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Abstract
Biolog Phenotype Microarray (PM) is a technology allowing simultaneous screening of the

metabolic behaviour of bacteria under a large number of different conditions. Bacteria may

often undergo several cycles of metabolic activity during a Biolog experiment. We introduce

a novel algorithm to identify these metabolic cycles in PM experimental data, thus increas-

ing the potential of PM technology in microbiology. Our method is based on a statistical

decomposition of the time-series measurements into a set of growth models. We show that

the method is robust to measurement noise and captures accurately the biologically rele-

vant signals from the data. Our implementation is made freely available as a part of an R

package for PM data analysis and can be found at www.helsinki.fi/bsg/software/Biolog_

Decomposition.

Introduction

Biolog PhenotypeMicroarray (PM), not to be confusedwith RNA expression microarrays, is a
commercially available 96-well format test system capable of multiple parallel testing of the
bacterial growth responses to different nutrients and/or supplements [1]. The standard Biolog
PM plates contain a variety of different substrates, such as carbon and nitrogen sources, heavy
metals, antibiotics, etc. The substrates are pre-dispensed and dried, requiring only inoculation
with bacteria and a buffer containing a dye (usually tetrazolium violet). Bacterialmetabolism
during growth leads to the irreversible reduction of the dye in the well with production of a
purple colour which can be read as the change in absorbance over time [2]. The level of col-
ouration is generally determined by a scanner at 15 minute intervals during the experiments,
which are usually carried out over 48–72 hours depending on the studied bacterial species. The
measurements of the colouration are recorded in arbitrary units.

The levels of colouration measured in a single well during one experiment are here referred
to as signal. Signals are normally consistent between experimental replicates (Fig 1A) and
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depend on bacterial adaptation to a substrate and experimental conditions. Preferred or utilisa-
ble substrates support active metabolismwhich is reflected by a rapid signal growth (Fig 1, sub-
strates B03, A03). In contrast, toxic substrates inhibit bacterial growth or lead to cell death in
which case only a small amount of colour is produced (Fig 1, substrate H04).

Bacteriamay often undergo several cycles of metabolic activity, seen as differences in the
rates of colour accumulation during growth (Fig 1, substrate A03). Multiple cycles may repre-
sent different metabolic pathways sequentially used by bacteria as they switch between

Fig 1. Kinetics of accumulation of the colour production may represent metabolic cycles in bacteria. Panel A—colour production of three

replicates of the bacterial E. coli strain IMT17887 during growth on plate PM1 in the substrates H03 (Tyramine), B03 (Glycerol) and A03 (N-Acetyl-D

Glucosamine). Panel B—lagged difference L of the colouration of these signals. Panels C—growth rate S (smoothed lagged difference of the

colouration) of these signals. The smoothing coefficient is set to b = 0.5.

doi:10.1371/journal.pone.0162276.g001
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nutrients, undergo depletion of substrates, or after excretion of end-products followed by re-
utilisation. They may also represent different subpopulations in the growing cultures.

A number of methods have been used for analysing the Biolog metabolic signals and com-
paring the metabolic activity triggered by different substrates. The simplest approaches
describemetabolic signals with a single summary statistic, e.g. maximum intensity reached or
the area under the curve [3, 4]. Somemethods split signals into growth or no-growth curves by
using an arbitrary cut-off or comparison to a reference signal [5, 6]. However, describing a
time-serieswith only a single summary statistics leads to a loss of information, and may intro-
duce bias in the results [7]. If more than two samples are provided, the differences in summary
statistics can be tested, e.g. by using t-test or ANOVA.

In addition to simple summary statistics, model-basedmethods are widely applied to Biolog
data [7–10]. They are able to utilizemore information by fitting growth models such as logistic,
Gompertz and Richard, to the metabolic profiles. An R package opm is a widely used tool for
reading in, processing and visualizing Biolog data [9]. It fits Gompertz’s and Richard’s models
by using the grofit R package, and enables the comparison of the curves based on the 95%
confidence intervals of the model parameter estimates. The most recent software by Gerstgras-
ser et al. [7] fits several models at once, and chooses the most suitable one utilizing Bayesian
inference in parameter estimation and model selection. The signals are then compared against
each other by definingmaximum colour change, steepest slope and length of lag phase based
on the fitted models. However, none of these growth models, or other methods [5, 6, 11–14]
are able to capture more than one potential metabolic cycle at a time.

