney Week 2011 11/8/2011–11/13/2011 #kidneywk11 http://goo.gl/m3UvNm 583

Kidney Week 2012 10/30/2012–11/4/2012 #kidneywk12 http://goo.gl/ni5CC6 1137

Kidney Week 2013 11/5/2013–11/10/2013 #kidneywk13 http://goo.gl/8vog3n 2579

American Society of Clinical Oncology 31991

2011 Annual Meeting 6/3/2011–6/7/2011 #asco11 http://goo.gl/GX3svS 7531

2012 Annual Meeting 6/1/2012–6/5/2012 #asco12 http://goo.gl/HIky9X 9555

2013 Annual Meeting 5/31/2013–6/4/2013 #asco13 http://goo.gl/IOS4pf 14905

American Gastroenterological Association and American

Society for Gastrointestinal Endoscopy and American

Association for the Study of Liver Diseases and The

Society for the Surgery of the Alimentary Tract

5123

Digestive Disease Week 2011 5/7/2011–5/10/2011 #ddw11 http://goo.gl/xpwZpY 1199

Digestive Disease Week 2012 5/19/2012–5/22/2012 #ddw12 http://goo.gl/fgM3di 1720

Digestive Disease Week 2013 5/18/2013–5/21/2013 #ddw13 http://goo.gl/QmL66C 2204

American Academy of Dermatology* 1241

2012 Annual Meeting 3/16/2012–3/20/2012 #aad12 http://goo.gl/ZrcGOj 585

2013 Annual Meeting 3/1/2013–3/5/2013 #aad13 http://goo.gl/BeCl23 656

*Conference Twitter channel for the 2011 meeting was not registered with the HHS & unavailable for analysis

doi:10.1371/journal.pone.0162376.t001
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messages composed by the same author who tweeted the message. We defined “retweet” as a
message composed by a different author than the one who tweeted the message. Realizing that
many medical conferences expose attendees to products/servicesoffered by third party com-
mercial entities, we defined “advertisements” as those tweets that were soliciting the attendees
to a) use a product or service or b) visit an exhibition booth to learn more about a product/ser-
vice. Moreover many of these products/servicesare offered by commercial entities that are
publicly traded corporations. Thus we defined “financial tweets” as those messages whose con-
tent contained information about the underlying financial security (stock) of a particular com-
mercial entity. In our fourth analysis we identified tweets that contained hyperlinks (URLs) to
multimedia files (pictures or videos or both); we defined such tweets as “enhanced”. Finally, we
calculatedword frequencies in the remaining tweets that were not categorized as “advertise-
ments” or “financial” in order to identify the most popular scientific topics that were discussed
within each medical discipline. Table 2 provides representative examples of tweets that satisfied
each category definition.

Categorization of Account Holders

In order to quantify the influence that third parties exert in Twitter channels, we categorized
every tweet author/account holder mentioned within the body of a tweet (@mentions) into one
of four categories: a) healthcare provider (HCP), b) third party commercial entity (third party),
c) unclear identity, and d) none of the above. Table 3 defines each category and provides a rep-
resentative example. We used each account holder’s Twitter profile to ascertain under which
category that account should be. Categorization was done from January to April 2014. We did

Table 2. Categories and examples of Tweets based on content.

Characteristic Representative Example

Original Packed Cochrane IBD symposium: what have the past 20 years taught us? #ddw13

Retweet RT @ClevelandClinic: 17% of children in the U.S are obese and at risk for serious health

complications #DDW13 #childhoodobesity

Advertisement 50% of newly diagnosed #myeloma patients present with #renal insufficiency. Learn

more at our Booth 1404 #kidneywk13 http://t.co/n0ogvIyAos

Financial

Security

Monthly shot of Amgen PCSK9 drug cuts bad cholesterol up to 66%; Regeneron’s

PCSK9 data due today at #ACC12 http://t.co/JfRhhHcr $AMGN $REGN

URL High frequency of #mutations seen in black women with #breastcancer. @ASCO #NGS

#genes #ASCO13 http://t.co/ZT0eJgk6rj

doi:10.1371/journal.pone.0162376.t002

Table 3. User categories and examples.

