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Abstract

Background

Lipolysis is accelerated during the acute phase of inflammation, a process being regulated

by pro-inflammatory cytokines (e.g. TNF-α), stress-hormones, and insulin. The intracellular

mechanisms remain elusive and we therefore measured pro- and anti-lipolytic signaling

pathways in adipocytes after in vivo endotoxin exposure.

Methods

Eight healthy, lean, male subjects were investigated using a randomized cross over trial

with two interventions: i) bolus injection of saline (Placebo) and ii) bolus injection of lipopoly-

saccharide endotoxin (LPS). A 3H-palmitate tracer was used to measure palmitate rate of

appearance (Rapalmitate) and indirect calorimetry was performed to measure energy expen-

ditures and lipid oxidation rates. A subcutaneous abdominal fat biopsy was obtained during

both interventions and subjected to western blotting and qPCR quantifications.

Results

LPS caused a mean increase in serum free fatty acids (FFA) concentrations of 90% (CI-

95%: 37–142, p = 0.005), a median increase in Rapalmitate of 117% (CI-95%: 77–166,

p<0.001), a mean increase in lipid oxidation of 49% (CI-95%: 1–96, p = 0.047), and a

median increase in energy expenditure of 28% (CI-95%: 16–42, p = 0.001) compared with

Placebo. These effects were associated with increased phosphorylation of hormone sensi-

tive lipase (pHSL) at ser650 in adipose tissue (p = 0.03), a trend towards elevated pHSL at

ser552 (p = 0.09) and cAMP-dependent protein kinase A (PKA) phosphorylation of perilipin

1 (PLIN1) (p = 0.09). Phosphatase and tensin homolog (PTEN) also tended to increase
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(p = 0.08) while phosphorylation of Akt at Thr308 tended to decrease (p = 0.09) during LPS

compared with Placebo. There was no difference between protein or mRNA expression of

ATGL, G0S2, and CGI-58.

Conclusion

LPS stimulated lipolysis in adipose tissue and is associated with increased pHSL and signs

of increased PLIN1 phosphorylation combined with a trend toward decreased insulin signal-

ing. The combination of these mechanisms appear to be the driving forces behind the

increased lipolysis observed in the early stages of acute inflammation and sepsis.

Trial Registration

ClinicalTrials.gov NCT01705782

Introduction
Administration of bacterial endotoxin is widely used as a model of acute inflammation and
sepsis [1,2]. Energy demands increase during the initial phase of sepsis and is mainly provided
by lipid mobilization and oxidation [3,4]. Storage of lipids in adipose tissue constitutes the larg-
est endogenous energy supply and lipolysis therefore becomes essential during conditions with
acute increased energy demands [5]. Notably, lipolysis is elevated in septic patients during the
first days of hospital admission [6–8]. Despite this, knowledge about the regulation of lipolysis
in human adipose tissue during sepsis and acute inflammation is sparse [9].

Lipolysis is rapidly and distinctly stimulated by epinephrine, but other hormones such as
cortisol and growth hormone (GH) also all contribute and increase acutely in response to sep-
sis [10]. In addition, bacterial products (such as endotoxins) cause increased concentrations of
proinflammatory cytokines (e.g. TNF-α), which are known to have lipolytic actions [11–13]. In
contrary, insulin remains the principal anti-lipolytic agent, although ketone bodies also sup-
press lipolysis [14,15].

As reviewed in detail by others [16,17], lipolysis is tightly regulated through adipose triglyc-
eride lipase (ATGL) and hormone sensitive lipase (HSL), of which ATGL is the initial rate-
limiting enzyme in the conversion of triacylglycerol (TAG) into glycerol and free fatty acids
(FFA). HSL activity is regulated through phosphorylation on multiple sites by cAMP-depen-
dent protein kinase A, also known as protein kinase A (PKA)[17]. Likewise, PKA regulates
ATGL activity although by an indirect mechanism; ATGL activity is regulated through interac-
tion with the co-regulators comparative gene-identification 58 (CGI-58) and G0/G1 switch
gene protein 2 (G0S2)[17]. Thus, activation is dependent on complex formation with CGI-58
but in the basal state CGI-58 is sequestered in a complex with PLIN1. When PKA is activated it
phosphorylates PLIN1, leading to the release of CGI-58 and subsequent activation of ATGL.
Conversely, G0S2 is a negative regulator of ATGL activity, and the inhibitory effect of this pro-
tein is overriding activation by CGI-58 [18]. Being regulated primarily at the protein expression
level GOS2 is thought to act as a key regulator of overall ATGL capacity, rather than a compo-
nent of acute lipolytic cascade [17]. It is unknown if these regulatory mechanisms are affected
during the acute phase of inflammation and sepsis.