To address the problem, we propose an algorithm for identifyingmultiple potential meta-
bolic cycles of bacteria by decomposing the PM well signal into multiple growth models. In
addition, we propose a method for comparing signals with each other using summary statistics
gained from the growth models.We show that the method is robust to measurement noise and
captures accurately the biologically relevant information from the data, thus increasing the
potential of PM technology in microbiology.

To illustrate the proposed algorithm, we use Biolog metabolic signals from three E. coli
strains: IMT17887, PCV17887 and T17887. Three biological replicates per strain were tested
on plate PM1. Strain number IMT (Institut für Mikrobiologie und Tierseuchen) 17887 was iso-
lated from a horse with wound infection. It is an extended-spectrumbeta-lactamase (ESBL)-
producing E. coli of sequence type (ST) ST648. ESBL-plasmid extraction using a heat technique
resulted in the ESBL-plasmid-“cured” variant PCV17887 [15]. Transformant T17887 contains
the ESBL-plasmid, which was transferred into PCV17887 via electroporation. The data is pro-
vided in S1 File.

Signal decomposition

The proposed algorithm is applied separately to each of the 96 wells on the PM plates. Here,
the time-seriesR = (R1, R2 . . . RT) contain the raw signal, i.e. the sequence of T integers between
0 and 400 representing the measured intensity of the colouration in one particularwell at sev-
eral time points. In theory, as the production of the purple colour is irreducible, R would be an
increasing sequence. In practice, R is subject to low-frequency observational noise and can
show a decreasing pattern due to measurement errors.

As the metabolic activity is represented not by the absolute level of colouration but rather
by its change due to growth of the cultures, we are not interested in the values in R as such, but
the increments in the process. However, the lagged difference of the signal L = (R1, R2 − R1,
R3 − R2,. . .,RT − RT−1) is typically noisy (Fig 1B), which calls for a statistical approach to ana-
lyse the curves. To filter the noise the lagged difference is smoothed with a Gaussian kernel
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with a predefined smoothing coefficientb (Fig 1C). We define the target signal S as:

St ¼

XT

t¼1
Lt e�

ðt� tÞ2
b

PT
t¼1

e�
ðt� tÞ2

b

: ð1Þ

To identify metabolic cycles, the target signal S is approximated with the sum of n compo-
nents S �

Pn
i¼1

CðiÞ, where each component CðiÞ ¼ ðCðiÞ1 ;C
ðiÞ
2 . . . CðiÞT Þ represents one period of

colour accumulation (e.g. potential metabolic cycle).We focus on three basic types of compo-
nents based on the following growth models (Fig 2):

a Gaussian sequence:

Ct ¼ A e�
ðm� tÞ2

v ;

a brick sequence:

Ct ¼

0 t < t0

A t0 � t < t1

0 t1 � t

8
><

>:
;

and a slope sequence:

Ct ¼

0 t < m

A
ðm � t0Þ

2

ðm � 2t0 þ tÞ2
m � t

8
><

>:
:

Here A, μ, t0, t1 and v are the component parameters. Each component is defined by exactly
three parameters. To compensate for the smoothing, all sequencesC are also processed by the
Gaussian kernel with the same smoothing coefficientb.

Gaussian and brick sequences represent a logistic and a linear growth of a colouration
respectively, while slope sequences represent a dynamics with initial growth slowing down
with time (Fig 2). The various types of components are not intended to represent strictly differ-
ent biological processes, but are used to increase the capability of matching the data patterns
well.

Our decomposition algorithm consists of the following three steps: pre-processing converts
the raw signal into the target signal; initial decomposition specifies the number of components
required for optimal decomposition; calibration minimizes the distance between the compo-
nents and the target signal and separates the components. To retain biological interpretability
and prevent overfitting we set the constraint ∑Ct� δ (where δ is a predefined threshold). Fig 3
shows an example of the algorithm processing a raw signal. Fig 4 shows the results of the
decomposition for several PM signals.
Pre-processing.During the pre-processing step the target signal S is obtained by smoothing

the lagged difference of the raw signal (see Eq 1). The smoothing is required to remove high-
frequency observation noise.
Initial decomposition.During the initial decomposition step a crude decomposition is pro-

posed using a greedy algorithm. The first component C(1) is fitted to the whole signal S, the
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second component is fitted to the residuals S − C(1), the third—to the residuals S − C(1) − C(2)

and so on.
The fitting is done by optimizing ith component’s type and parameters to minimize squared

error between the target signal and the proposed components:

CðiÞ ¼ argmin
CðiÞ

XT

t¼1

St �
Xi

j¼1

CðjÞt

 !2

Optimization could in principle be done with any optimization algorithm capable of finding
a global minimum in the restricted space of the parameters. In our implementation we use a
gridmethod combined with the built-in R functionoptimize [16]. To choose the compo-
nent type, we fit three different types separately and choose the one with a minimal squared
error.