Category Definition Representative

Example

Twitter Profile

Healthcare

Provider

Individual or organization whose primary purpose is to

disseminate medical information or provide clinical

care for patients

@nephondemand Tejas Desai, MD. Creator of Nephrology On-Demand &

Kidney Konnection & Nephrology Fellowship Director @

ECU. I conduct research in social media & medicine &

program iOS Apps

3rd Party

Commercial

Entity

Organization or individual representing an

organization whose primary purpose is to provide a

product or service to medical professionals and/or

patients

@mmsholdings MMS Holdings Inc. MMS Holdings Inc. is a global niche

pharmaceutical service organization that focuses on

regulatory submission support for the pharma and

biotech industries.

None of the

Above

Individuals or organizations that are unrelated to

healthcare or the purpose of the scientific meeting

@RdgTerminalMkt The Reading Terminal Market—Since 1893

Unclear Identity Individual or organizations whose Twitter profile was

vague or empty

@KhaliqWhy Khaliq. Seeking Knowledge

doi:10.1371/journal.pone.0162376.t003
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not perform additional Internet searches (e.g., Facebook or Google search) of accounts catego-
rized as “unclear”. None of the investigators contacted any of the account holders to determine
their identity (see Discussion for further information).

To ensure inter-rater reliability when categorizing Twitter account holders, we performed a
Light’s kappa statistic on a different set of previously published Twitter data [19]. The Light’s
kappa score was 0.72 for eight raters (AS, AS, VD, PS, SK, ZS, EL, DM).

Defining and Measuring Twitter Activity

We assessed Twitter activity using two methods. In the first method, we measured the number
of distinct account holders per category that authored at least one tweet in one of the 13 confer-
ences analyzed. We defined a high Twitter activity as that category with the largest number of
account holders.

In the second method, we measured the total number of tweets authored by account holders
in each category. We calculated the tweet:author ratio by dividing the number of tweets com-
posed by the total number of authors within a particular category. We ascribed the greatest
Twitter activity to that category with the highest ratio.

Defining and Measuring Twitter Influence

Keller, Leavitt et al, and Antoniadis et al defined influence as one’s ability (user A) to affect the
behavior of another (user B) [20–22]. On Twitter, that behavior is represented by the actions
that user B takes after reading user A’s tweet. Twitter allows user B to take one of two actions:
replying or retweeting a message [20,22]. In its most primitive form, Twitter influence is a
quantification of the number of replies or retweets that user A accrues [20,22]. The greater the
sum of replies to and retweets of user A’s tweets, the more influential user A is on Twitter.
Although many social media research investigations (including this investigation) use this defi-
nition of Twitter influence, they do not use the arithmetic sum to quantify it. Among the rea-
sons for disuse is that the sum of replies and retweets ignores the existing level of Twitter
influencewith which a user begins. To account for the existing level of Twitter influence one
has, and to be consistent with prior investigations that quantify Twitter influence, we measured
influence using the PageRank [20,22–34].

We calculated the PageRank of every account holder that was mentioned (@mentions) in
the body of a tweet. The @mentions include both the replies to and retweets of one’s original
tweet. Originally developed by Page, Brin, Motwani and Winograd, the PageRank is a link-
based algorithm and considered by Williams, Baldwin, and Rubel to be the best measure of
socialmedia influence [23–26]. As described by Abdullah, in the PageRank “a link from a page
to another page is understood as a recommendation and the status of the recommender is
important” [27]. A webpage, to which many others are linked, is considered an influential web-
page and is given a high PageRank [23,27]. Its PageRank increases even more when the linking
webpages are influential as well (i.e., have their own high PageRanks) [23,27–29]. Similarly, a
Twitter account that is mentioned (@mentions) many times and/or mentioned by other influ-
ential Twitter accounts will, itself, appropriately receive a high PageRank [31]. Indeed a num-
ber of investigators, including Abdullah, Kwak et al and Bakshy et al, have successfully used the
PageRank to accurately measure Twitter influence using @mentions [26,27,30–33]. The PageR-
ank of @mentions is also known as the “Influence Index” and is used by the independent
research firm Twitalyzer to measure one’s Twitter influence [34]. It is also the preferred
method of measuring Twitter influence by Evan Williams, co-founder of Twitter [34].
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Privacy Considerations for Account Holders