The present study was designed to define, which intracellular mechanisms become activated
in adipose tissue concurrent with the increased rate of lipolysis observed in the initial stages of

Acute Inflammation Stimulates Lipolysis and Signals in Adipose Tissue

PLOS ONE | DOI:10.1371/journal.pone.0162167 September 14, 2016 2 / 13

expenditure; FFA, free fatty acids; G0S2, G0/G1
switch protein 2; GH, growth hormone; HSL, hormone
senative lipse; IL, interleukin; Rapalmitate, palmitate
rate of appearance; RQ, respiratory quotient; PKA,
cAMP-dependent protein kinase A; PLIN1, perilipin 1;
PTEN, phosphatase and tensin homolog; TAG,
triacylglycerol; TNF- α, tumor necrotic factor alpha.

https://clinicaltrials.gov/ct2/show/NCT01705782


acute inflammation, using bacterial endotoxin in a human model to replicate these metabolic
events under controlled conditions.

Methods

Subjects
Data originate from a randomized controlled study from which data regarding protein metabo-
lism have been published [19]. The study design included 3 experimental settings: (i) Saline
control (Placebo), (ii) LPS administration (LPS) and (iii) LPS and amino acid administration
(LPS+A). Only data from study arm (i) and (ii) during non-insulin stimulated conditions are
reported here. Eight healthy, young, and lean male subjects were included in this study. They
were eligible for inclusion if they were of male gender, were healthy without regular intake of
medication, were between 25 and 40 years of age, and had a body mass index (BMI) between
20 to 30 kg•m-2. All subjects were screened using a medical interview and a physical examina-
tion including electrocardiography and a blood test screen. An informed written and oral con-
sent was obtained for each subject. Both study days were performed under the same conditions
in the same laboratory at Aarhus University Hospital, Denmark. Subjects were without febrile
illness the preceding week of each study day and did not exercise 48 hours before each visit.
Subjects arrived by car at 07:00 AM after an overnight fast.

Ethics
The Danish Ethical Committee approved the study (1-10-71-410-12) and both written and
oral consent was obtained before inclusion of subjects in the trial. The study was conducted in
accordance with the principles stated in the Declaration of Helsinki.

Design
Aminimum of 21 days separated the trials for each subject. The primary investigator enrolled
all test subjects using a computerized program to randomize interventions. All subjects were
blinded in regards to interventions, but could distinguish interventions due to the subjective
symptoms following LPS administration. Four of the test subjects received LPS during their
first trial followed by Placebo during the second trial and the other four test subjects received
Placebo first followed by LPS (Fig 1). During each trial intravenous catheters were inserted in
both cubital veins and one in a dorsal hand vein for intravenous infusions and blood sampling.

Lipopolysaccharide (LPS)
A bolus (1 ng/kg or 10 U/kg) of E. coli endotoxin (10,000 USP Endotoxin, lot H0K354; The
United States Pharmacopeial Convention, Inc., Rockville, Maryland) was given during a two
minute period at time = 0 min and followed by a 10 ml saline infusion.