The iterations continue while fitted components satisfy the condition
P

CðiÞt � d. When the
first small component with

P
CðiÞt < d is encountered, the initial decomposition step is stopped

and the i − 1 components are set as the initial decomposition. If the first proposed component
is small

P
Cð1Þt < d we conclude that no periods of colour accumulation have occurred (for

example, no growth or the initial bacterial inoculum contained no live bacteria), the decompo-
sition is not continued and a stale process is reported as a result.
Calibration Initial decompositionmay be imprecise, as first components are obtained

ignoring the later ones. If two or more components are found during the initial decomposition
(n� 1), the components are calibrated to achieve concordance between them. Components
are calibrated sequentially:C(1),C(2),. . .C(n),C(1),C(2). . . until a pre-determined condition is
reached. It could be based on the number of iterations or a change in the distance between the
components and the target signal.

Fig 2. Basic components. The function used as components, smoothed functions and the type of growth

represented by these components.

doi:10.1371/journal.pone.0162276.g002
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When a component C(i) is calibrated, its type and parameters are updated by minimizing
the function:

XT

t¼1

St �
Xi

j¼1

CðjÞt

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þ g
XT

t¼1

CðiÞt

Xn

j¼1;j6¼i

CðjÞt

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
2

The first part of the function is the squared error between the proposed components and the
target signal. The second part penalizes the correlation among the calibrated component and
the rest of components. The latter is scaled with the correlation weight γ. The same optimiza-
tion method as in the initial decomposition step is used.

Fig 3. Decomposition of a Biolog signal. During the pre-processing raw signal is converted to the target signal. During the initial decomposition three

components (putative cycles of metabolic activity) are revealed: two Gaussian sequences and a slope sequence. During the calibration these

components are refined: the first component changes its type to a brick sequence, the second and the third are slightly adjusted.

doi:10.1371/journal.pone.0162276.g003
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Calibratingmay change the type of a component. If a component ceases to satisfy the con-
straint CðiÞt � d after the calibration, it is removed and the rest of the components are re-
calibrated.

Using decomposition to compare signals

The summary statistics of the identified components could be used to measure a similarity
between two signals and thus among replicates or different strains. We suggest three summary
statistics:

maxðCÞ

reflects the peak growth speed caused by the component;

sizeðCÞ ¼
XT

t¼1

Ct

Fig 4. Example of the component decomposition. The signals generated by E. coli strain IMT17887 during growth on panel PM1. Substrates F04

(D-Threonine), G01 (Glycyl-L-Glutamic Acid), A10 (D-Trehalose), E11 (2-Deoxy Adenosine), D10 (Lactulose) and H06 (L-Lyxose) were analysed. The

black lines show the analysed raw signal (not to scale). The different colour corresponds to the type of the components (turquoise for slope, red for brick

and blue for Gaussian). One component was identified in F04, three in D10 and two in G01, A10 and E11. In H06 no growth is visible. The algorithm

parameters were set as follows: blur strength b = 0.5, threshold δ = 20, correlation weight γ = 2.

doi:10.1371/journal.pone.0162276.g004
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estimates the size of the component (total gain in the colouration due to the component) and

centerðCÞ ¼
XT

t¼1

tCt=sizeðCÞ

measures the central time point in the component.
Using these summary statistics we can define a similarity measure between two components

A and B:

simðA; BÞ ¼ exp �
max Að Þ � max Bð Þð Þ

2

2d
2

ðmaxÞ

 

�
size Að Þ � size Bð Þð Þ

2

2d
2

ðsizeÞ

�
center Að Þ � center Bð Þð Þ

2

2d
2

ðcenterÞ

!

:

Here δ(max), δ(size) and δ(center) are coefficients scaling the importance of the differences in
summary statistics. sim(A, B) varies between 0 and 1 and does not depend on components’
types.

Finally we propose the following similarity measure for two decompositionsA and B con-
sisting of m and n components, respectively:A ¼ ðAð1Þ;Að2Þ . . . AðmÞÞ and
B ¼ ðBð1Þ;Bð2Þ . . . BðnÞÞ. In case m 6¼ n, assumeA consist of more components (m� n).