The tweets collected from the HHP contained identifying information or links to such infor-
mation. The same identifying information is freely available to the general public through the
Library of Congress [35,36]. Twitter’s Terms and Conditions warn account holders of the pub-
lic nature of tweets, specifically, “what you say on Twitter may be viewed all around the world
instantly” [12]. Perhaps because such identifying information is freely accessible, prior investi-
gators have not requested approval from their local institutional review boards [13,26,27,30–
33]. Currently there are no expectations for researchers to gain approval from any external
agency (government, Twitter, or others) to research Twitter data [37]. In many investigations,
including our own, researchers have adopted the “distance principle”, explained by Buchanan
et al [38]. Given that our investigation was an observation of data in the public space and did
not involve direct interaction with any account holder, the “distance principle”, along with the
precedent set forth by previous investigators, supported our belief that external committee
review was unwarranted [37–40].

Nevertheless, the identifying information within each tweet was as critical to our investiga-
tion as our ethical use of it. Therefore, we designed our methods in accordance with the United
States Department of Homeland Security’s 2012 Menlo Report–a guide for investigators per-
forming “communication technology research” [41]. We also designed our methods to con-
form to the British Psychological Society’s guidelines for “Internet-mediated research” [42].
Finally, we complied with the six ethics guidelines recommended by Rivers and Lewis when
analyzing “big data” [37]. Our adherence to these strict and established guidelines satisfied our
professional sense of duty/ethics to maintain the privacy of the account holders whose Twitter
activities comprised our data set.

Statistical Considerations

We performed content analyses using NOD Analytics (goo.gl/mfziXG).We used WordItOut
(worditout.com) to graphically represent the popular scientific topics in each Twitter channel.
We calculated frequencies per category for: 1) number of Twitter accounts that authored
tweets, 2) number of Twitter accounts that were mentioned within a tweet, 3) number of tweets
composed. We performed chi-square tests to compare these data using JMP Pro version 10.0.0
(SAS, Cary, North Carolina). We calculated PageRank using the NodeXL plugin (nodexl.code-
plex.com) for Microsoft Excel 2013 (Microsoft, Redmond, Washington). Median and inter-
quartile ranges for the PageRank were calculated and compared using the Kruskal-Wallis test.
Each group needed to have at least 8671 @mentions in order to have achieved an 80% power to
detect a 0.2 difference in PageRank. To mitigate any future concern about the lack of reproduc-
ibility of our results, we 1) did not perform subgroup analyses of Twitter influence by confer-
ence and 2) followed recent guidelines that make “classical hypothesis testing more congruent
with evidence thresholds for Bayesian tests” [43]. As a result, the significance level was set at
p< 0.005 [43].

This investigation conforms to STROBE guidelines for observational research and SAMPL
guidelines for statistical reporting [44,45].

Results

Baseline Data

We collected 51159 tweets, authored by 8778 Twitter account holders, in 13 conferences, spon-
sored by 5 medical societies, from 2011 to 2013 (Table 1). Our data set represents 94.6% of
tweets and 78.1% of authors in the HHP. The remaining data was either lost during the
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extraction process from the HHP or could not be parsed correctly by the software we used. The
largest number of tweets and authors was in the 2013 American Society of Clinical Oncology’s
annual meeting (15120 and 3156, respectively).

Content Analyses

In every Twitter channel there were more original tweets composed (N = 30310) than retweets
generated (N = 23643). The overall original tweet:retweet ratio was 1.28:1: the lowest ratio
belonging to the American Society of Oncology’s annual meetings and the highest to the Diges-
tive Disease Week meetings (1.05 versus 2.80, respectively). There were very few advertise-
ments: the non-advertisement:advertisement ratio in our data set was 19.48:1 (Fig 1). A similar
favorable ratio was seen amongst tweets containing financial information. Finally, many more
tweets were exclusively textual than associated with a multimedia image: a ratio 1.43:1.

Unsurprisingly the most common scientific topic in the entire data set revolved around the
“patient” (e.g., patient care, patient centered, patient specific, etc.). Popular topics in the Ameri-
can College of Cardiology Twitter channels were three clinical trials and three medications.
The clinical trials were: CORONARY (sponsored by Canadian Institute of Health Research),
PREVAIL (sponsored by Boston Scientific Corporation) and HPS2-THRIVE (sponsored by
Merck and Company, Inc.). The popular medications were: Cangrelor (by The Medicines
Company), Niacin (by AbbVie, Inc.), and Rivaroxaban (by Janssen Pharmaceuticals). Popular
topics in the American Society of OncologyTwitter channels were specific diseases (melanoma,
NSCLC [non-small cell lung cancer], myeloma, and breast cancer). We did not identify specific
medications or clinical trials as popular topics in #asco11, #asco12, and #asco13.