Palmitate tracer and serum concentration of FFA
A continuous infusion of 3H-palmitate (infusion rate 0.3 μCi/min) was given at time = 180–240
min (Fig 2). Whole body palmitate calculations were based on Steele’s non-steady state equa-
tion [20]:

Rapalmitate ¼
ipalmitate

SA
� Vd � c

SA
� DSA

Dt

� �

Where Rapalmitate is the rate of appearance for palmitate, ipalmitate is the infusion rate of
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palmitate tracer, SA is the specific activity of 3H-palmitate, Vd is the total distribution volume,
c is the total concentration of palmitate, ΔSA is the difference in specific activity of 3H-palmi-
tate between samples, and Δt is the time between these samples. Vd was estimated assuming
that the plasma volume constitutes 5% of total body weight and multiplied with 1.8 as shown
by others [21]. Blood samples were collected before starting the 3H-palmitate infusion and
again at time = 220, 230, and 240 min.

The mean serum concentration of FFA were quantified using blood collected at time = 220,
230, and 240 min using the in vitro enzymatic colorimetric method assay NEFA-HR(2) in
accordance with manufactures guidelines (Wako Chemicals GmbH, Germany).

Fig 1. CONSORT flowchart for the trial.

doi:10.1371/journal.pone.0162167.g001
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Indirect calorimetry
An Oxycon Pro calorimeter (Intramedic) with a canopy was applied at time = 180 min (Fig 2).
A 15-minute period collection of respiratory gases was used to estimate resting energy expendi-
ture (EE) and the respiratory quotient (RQ). Fat oxidation rates were calculated as previously
described [22]. Due to technical problems, calorimetry measurements were only completed in
7 subjects.

Tissue biopsy and western blot analysis
An abdominal subcutaneous adipose tissue biopsy was obtained at time = 135 min. The biopsy
was immediately washed with isotonic saline to avoid contamination of blood and snap-frozen
in liquid nitrogen before storage at -80°C. Fat biopsies were successfully obtained and blotted
for n = 7.

All samples were homogenized in a buffer with a 7.4 pH-level and containing 50 mM
HEPES, 137 mMNaCl, 10 mMNa4P2O7, 20 mMNaF, 5 mM EDTA, 1 mMMgCl2, 1 mM
CaCl2, 2 mM NaOV, 5 mMNAM, 10 μMTSA, 1% HALT, 1% NP-40, and 10% glycerol. Sam-
ples were centrifuged at 14,000 g for 20 minutes.

Western blot analyses were used to measure relative contents and phosphorylation of rele-
vant protein targets using the BioRad Criterion system (BioRad). Primary antibodies used were
ATGL (GTX62840, GeneTex), CGI-58 (ab183739, Abcam), phosphorylated HSL Ser552, Ser554,
and Ser650 (4139, 4137, and 4126 Cell signaling), HSL (4107 Cell signaling), Phospho-PKA
Substrate (9624 Cell signaling), PLIN1 (PA1-1052 ABR), G0S2 (sc-133424 Santa cruz), phos-
phorylated Akt at Thr308 and Ser473 (9275 and 9271 Cell signaling), Akt (4691, Cell signaling),
phosphorylated AS160 at Thr642 (4288, Cell signaling), AS160 (07–741, Upstate), and PTEN
(9188, Cell signaling). The same membrane was exposed to both Phospho-PKA Substrate anti-
body and PLIN1 antibody to identify the band representing PKA-phosphorylation of PLIN1.
This method has been validated by others using a PLIN1 knock-out model [23].

Control for equal loading was performed using the stain-free technology [24]. Proteins were
visualized and quantified using Image Lab 5.0, Bio-Rad laboratories. Data are presented as dot
plots showing each subject’s quantification as a ratio compared to the median value for the Pla-
cebo group.

RNA extraction and qPCR for mRNA analysis
RNA was extracted using TRIzol (Gibco BRL, Life Technologies, Roskilde, Denmark) and
homogenized with one tungsten bead (Qiagen) using a Mixer Mill. A NanoDrop 8000

Fig 2. Flowchart showing the time course for the trial days. At time = 0 min a bolus of isotonic saline
(Placebo) or a bolus lipopolysaccharide (LPS) was given.

doi:10.1371/journal.pone.0162167.g002
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Spectrophotometer (Thermo Scientific Pierce, Waltham, Maine, USA) was used to quantify
RNA by measuring absorbance at 260 and 280 nm with a ratio�1.9. Integrity of the RNA
was checked by visual inspection of the two ribosomal RNAs on an agarose gel. A Verso
cDNA kit (cat# Ab-1453, Thermo Fischer Scientific) with random hexamer primers was used
to synthesize the cDNA. Duplicate PCR-reactions were performed using a KAPA SYBR1