1. if m = n = 0 i.e. both signals are non-active, the similarity is set to 1;

2. if n = 0 and m> 0, i.e. if one signal is active and the other is non-active, the similarity is set
to 0;

3. if m, n> 0: Compute the similarity as

Yn

i¼1

simðAðiÞ;BðiÞÞ:

Repeat the computations for each permutation of components inside the decompositionA,
so that each component inA is compared to each component in B. Report the largest com-
puted similarity.

This similarity metric varies between 0 and 1 and depends on summary statistics of the
components. Since components in decompositionsA and Bmay be in different order, and
since decompositionsmay have incorrectly identified small false components, it is important
to check all possible pairings between the decomposition and choose the best one. If decompo-
sitions have no components to compare, the metric is either set to 0 (one signal is active and
one is non-active) or 1 (both are non-active).

Similarity between two decompositions can be used to cluster signals. Fig 5 shows the exam-
ple of decomposition for signals of three E. coli strains (IMT17887, PCV17887 and T17887).
The decompositions are consistent between experimental replications and vary between
strains. Fig 6 shows the similarity measures computed for the same data based on the Euclidean
distance (Panel A) and similarity between decompositions (Panel B). In the second case, the
difference between the three E. coli strains is more pronounced.We recommend comparing
the decompositions obtained with the same parameter values.

Performance analysis

Sensitivity test.We tested the algorithm’s ability to identify the correct number and type of
components and related summary statistics using a synthetic data set. First, we generated one
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Fig 5. Example of the component decomposition. The signals of E. coli strains IMT17887, PCV17887 and T17887 (three replicates each) on plate

PM1 and substrate A08 (L-Proline). The black lines show the analysed raw signal (not to scale). Colour corresponds to the type of the components. Raw

signals and their decompositions are similar among replicates of the same strain. The algorithm parameters were set as following: blur strength b = 0.5,

δ = 20, correlation weight γ = 2.

doi:10.1371/journal.pone.0162276.g005

Metabolic Cycles in Time-Series from Biolog Experiments

PLOS ONE | DOI:10.1371/journal.pone.0162276 September 27, 2016 9 / 14



component or a pair of negatively correlated components C�(i) using randomly sampled
parameters. The raw signal was constructed as a cumulative sum of components:
S�t ¼

Pt
t¼1

C�
t
. Non-normal noise was added to the raw signal:

St ¼ maxð0; S�t þ PoissonðlÞ � PoissonðlÞÞ:

The non-normal noise was chosen to reflect the apparent non-normality of the Biolog observa-
tional noise. We then estimated the component (or components) C(i) from S. We repeated the
simulations 1000 times and measured a probability of correctly guessing the number of compo-
nents n. If n was correct, we measured a probability identifying the component type and the
mean absolute difference in the summary statistics max(C), size(C) and center(C). The results
are shown in Table 1. The code used for testing is available at www.helsinki.fi/bsg/software/
Biolog_Decomposition.We used T = 50 hours, blur strength b = 1, threshold δ = 20, correla-
tion weight γ = 2 and the observation noise λ = 10.

Single components were almost always (in 97–99% cases) identified correctly. In 20% of the
cases brick and slope components were misidentified because smoothing during the pre-pro-
cessing step blurs the distinctions between the types. Narrow components are especially sus-
ceptible for this. The errors in the summary statistics were insignificant.

Identifying two components correctly was more challenging: the number of components
was correctly identified in 56–74% of the cases. If the components were located close to each
other, decomposition algorithm often mistook them as one or separated them in an incorrect
position. The type of the components was correctly estimated in 53–79% of the cases. The
errors in the summary statistics were larger in this setting as well.
Robustness to parameter choice. To assess the robustness of the decomposition algorithm

to measurement errors and parameter choices with simulations, we applied the same protocol

Fig 6. Example of the distance measure. The similarity was computed using the data and decomposition

presented in Fig 5. Dark colour indicates less similar signals. Panel A—the Euclidean distance between the raw

signals was used. Panel B—the similarity between signals is estimated as the similarity between their

decompositions. To compute the distance we used δ(max) = 3, δ(size) = 100 and δ(center) = 30.

doi:10.1371/journal.pone.0162276.g006
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as in the sensitivity test above, but used fixed true components C� and varying values for the
parameters b, δ, γ and observationnoise λ. We tested several true component sets, five different
values for all the parameters (b 2 0, 0.25, 0.5, 1, 1.5, δ 2 5, 10, 20, 30, 40, γ 2 0, 3, 10, 30, 100, λ
2 0.25, 1, 4, 16, 36) and 10 independent simulations for each combination of parameters. Fig 7
illustrates the results. The code used for testing is available at www.helsinki.fi/bsg/software/
Biolog_Decomposition

Low values for the smoothing coefficientb lead to the identification of small false compo-
nents while high values of b lead to the whole signal taken as one component (see Fig 7 for an
example). The same applies to the component size threshold δ. Small values of correlation
weight γmay lead to metabolic cycles being represented by several overlapping components,
whereas large γ values may lead to metabolic cycles represented by several sequential compo-
nents. Each data set may require an individual tuning of the parameter values for fully satisfac-
tory results, which may be easily performed interactively by the user.