Medications and diseases were the popular topics in the American Society of Nephrology
Twitter channels. Aliskiren (by Novartis Pharmaceuticals), tolvaptan (by Otsuka Pharmaceuti-
cal Company, Ltd.), and cincalcet (by Amgen, Inc.) competed with CKD (chronic kidney dis-
ease), AKI (acute kidney injury), and ESRD/dialysis for popularity. In the Twitter channels of
Digestive Disease week, the popular diseases discussedwere IBD (inflammatory bowel disease),
IBS (irritable bowel syndrome) and GERD (gastroesophageal reflux disease). Uniquely popular
in the #ddw11, #ddw12, and #ddw13 channels were explicit mentions of third party commer-
cial entities (specifically Pentax Medical and Olympus America Medical). Lastly, the only
appearance of a governmental agency amongst the list of popular topics was in the #aad12 and
#aad13 channels (NIAMS [National Institute of Arthritis and Musculoskeletal Skin Diseases])
(Figs 2–6).

Fig 1. Content Analyses.

doi:10.1371/journal.pone.0162376.g001
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Twitter Activity and Influence

Nearly 61% of the authors had a Twitter profile that identified them (Table 4). In this group,
there were 2173 (25%) healthcare providers and 1575 (18%) third party entities (p< 0.0001).
The largest group of authors could not be identified (3412; 39%; p< 0.0001).

Despite being the greatest number of authors, those with unclear identities did not compose
the greatest number of tweets (Table 4). The tweet:author ratio for unidentifiedTwitter

Fig 2. Popular topics at the 2012 and 2013 American College of Cardiology Annual Meetings. Word clouds exclude

prepositions, conjunctions, articles, numbers, Twitter usernames, and official conference-specific hashtags.

doi:10.1371/journal.pone.0162376.g002

Fig 3. Popular topics at the 2011, 2012, and 2013 American Society of Clinical Oncology Annual Meetings. Word

clouds exclude prepositions, conjunctions, articles, numbers, Twitter usernames, and official conference-specific hashtags.

doi:10.1371/journal.pone.0162376.g003
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account holders was only 3.7. Healthcare providers composed 19503 tweets and had a tweet:
author ratio greater than that of third party entities (8.98 versus 6.93 tweets per author;
p< 0.0001).

In our data set, a total of 3316 Twitter accounts were mentioned a total of 39997 times
(Table 4). Healthcare providers were mentioned nearly 46% of the time, while third party com-
mercial entities were mentioned less than 20% of the time. The sum total of @mentions in the
healthcare provider and third party categories was 26175: 1.5 times greater than the 17341
@mentions needed to achieve 80% power. The median PageRank for healthcare providers was
the highest amongst the four categories. However, there was no statistical difference between it
and the median PageRank for third party commercial entities (0.797 versus 0.761, respectively;
p 0.175).

Discussion

Third Party Twitter Influence

Third party commercial entities had a statistically similar PageRank as healthcare providers
(0.761 versus 0.797, respectively) despite having significantly fewer authors (1575 versus 2173,
respectively) and significantly less Twitter activity (6.931 versus 8.975 tweets/author, respec-
tively). This suggests that third parties are equally influential in the Twitter channels of scien-
tific meetings as healthcare providers; a parity that is difficult to achieve at live conferences.
Admittedly, there are no investigations that measure third party influence at live conferences.
Perhaps the lack of data is due to conference organizers’ financial reliance on third parties to
sponsor their conferences. In 2009, third parties gave close to $850 million dollars of sponsor-
ships to various medical conferences [1]. In 2011, 75% of conference organizers received third
party financial support [2]. Third parties provide printed and digital conference materials,
travel grants, and meals gratis. This financial dependencemay preclude any scientific study of
third party influence at live conferences. Nevertheless, conference organizers mitigate third

Fig 4. Popular topics at the 2011, 2012, and 2013 American Society of Nephrology Annual Meetings. Word clouds

exclude prepositions, conjunctions, articles, numbers, Twitter usernames, and official conference-specific hashtags.

doi:10.1371/journal.pone.0162376.g004
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party influence by geographically isolating third parties, curtailing their “hours of operation”,
and independently selecting topics and speakers for the conference agenda [2].

