
RESEARCH ARTICLE

Compressive Sensing via Nonlocal Smoothed
Rank Function
Ya-Ru Fan1, Ting-Zhu Huang1*, Jun Liu2, Xi-Le Zhao1

1 School of Mathematical Sciences/Research Center for Image and Vision Computing, University of
Electronic Science and Technology, Chengdu, Sichuan, 611731, P. R. China, 2 School of Mathematics and
Statistics, Northeast Normal University, Changchun, Jilin, 130024, P. R. China

* tingzhuhuang@126.com

Abstract
Compressive sensing (CS) theory asserts that we can reconstruct signals and images with

only a small number of samples or measurements. Recent works exploiting the nonlocal

similarity have led to better results in various CS studies. To better exploit the nonlocal simi-

larity, in this paper, we propose a non-convex smoothed rank function based model for CS

image reconstruction. We also propose an efficient alternating minimization method to

solve the proposed model, which reduces a difficult and coupled problem to two tractable

subproblems. Experimental results have shown that the proposed method performs better

than several existing state-of-the-art CS methods for image reconstruction.

Introduction
Compressive sensing (CS) [1, 2] allows us to reconstruct high dimensional data with only a
small number of samples or measurements, and captures only useful information and has
the potential of significantly improving the energy efficiency of sensors in the real-world
applications. The key idea behind CS is that the majority of real-world signals including
images and videos, can be sparsely represented by given some appropriate basis. Due to the
positive theoretical and experimental results, many CS-based imaging methods have been
proposed and applied to the various areas such as magnetic resonance imaging [3, 4] in medi-
cine, compressed spectral and hyperspectral imaging [5, 6] in industry, neural network [7] in
biotechnology.

CS also makes it possible to well restore corrupted signals at a fast speed and the small mem-
ory cost. Conventional CS recovery uses ℓ1 norm to characterize the sparsity of a signal, and
the resulting convex optimization problems are tractable. Although there are several methods
can be used to efficiently solve the ℓ1 regularization based model for signal recovery [8–10],
they only achieve suboptimal recovery performance due to their relaxation of the ℓ0 norm
based sparse optimization [11]. More recently, structured or group sparsity based methods
[12–14] and nonlocal sparsity based methods [15, 16] have provided better results for CS
recovery. Intuitively, the structured or group sparsity can reduce the degrees of freedom in the
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solution, and the nonlocal sparsity explicitly exploits self-similarities of the signal, thereby
obtaining more accurate recovery performance than the common sparsity.

In CS studies, a number of works have suggested that non-convex optimization based
approach often yields better results than convex ones though costing higher computational
complexity. Therefore, we propose a CS recovery model by considering a non-convex
smoothed function to approximate the rank, denoted as smoothed rank function (SRF), as a
low-rank regularization. The emphasis behind the proposed model is the utilization of nonlocal
sparsity by image patch grouping. Concretely, we group a set of similar image patches to form
a matrix Xi for i-th exemplar image patch, which is extracted from the test image. Then the
matrix Xi is low-rank since similar patches have similar structure. To solve the low-rank opti-
mization problem, we minimize the SRF function to approximate the rank minimization prob-
lem, and the resulting problem is a non-convex optimization problem. In order to avoid
getting trapped in local solutions, we initialize a rough approximation of the rank, and gradu-
ally improve the approximation as the iteration proceeds.

The basic idea of using nonlocal sparsity for image patches has already been used in [16–18]
with the very impressive results. There have been an abundant research literatures using the
patch-based low-rank as plenty with nonlocal sparsity [19–22]. In [20, 21], the low-rank prob-
lem is solved by minimizing the nuclear norm of the low-rank matrix, which leads to a convex
minimization problem with many efficient methods available. In [22], a more accurate approx-
imation for rank is proposed by exploiting the logdet function, which can be derived as a
weighted nuclear norm. Specifically, compared with previous surrogates for the rank such as
nuclear norm and weighted nuclear norm, our surrogate is differentiable and can approximate
the rank adaptively.

The outline of this paper is organized as follows. Firstly, we briefly review the background of
CS. Secondly, the SRF function is introduced and the model based on SRF for CS image recon-
struction is proposed. Thirdly, the optimization algorithm is presented to solve the proposed
model. To demonstrate the effectiveness of the proposed method, we show some numerical
results on several test images in the following section. In the end, the conclusion and future
work are given.