Discussion

The proposed algorithm decomposes Biolog PhenotypeMicroarray data into potentially bio-
logicallymeaningful components, i.e. components that could be interpreted directly as bacte-
rial metabolic cycles and/or population changes. Identification of these components could be
useful for further investigations, such as identifying sub-populations within bacterial cultures.
Different signals (metabolic cycles) may arise after the initial death or growth stasis of a sub-
population of bacteria followed by growth of a second sub-population. Also, metabolites gener-
ated during growth on the initial substrate might result in a second decomposition signal in a
later phase of the experiment. Among the most promising future applications would be a direct
link to concurrent RNA-sequencing data to detect different metabolic pathways.

The decomposition of growth kinetics and comparison of similarity among replicates and
different strains is a meaningful tool for analysing the growth of different bacteria in a manner
of high resolution, in contrast to methods only analysing the respiration kinetics data as end-
point assays.

Performance analysis revealed that the presented method has a lowered sensitivity if there
are several correlated components. Due to the observational errors, it is only possible to iden-
tify evident metabolic cycles.While the probability of correctly inferring the component type
was low, the summary statistics were estimated accurately. Therefore any further analysis
should rely on the summary statistics rather than on the component types.

The algorithm requires several pre-defined options to determine the sensitivity and level of
smoothing. A user-specified tuning may be required to obtain an optimal fit for a particular
data set. For some parameters, such as the component size threshold δ prior knowledgemay
also be used.

Table 1. Sensitivity test.

Components correctly identified n(%) Type identified as mean error

Gaussian(%) brick(%) slope(%) max size center

one Gaussian 98 99 1 0 0.4 2.5 0.1

one brick 97 20 80 0 0.4 7 0.1

one slope 99 14 6 80 10 5 0.5

two Gaussian 71 66 27 7 1 66 2

two bricks 56 17 79 4 0.5 28 0.7

two slopes 74 15 32 53 12 23 1.7

doi:10.1371/journal.pone.0162276.t001
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We have investigated different modifications of the basic algorithm.We tested to use an L1
norm instead of the L2 norm (Euclidean distance) to identify the components and using a slid-
ing mean smoothing instead of a Gaussian kernel. Our analysis suggested (data not shown)
that the presented version of the method provides the best sensitivity, specificity and robust-
ness among the considered alternatives. We also considered including a fourth component

type: a right half of a Gaussian bell (Ct = 0 for t< μ, Ct ¼ A e�
ðm� tÞ2

v for t� μ). However, this
half-Gaussian sequence was almost never observed in a sample data sets, as similar patterns are
better describedwith a slope sequence.

Fig 7. Decomposition of a single mock-up signal with different noise λ and smoothing coefficient b. Each subplot presents 10 decompositions

superimposed one on the top of each other. The colour represents the number of components in the decomposition: blue for one, red for two, cyan for

three or more. Gray lines show the correct decomposition smoothed with a corresponding coefficient b. Other parameters were fixed to the values δ =

20 and γ = 2.

doi:10.1371/journal.pone.0162276.g007
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The time-series generated by the Biolog PMs are inevitably subject to measurement noise.
In addition to the signal-level noise (which is handled by the smoothing), there are plate-level
biases, such that two plates with the same substrates in the same conditions may produce dif-
ferent amount of colouration. To handle the plate-level noise all time-series representative of
the same array may be analysed concurrently and normalized a priori.

The presented algorithm does not require extensive computational resources. The runtime
depends on the number of components identified and takes typically about 20 minutes to com-
plete for a single plate in a standard single CPU desktop computing environment. The code is
written in R and can be downloaded at www.helsinki.fi/bsg/software/Biolog_Decomposition. It
is a part of a pipeline for analysing Biolog PM data [8] (www.helsinki.fi/bsg/software/R-Biolog)
built upon the opm package [9].

Supporting Information

S1 File. Sample data. Biolog metabolic signals from E. coli IMT17887, PCV17887 and T17887
tested on plate PM1. Three biological replicates per strain.
(ZIP)
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