Conference organizers do not depend on the financial support of third parties to maintain
active Twitter channels. Creating and registering a conference-specifichashtag and composing
tweets are free. Yet not one of the eight conference organizers (in any of the 13 conferences

Fig 6. Popular topics at the 2012 and 2013 American Academy of Dermatology Annual Meetings. Word clouds

exclude prepositions, conjunctions, articles, numbers, Twitter usernames, and official conference-specific hashtags.

doi:10.1371/journal.pone.0162376.g006

Fig 5. Popular topics at the 2011, 2012, and 2013 Digestive Diseases Week. Word clouds exclude prepositions,

conjunctions, articles, numbers, Twitter usernames, and official conference-specific hashtags.

doi:10.1371/journal.pone.0162376.g005
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studied) implemented any safeguards to limit third party “detailing” [3]. As a former third
party representative, Ahari outlined eight forms of detailing used by third parties to influence
individuals [3]. All eight can be easily adapted to work in Twitter channels. Indeed any message
from a third party is more likely to place a favorable bias on that party’s product/service than
unprejudiced evidence-basedmedicine [1].

Jalali, Wood, and others have suggested that conference organizers learn how their respec-
tive Twitter channels are being used/misused in order to curtail the Twitter influence that third
parties have within them [16,31,44,46]. Our study is the first to elucidate this use/misuse by
various groups. Second,more must be done to establish guidelines for third party activities in
Twitter channels. There are plenty of well-intentioned recommendations on the use of Twitter
by healthcare providers and conference organizers [17,47]. There are no comparable recom-
mendations for third parties or their interactions with HCPs or conference organizers [48].
Both the Pew Charitable Trusts and American Medical Student Association discuss how con-
ference organizers can mitigate conflicts of interest (COI), but neither offer specific guidelines
in managing COIs within socialmedia streams [1,49,50]. Therefore, the investigators of this
study recommend the following to bring the medical community closer to such guidelines:

• Conference organizers should publicly state in their Twitter channel that third party entities
should declare themselves as such in their respective Twitter profiles [36]

• Conference organizers should insist that third parties compose tweets that disseminate scien-
tific facts and not solicitations for products/services

• If third parties wish to solicit for a product/service, they should include an additional hashtag
in the body of their tweet (e.g., #ad) to allow participants within the channel to filter out such
tweets

• Conference organizers should encourage third parties to restrict their Twitter activity to
coincide with their live “hours of operation”

• Conference organizers should task independent individuals/groups to annually measure the
PageRanks for each Twitter account mentioned (@mentions) within their conference-spe-
cific hashtag

Table 4. Measures of Twitter Activity and Influence.

TWITTER ACTIVITY Third Party Commercial Entity Healthcare Provider None of the Above Unclear Identity

Total Authors 1575 2173 1617 3413

Total Tweets 10916 19503 8105 12635

Tweets:Author Ratio 6.931 8.975 5.012 3.702

TWITTER ENGAGEMENT Third Party Commercial Entity Healthcare Provider None of the Above Unclear Identity

Unique @mentions 683 864 772 997

Total @mentions 7834 18341 8011 5811

PAGERANK

10th Percentile 0.313 0.316 0.304 0.297

25th Percentile 0.425 0.441 0.405 0.401

Median 0.761 0.797 0.677 0.591

75th Percentile 1.391 1.546 1.124 1.005

90th Percentile 3.103 3.089 2.158 1.921

doi:10.1371/journal.pone.0162376.t004
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• Conference organizers should target third party accounts with abnormally high PageRanks
for further education about best-practices within their respective Twitter channel

These recommendations would align third party activities in Twitter channels with their
activities at live conferences. These recommendations are not mandates, but rather reasonable
suggestions that are neither burdensome to conference organizers nor offensive to third party
commercial entities. These recommendations are made with the same intentions as those that
guide physician activity on Twitter [17,47]. In both cases, monitoring, rather than enforce-
ment, is a key component of assessing compliance. Measuring yearly PageRank scores, as per-
formed in this investigation, will help all parties monitor compliance. Conference organizers
can implement targeted re-education efforts for those third parties that require additional
assistance.