Background

The CS recovery problem aims to find the sparsest solution x 2 R
N from the underdetermined

linear system y = F x, where y 2 R
M is the measurements and F 2 R

M�N ,M< N is the mea-
surement matrix. It can be formulated as follows:

min
x
jjxjj0 s:t: y ¼ Fx; ð1Þ

where ||�||0 is the ℓ0 norm counting the number of nonzero elements of x. In practical applica-
tions, such as signal reconstruction problem, the measurement noise is unavoidable. Then the
noisy CS recovery problem is formulated as

min
x
jjxjj0 s:t: jjy � Fxjj2 � �; ð2Þ

where ||�||2 is the ℓ2 norm and � is the residual error. However, since problem (2) is NP-hard, it
is infeasible to solve it directly. Thus it is proposed to replace the ℓ0 norm by the convex ℓ1
norm, namely

min
x
jjxjj1 s:t: jjy � Fxjj2 � �; ð3Þ

which is the well-known basis pursuit problem [2]. The problem (3) is the convex relaxation of
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problem (2) and easy to solve by some methods including iterative shrinkage algorithm [8],
alternating direction method of multipliers (ADMM) [23] and Bregman split algorithm [24].
Although problems (2) and (3) are fundamentally different, they return the same solution in
many interesting situations [25]. By using an appropriate regularization parameter λ, we can
equivalently rewrite the problem (3) as follows:

min
x

jjy � Fxjj22 þ ljjxjj1: ð4Þ

By replacing the ℓ1 norm by the non-convex ℓp (0> p> 1) norm, in [26], the non-convex
optimization problem based on ℓp norm can achieve the more exact CS reconstruction result
than the convex one based on the ℓ1 norm. Moreover, it has been shown in [18, 27] that the
nonlocal sparsity exploiting the self-similarity of the natural image leads to the state-of-the-art
performance. The nonlocal sparsity is a significant prior for CS recovery. In this work, we will
propose a non-convex CS image recovery approach, which exploits the nonlocal sparsity.

Nonlocal smoothed rank function
In this section, we present a procedure of patch grouping that uses image self-similarity and
leads to the low-rank problem. Hence one underlying assumption is the image exhibits abun-
dant self-similarities. For a test image, we select some exemplar patches of size

ffiffiffi
n
p � ffiffiffi

n
p

, reor-
dered into the column vector lexicographically and denoted as bx i 2 R

n. For each exemplar
patch, the underlying assumption makes it possible to find a number of similar patches. Spe-
cially, we employ a variant of k-nearest-neighbor search in a local window for each exemplar
patch bx i to find its similar patches as follows:

Gi ¼ fij j jjbx i � bx ij
jj2 < cg; ð5Þ

where c is a pre-defined threshold and Gi indexes the positions of corresponding similar
patches. After patch grouping, we aline the similar patches as column vectors to form a matrix
Xi ¼ ½bx i; bx i1

; . . . ;bx im�1 �, Xi 2 R
n�m for the i-th exemplar patch bx i. Under the above assumption,

each matrix Xi has the low-rank property since the similar patches have the similar structures.
In this way, the nonlocal sparsity leads to a rank minimization problem in our image recon-
struction approach.

Since the resulting matrix Xi also contains the noise during patch grouping, in order to
obtain a clean and clear image to well match the ground truth, let Xi = Li+Wi, where Li denotes
the low-rank matrix andWi represents the noise matrix. We can obtain the low-rank matrix Li
by solving the following problem:

min
Li

rankðLiÞ s:t: jjXi � Lijj2F � �2; ð6Þ

where ||�||F is the Frobenius norm and � is the residual error. Unfortunately, problem (6) is NP-
hard. A popular heuristic method is to adopt the nuclear norm (sum of the singular values) to
replace the rank, i.e.,

min
Li
jjLijj� s:t: jjXi � Lijj2F � �2; ð7Þ

where ||�||� is the nuclear norm. The problem (7) is a convex surrogate of the rank and can be
solved efficiently by the singular value thresholding (SVT) algorithm [28]. However, it is in
practice suboptimal due to equally treating each singular value. In [19], Gu et al. have demon-
strated that non-convex low-rank approximations adaptively treating the singular values at dif-
ferent scales yield better results than those convex ones.
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In [29, 30], they have been shown that for a low-rank matrix X 2 R
n�m, the rank can be

approximated by the following SRF function:

GdðXÞ ¼ ‘�
X‘

j¼1
e�s

2
j ðXÞ=2d2 ; ð8Þ

where σj(X) is the j-th singular value of X, ℓ = min{n,m} and δ is an adjustable parameter.
Although the problem of minimizing Gδ(�) function using a small δ will lead to many local
minima, the solution of minimizing Gδ(�) function converges to the minimum rank solution as
δ goes to zero [30] as the red curve shown in Fig 1. In order to avoid trapping in local solutions,
we initialize a large δ and gradually decrease δ to improve the degree of approximation for the
rank. With the decreasing δ, the rank can be better approximated by SRF Eq (8). This tech-
nique refines the minimizer of the SRF minimization problem by considering the minimizer of
the previous iteration (large δ) as the new initial point of current iteration (small δ), which
makes the solution of the SRF minimization problem get closer to the minimum rank solution
during the iterations. Fig 1 intuitively illustrates the comparison of SRF, the rank, the nuclear
norm and logdet function in the case of a scalar. We observe that SRF can better approximate
the rank than the nuclear norm and logdet function. Therefore, we speculate that the problem
of minimizing SRF toward rank minimization problem could achieve better performance.
Then, we consider the SRF function as the low-rank regularization for CS image recovery.

For the low-rank matrix Li, the rank minimization problem can be replaced to

min
Li

GdðLiÞ s:t: jjXi � Lijj2F � �2; ð9Þ

which can be reformulated with an appropriate parameter λ,

Li ¼ arg min
Li

1

2
jjXi � Lijj2F þ lGdðLiÞ: ð10Þ

Obviously, the problem (10) is smoothed and differentiable, and we can adopt the gradient

Fig 1. Performance of SRF =Gδ(x), rank = ||x||0, the nuclear norm = ||x||1 and logdet = log(|x|+ε) in the
case of a scalar, where δ = 1 and ε = 1.

doi:10.1371/journal.pone.0162041.g001
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descent method to solve it. For each matrix Xi, the same method can be used to obtain the cor-
responding low-rank matrix Li.

For CS image reconstruction problem, based on above presented Gδ(Li), we propose the
global model as follows:

ðbx; bL iÞ ¼ arg min
x;Li
jjy � Fxjj22 þ Z

X
i

fjjPix � Lijj2F þ lGdðLiÞg; ð11Þ

where η is a regularization parameter and Pi x = [Pi0 x,Pi1 x, � � �,Pim − 1
x] is the matrix consti-

tuted by the set of similar patches for each exemplar patch xi. The model (11) exploits the non-
local sparsity of the image patches and non-convexity of the SRF function Gδ(�). Therefore, we
conjecture the proposed method can achieve the good performance. To solve the model (11),
we develop an efficient alternative minimization method in the next section.

Optimization algorithm
It is difficult to directly solve the global model (11) since x and Li is coupled. We use the alter-
native minimization method to decouple x and Li as follows:

• For Li-subproblem, its optimization problem isbL i ¼ arg min
Li
jjPix � Lijj2F þ lGdðLiÞ: ð12Þ

• For x-subproblem, its optimization problem is

bx ¼ arg min
x
jjy � Fxjj22 þ Z

X
i

jjPix � Lijj2F : ð13Þ

In the following subsections we will present the optimization algorithm to solve subproblems
Eqs (12) and (13) in detail.

Low-rank matrix optimization algorithm

Let f ðLiÞ ¼ jjPix � Lijj2F þ lGdðLiÞ. Then the low-rank matrix Li can be obtained via the gradi-

ent descent method, i.e., Lðkþ1Þi  LðkÞi � mðkÞrf ðLðkÞi Þ where μ(k) is the step size in the k-th itera-
tion andrf(�) is the gradient of f(�). Before derivingrf(�), we show the gradient of SRF Gδ(Li)
at Li [30] as follows:

rGdðLiÞ ¼ �Udiag �
s1

d2 e
�s2

1
=2d2 ; � � � ;� s‘

d2 e
�s2

‘
=2d2

� �
VT ; ð14Þ

where matrixes U and V and singular values σi (i = 1, � � �, ℓ) come from the singular value
decomposition (SVD) of Li, which is obtained in previous iteration,

Li ¼ Udiagðs1; � � � ; s‘ÞVT : ð15Þ

Then, it is easy to derive the gradient of the function f(Li),

rf ðLiÞ ¼ �2ðPix � LiÞ � lUdiag � s1

d2
e�s

2
1
=2d2 ; � � � ;� s‘

d2
e�s

2
‘
=2d2

� �
VT : ð16Þ
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According to the gradient descent method, at each iteration, one has

Li  Li � mrf ðLiÞ: ð17Þ
In addition, the step size μ in formula (17) should be set in a decreasing order to return a better
result. Following the papers [30, 31], we set μ = δ2 to decrease μ proportional to δ2. Then,
above formula (17) incorporating the Eq (16) can be rewritten as

Li  xLi þ ð1� xÞPix � lUdiagðs1e
�s2

1
=2d2 ; � � � ; s‘e

�s2
‘
=2d2ÞVT ; ð18Þ

where ξ = 1 − 2δ2.