FAST qPCR Kit (Kapa Biosystems, Inc. Woburn, MA, USA) in a LightCycler 480 (Roche
Applied Science) using the following protocol: One step at 95°C for 3 min., then 95°C for 10
sec., 60°C for 20 sec. and 72°C for 10 sec and finally a melting curve analysis was performed.
The increase in fluorescence was measured in real time during the extension step. The rela-
tive gene expression was estimated using the default “Advanced Relative Quantification”
mode of the software version LCS 480 1.5.1.62 (Roche Applied Science) and specificity of the
amplification was checked by a melting temperature analysis.

The following primer pairs were designed using QuantPrime [25]: ATGL: ACCTCAATGAA
CTTGGCACC and CAACGCCACGCACATCTA length = 122bp, G0S2: CGAGAG-CCCAGAGCC
GAGATG and AGCACCACGCCGAAGAG length = 137bp, CGI58: TGTCAGCCG-GCTTCGAGA
TAAG and ACCAGTTAGCCATCCTGACCTCTC length = 113 bp.

The housekeeping gene, beta2microglobulin, was amplified using this primer pair: b2MG:
GAGGCT-ATCCAGCGTACTCC and AATGTCGGATGGATGAAACCC, length = 111bp. Expres-
sion level of this housekeeping gene was similar between the Placebo and LPS. All primers were
from DNA Technology (Risskov, Denmark). A similar set-up was used for negative controls,
except that the reverse transcriptase was omitted and no PCR products were detected under
these conditions. Adipose tissue for PCR analysis was only performed in 6 subjects due to lack
of adipose tissue.

Statistics
Data are presented as means or medians with a 95% confidential interval (CI-95%) or range
when appropriate. All statistical analyses and graphs were made using Stata 13 (College Station,
Texas, USA) and SigmaPlot 11 (San Jose, California, USA). A paired two-tailed students t-test
was used to compare the two study arms. Normal distribution was ensured by examination of
QQ-plots. Data were logarithmic converted if QQ-plots indicated unequal distribution. If data
still were not normally distributed a Wilcoxon signed-ranked test was used. P-values< 0.05
were considered significant.

Results

Subjects
The test subjects had a median age of 26 years (range: 25–32), a median BMI of 23 kg•m-2

(range: 22–26), and a median body weight of 79 kg (range 68–85 kg) as reported previously
[19]. LPS administration caused a significant increase in heart rate, temperature, and serum
concentrations of tumor necrotic factor (TNF)-α, interleukin (IL)-6, IL-10, cortisol, GH, gluca-
gon, FFA, and lactate compared with Placebo as reported previously [19]. Furthermore, serum
insulin concentrations 15 min prior to fat biopsy sampling were 14.9 pmol/l during LPS and
31.0 pmol/l during Placebo (p<0.05).

Lipolysis and lipid oxidation
Absolute serum concentrations of FFA have been reported previously [19] and showed that
LPS administration caused a mean increase of 90% (CI-95%: 37–142, p = 0.005) compared
with placebo. Rapalmitate showed a median increase of 117% (CI-95%: 77–166, p<0.001) during
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LPS compared with Placebo (Fig 3). In addition, LPS caused a mean increase in the lipid oxida-
tion rate of 49% (CI-95%: 1–96, p = 0.047) and a median increase in energy expenditure of
28% (CI-95%: 16–42, p = 0.001) compared with Placebo.

Adipose tissue signaling
Western blot quantification of subcutaneous abdominal fat tissue showed an increase in HSL
phosphorylation at Ser650 (p = 0.032) during LPS compared with Placebo (Fig 4). In parallel to
this finding, HSL phosphorylation at Ser552 (p = 0.09) and PKA phosphorylation of PLIN1
(p = 0.09) also tended to increase during LPS compared with Placebo. We did not detect
changes between groups in regards to protein levels of ATGL, CGI-58, and G0S2 as well as
HSL phosphorylation at Ser554 (p>0.05). In agreement with these findings, quantitative PCR
analysis showed no difference of ATGL, G0S2, and CGI-58 expression between groups (Fig 5,
p>0.05).