PageRank versus other measures of Twitter Influence

The PageRank of @mentions has been used by a number of Twitter researchers and is consid-
ered the closest estimation of Twitter influence [20,22,24–27,30,32,33]. Indeed even commer-
cial research firms, such as SEOmoz and Twitalyzer, use the PageRank of @mentions to
measure Twitter influence for their clients [34,41]. As Bray and Peters have indicated, men-
tioning someone in one’s tweet represents a major commitment to that person [51]. The more
a person is mentioned, the more they effect the conversation and the greater the Twitter influ-
ence they exert [31,34,51].

A common misperception is that the number of followers or impressions (which equals the
product of the number of followers and tweets composed) is an accurate measure Twitter influ-
ence. Any metric that uses the number of followers and/or tweets often results in false calcula-
tions of Twitter influence [20,22,52]. Bots can artificially inflate the number of tweets composed,
causing the impressions to be misleadingly elevated. Moreover, the number of followers or
impressions excludes any interaction between participants. Perhaps for these reasons impres-
sions and the number of followers are considered “vanity” metrics: easy to calculate but of little
value in measuring one’s Twitter influence [20,22,51].

Twitter researchers do not perform content analyses to measure influence [20,26]. Neither
this investigation nor the studies referenced in this report have analyzed tweet content to mea-
sure Twitter influence.We have analyzed the content of the tweets in our data set to give the
reader, if needed, a contextual framework upon which to interpret our results. Indeed Cha et al
has mathematically analyzed various metrics to measure Twitter influence and concluded that
the PageRank of @mentions was one of the best ways to do so [32].

Unclear Identities on Twitter

There were 3413 Twitter accounts that could not be identified because their Twitter profiles
were vague or empty. These accounts generated only 24.7% of the total tweets analyzed. We
consciously avoided using alternative methods to identify these accounts. In accordance with
recommendations by Farnan and McKee, we assumed that account holders with vague profiles
wanted to remain anonymous [39,53]. To respect these wishes, we did not contact any author
or perform additional Internet searches to ascertain their identities [37,38].

Strengths

Perhaps the greatest strength of this investigation is its breadth (13 conferences sponsored by 8
medical societies) and depth (51159 tweets). Chaudhry et al conducted an analysis of 12644
tweets from 2 conferences sponsored by one medical society while Jalali et al analyzed 10937
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tweets from 4 conferences sponsored by as many medical societies. [13,54]. We measured Twit-
ter influence by calculating the PageRank of @mentions–the recommendedmetric by a number
of researchers, commercial research firms, and the co-founder of Twitter [24–26,30,32,34,41].
We conformed to three well-established sets of guidelines for conducting Internet-based
research and respected the privacy of those users who wanted to remain anonymous [1,37–
39,41,53]. Finally, and to the best of our ability we have reported our findings in accordance
with two sets of research-reporting guidelines [44,45]

Limitations

As with many studies that study Twitter activity, we were unable to directly measure influence.
We used a proxy metric to measure Twitter influence: the PageRank. However, the PageRank
is considered one of the best and most commonly used markers of socialmedia influence
[20,22,23–27,30–34]. Second, our recommendations are unenforceable. As with any medical
guideline, our recommendations are meant to serve as a basis upon which best practices can be
developed. The value of recommendations does not emanate from their enforceability, but
rather from their ability, over time, to percolate throughout the Twitter medical community
and change practice. To-date there is no known evidence that any set of voluntary guidelines
regarding Twitter use can or cannot lead to changes in behavior. Third, our data set did not
include those Twitter profiles that we could not identify. While 39% of all users were unknown,
we met our power threshold. We calculated PageRanks using 39997 @mentions: 4.6 times
more than the 8671 @mentions needed to achieve 80% power.

Conclusion

Using the PageRank as a surrogate marker, third party commercial entities exert an equal Twit-
ter influence as healthcare providers in the Twitter channels of medical conferences. Without
safety mechanisms in place, Twitter channels can devolve into a venue for the spread of biased
information rather than evidence-basedmedical knowledge, as seen at live conferences. Con-
tinuing to measure the Twitter influence that third parties exert can help conference organizers
develop reasonable guidelines for Twitter channel activity.
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