Image reconstruction via alternating direction method of multipliers
After obtaining the low-rank matrix Li, we reconstruct the image x via solving the problem
(13). It is clear that the problem (13) is a quadratic optimization problem with a closed-form
solution,

x ¼ ðFHFþ Z
X

i

PT
i PiÞ�1ðFHy þ Z

X
i

PT
i LiÞ: ð19Þ

However, the inverse of the matrix ðFHFþ Z
P

iP
T
i PiÞ is very large and difficult to compute.

Therefore, we consider to reconstruct the image x in the framework of ADMM, which also
leads to the closed-form solutions for each subproblem. The ADMMmethod is often used to
image restoration [32–36].

Based on the definition of ADMM, we present the augmented Lagrangian function of the
problem (13) as follows:

Ldðx; zÞ ¼ jjy � Fxjj22 þ bjjx � zþ d
2b
jj22 þ Z

X
i

jjPiz� Lijj2F ; ð20Þ

where z = x is the auxiliary variable, d is the Lagrangian multiplier, and β> 0 is a scalar. With
respect to the variables x, z and d, they are decoupled in the framework of ADMM, thus, can be
solved separately, leading to the following iterations:

zðkþ1Þ ¼ arg min
z

bjjxðkÞ � zþ dðkÞ

2b
jj22 þ Z

X
i

jjPiz� Lijj2F; ð21Þ

xðkþ1Þ ¼ arg min
x
jjy � Fxjj22 þ bjjxðkÞ � zðkþ1Þ þ dðkÞ

2b
jj22; ð22Þ

dðkþ1Þ ¼ dðkÞ þ bðxðkþ1Þ � zðkþ1ÞÞ: ð23Þ
Clearly, both subproblems Eqs (21) and (22) are quadratic optimization problem and have the
closed-form solutions. For the subproblem Eq (21), its explicit solution is:

zðkþ1Þ ¼ ðZ
X

i

PT
i Pi þ bIÞ�1 bxðkÞ þ dðkÞ

2
þ Z

X
i

PT
i Li

 !
: ð24Þ

For the subproblem Eq (22), according to its first-order derivation for x, we can derive the fol-
lowing equation:

ðFHFþ bIÞxðkþ1Þ ¼ FHy þ bzðkþ1Þ � dðkÞ

2
: ð25Þ
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Considering measurement matrixF is a partial Fourier transformmatrix, we can transform above
problem from image space to Fourier space to efficiently obtain x. Concretely, we letF =DF,
whereD is the down-sampling matrix and F is the fourier transformmatrix. It is easy to achieve

FððDFÞHDFþ bIÞFHFxðkþ1Þ ¼ FðDFÞHy þ F bzðkþ1Þ � dðkÞ

2

� �
; ð26Þ

and then x(k+1) can be drawn

xðkþ1Þ ¼ FHðDTDþ bIÞ�1 DTy þ F bzðkþ1Þ � dðkÞ

2

� �� �
: ð27Þ

We simultaneously obtain the low-rank matrix Li and the image x by the alternative mini-
mization method, and the overall procedure is summarized below as Algorithm 1. Empirically
we have found that Algorithm 1 is convergent, but in theory the convergence analysis of Algo-
rithm 1 is difficult to give due to the non-convex subproblem. Although there are some papers
have proved the convergence of their non-convex optimization problem, these proofs hold in
a few unrealistic and rigorous assumptions. Specially, to save computational complexity, we
set J = K = 1 in Algorithm 1. Moreover, we estimate an image bx using the discrete cosine trans-
form (DCT) method as the initial solution for a better initial point, which has been seen in
[22]. As iteration increases, the high accuracy results will be achieved.

The complexity of Algorithm 1 is O([Ts + log N]N) (N is the total number of image pixels
and Ts is the average complexity to compute similar patches per exemplar patch), which is
mainly generated by the DCT method in 1 step of initialization and the Fourier transform in 4
(b) step of inner loop. The complexity of SVD in 3 (a) step of inner loop, i.e. O(n ×m2), can be
ignored due to n,m� N. Therefore, the proposed method is practical feasible and promising.