Phosphatase and tensin homolog (PTEN) tended to increase (p = 0.08) and phosphoryla-
tion of Akt at Thr308 tended to decrease (p = 0.09) during LPS compared with Placebo. Phos-
phorylation of Akt (protein kinase B) at Ser473 together with phosphorylation of AS160 at
Thr642 did not differ between groups (Fig 6).

Protein expression of PLIN1, HSL, panAkt, AS160, and β-actin did not differ significantly
between groups (p>0.05, data not shown).

Discussion
In this study, we demonstrate how endotoxin administration causes acute and marked incre-
ments in the circulating levels and turnover of FFA concentrations together with increased
lipid oxidation and energy expenditure. These changes were associated with increased phos-
phorylation of HSL at Ser650. Additionally, we also detected trends towards increased phos-
phorylation of HSL at Ser552 and increased PKA phosphorylation of PLIN1. These findings
may suggest that increased PKA activity is the driving mechanism behind the increased lipoly-
sis seen in the early stages of acute inflammation and sepsis but are still speculative and needs
to be confirmed by other human clinical randomized trials.

Our findings are in accordance with earlier studies showing increased lipolysis in the early
phase of sepsis and endotoxemia [6–8]. Even though endotoxemia is known to cause increased
lipolysis, the mechanisms responsible for this response are poorly understood. Despite the

Fig 3. Metabolic measures. Data are shown as dot-plots for each subject during the control conditions with
saline administration (Placebo) and the day with lipopolysaccharide administration (LPS). A black horizontal
bar indicates the median value for each group. A. Rapalmitate (n = 8), B. lipid oxidation rates from indirect
calorimetry measurements (n = 7), andC. energy expenditure from indirect calorimtry measurements (n = 7).
Paired sample t-tests were used to compare groups. Rapalmitate = rate of appearance of palmitate, FFA = free
fatty acids.

doi:10.1371/journal.pone.0162167.g003
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complex interaction between the numerous pro-lipolytic hormones and cytokines, they all
eventually stimulate PKA-mediated phosphorylation of PLIN1 and HSL [10,17]. A study by
Anthonsen et al [26] documented rat HSL phosphorylation at Ser563 and Ser660 (Ser552 and
Ser650 in human HSL) in cells stimulated with isoproterenol and later it was shown that phos-
phorylation of PLIN1 by PKA is a decisive step in the activation of lipolysis [27].

Fig 4. Western blot analyses of subcutaneous abdominal fat tissue biopsies.Representative western blots in abdominal
adipose tissue during control conditions (Placebo) and during lipopolysaccharide (LPS) induced endotoxemia (n = 7). Data are
presented as the ratio change compared to the median value for the Placebo condition. The black horizontal bars indicate the
median value for each group (= 1 for Placebo in all graphs). Paired sample t-test was used to compare groups.A.G0S2 = G0/G1
switch protein 2, B. ATGL = adipose triglyceride lipase, C. CGI-58 = comparative gene identification-58, D.,E., and F.
HSL = hormone sensitive lipase, andG. p-PKA Substrate = Phospho-PKA (protein kinase A) Substrate.

doi:10.1371/journal.pone.0162167.g004
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A bolus administration of LPS is known to cause an acute increase in epinephrine, GH, and
cortisol [28,29], as also observed in our study [19]; all of these hormones are pro-lipolytic. In
addition, a study in humans employing direct infusion of LPS into the femoral artery has
shown that LPS per se increases lipolysis, as judged by increased net palmitate release from the
infused leg [11]. Insulin is known to be the main inhibitor of lipolysis [27], and serum insulin
concentrations were elevated nearly two-fold during Placebo compared with LPS in our study
[19] thereby also favoring increased lipolysis during LPS. These hormonal signals may be fur-
ther amplified by the borderline increase of PTEN (a known inhibitor of insulin signaling) in
our western blot results and the borderline decrease of phosphorylation of Akt (a known down-
stream effector in the insulin signaling cascade) at Thr308 during LPS compared with Placebo.
This could indicate that both increased pro- and decreased anti-lipolytic agents may contribute
to the increased lipolysis during the acute phase of inflammation. This is primarily a specula-
tive consideration as results per definition were not significantly different between groups
(p>0.05), which may be due to the lack of statistical power often limiting human endotoxin
trials.

We used both quantitative PCR and western blot to measure G0S2, ATGL, and CGI-58
without finding any differences between LPS and Placebo. Considering the short time-interval
between LPS administration and fat biopsy sampling (time = 135 min), it seems plausible and
predictable that we only found differences in posttranslational protein modifications (e.g.
phosphorylations) and no differences or trends when quantifying protein levels. We have pre-
viously shown that ATGL and G0S2 expression are regulated during prolonged fasting (72 h)
but not affected by an acute exercise bout [30]. Moreover, in cultured adipocytes G0S2 expres-
sion is decreased substantially by exposure to TNF-α for 8 hours [18]. These observations fur-
ther support the hypothesis that remodeling of the lipolytic cascade at the level of protein
expression requires persistent, long-term stimulation of lipolysis. It remains intriguing, why
lipolysis is increased during the first 24 h of sepsis but then decreases to lower than normal
rates after four days of admission [6]. Future studies investigating this issue are necessary to
fully understand how lipid mobilization is regulated during the time-course of an infection.

Our borderline significant results (0.05<p-value<0.10) in all likelihood are due to low sta-
tistical power. The number of participants in studies using LPS administration is limited by
ethical considerations. In addition, the fat biopsies time-points were performed relatively early
(fig 1, time = 135) because we aimed at identifying the initial adipocyte signaling modifications
responsible for increasing the rate of lipolysis; and it has been shown by others that the inflam-
matory effects of LPS peaks 60–120 minutes following exposure [31]. It is evidently possible

Fig 5. qPCRmeasurements of subcutaneous abdominal fat biopsies.Quantitative PCRmeasurements (n = 6) of mRNA
are shown for control conditions (Placebo) and during lipopolysaccharide (LPS):A.G0S2 = G0/G1 switch protein 2, B.
ATGL = adipose triglyceride lipase, andC. CGI-58 = comparative gene identification-58.

doi:10.1371/journal.pone.0162167.g005
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that we would have observed a more profound intracellular adipocyte signaling response and
changes in protein expression levels if the biopsies had been performed later.

We used lean healthy men as test subjects, which may imply that our results cannot neces-
sarily be extrapolated to other experimental or clinical situations. Furthermore, these findings
were made using subcutaneous abdominal fat biopsies and we therefore do not know if our
findings also apply to regulation in other adipose tissue depots. Experiments in rats suggest
that visceral adipose tissue is less responsive to endotoxemia than subcutaneous adipose tissue
[32] while human studies have found that visceral adipose tissue is more responsive to epi-
nephrine and less responsive to insulin than subcutaneous adipose tissue [33,34].

In conclusion, we found that LPS administration causes an acute increase in lipolysis, FFA
concentrations, energy expenditure, and lipid oxidation rates, which is associated with adipose

Fig 6. Western blot analyses of subcutaneous abdominal fat tissue biopsies. Representative western
blots in abdominal adipose tissue during control conditions (Placebo) and during lipopolysaccharide (LPS)
induced endotoxemia (n = 7). Data are presented as the ratio change compared to the median value for the
Placebo condition. The black horizontal bars indicate the median value for each group (= 1 for Placebo in all
graphs). Paired sample t-test was used to compare groups.A. PTEN = phosphatase and tensin homolog, B.
andC. Akt, and D. AS160 = Akt substrate of 160 kDa.

doi:10.1371/journal.pone.0162167.g006
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tissue stimulation of pHSL at ser650. On a more speculative note it seems as if the initial trigger-
ing mechanisms of adipose tissue lipolysis in the acute phase of inflammation and sepsis seem
to proceed through PKA-dependent activation of the classical lipolytic cascade.
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