Algorithm 1 CS via the SRF function
Initialization:
1. Estimate an initial image x̂ using the discrete cosine transform (DCT)
method;
2. Set regularization parameters λ and η, and parameter β > 0;

3. Let dð0Þ ¼ �d, μ(0) = (δ(0))2, xð1Þ ¼ x̂, d(1) = 0;
4. Find a set of similar patches by the method Eq (5) for each exemplar patch
using x(1);
Outer loop: for s = 1, 2, . . ., S do
1. Match similar patches into a matrix Xi for each exemplar patch using x(s);

2. Set Lð0Þi ¼ Xi;
3.Inner loop (solving the Li-subproblem Eq (12)): for j = 1, 2, . . ., J do

(a) Compute the SVD of Lðj�1Þi ¼ Udiagðs1; . . . ; s‘ÞVH;

(b) Computerf ðLðj�1Þi Þ by Eq (16);

(c) Compute LðjÞi ¼ Lðj�1Þi � mðj�1Þrf ðLðj�1Þi Þ;
(d) Update δ(j) = cδ(j − 1), 0 < c < 1;
(e) Update μ(j) = (δ(j))2;

(f) Output Li ¼ LðjÞi until j = J.
End for

4.Inner loop (solving the x-subproblem Eq (13)): for k = 1, 2, . . ., K do
(a) Update z(k+1) by the Eq (24);
(b) Update x(k+1) by the Eq (27);
(c) Update d(k+1) by the Eq (23);
(d) Output x(s) = x(k+1) until k = K.
End for

5. Output the reconstructed image bx ¼ xðsÞ until s = S.
End for

CS via Nonlocal SRF
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Numerical results
Here, we present the experimental results of our approach for CS image reconstruction based
on the SRF regularization. We generate the CS measurements by random and pseudo-radial
sampling of the Fourier transform coefficients of test images respectively. The number of mea-
surements isM = rate �N, where rate is the sampling rate. We use peak signal to noise ratio
(PSNR) and Structural SIMilarity (SSIM) index [37] as the quantitative measures in our
numerical experiments, and the PSNR is defined as

PSNR ¼ 20 log 10

MAXfffiffiffiffiffiffiffiffiffiffi
MSE
p ;

where MAXF is the maximum possible pixel value of the image and MSE is the mean squared
error, defined as

MSE ¼ 1

N

XN
j¼1
½f ðjÞ � gðjÞ�2;

where f and g are the original image and the restored image, respectively.
In all experiments, the main parameters of the Algorithm 1 are set as follows: patch sizeffiffiffi
n
p ¼ 6; the number of similar patches for each exemplar patchm = 45 (the more similar
patches form a more low-rank matrix but lead to high computational complexity); initialize

value dð0Þ ¼ �d, where �d is a constant around two times of the largest singular value of initial Li
[30]; the parameter c is set as 0.08 experimentally in formula δ(j) = cδ(j − 1); the outer loop
iteration number S = 400 (that is selected based on the convergence rate of Algorithm 1). To
achieve better performance, we select exemplar patch in each 5 pixels along both horizontal
and vertical directions.

In addition, the total variation (TV) method [38], the BM3D based CS method (BM3D-CS)
[16], the nuclear norm method (denoted as NLR-CS-baseline) [22] and the logdet function
method (denoted as NLR-CS) [22] for CS image recovery are compared with the proposed SRF
approach (called as SRF-CS). The TV method just considered the underlying sparsity of an
image, and the BM3D-CS method used the nonlocal sparsity with an outstanding performance.
The NLR-CS-baseline method exploited the nuclear norm to replace the rank for solving the
rank minimization problem. The NLR-CS approach adopted the logdet function to achieve
a more accurate surrogate than the nuclear norm for the rank. The source codes of above
methods [16, 22, 38] are publicly downloaded from the authors’s websites. These methods are
significantly state-of-the-art CS algorithms for image recovery. We have carefully tuned their
parameters to obtain the best results for fair comparison. Both noiseless and noisy experiments
are presented to demonstrate the performance of the proposed approach for CS recovery. The
test images (256 × 256) are exhibited in Fig 2, where Fig 2(a), 2(c), 2(e) and 2(f) can be publicly
downloaded from the test image net http://decsai.ugr.es/cvg/dbimagenes/g256.php, Fig 2(b),
2(d) and 2(g) can be publicly downloaded from the author’s homepage of [22] http://see.
xidian.edu.cn/faculty/wsdong/NLR_Exps.htm.

Noiseless experiments for CS recovery
We reconstruct the images from lessM = 0.05N andM = 0.1Nmeasurements by randomly
sampling the Fourier transform coefficients of the test images. Fig 3 shows the restored images
by TV [38], NLR-CS-baseline [22], NLR-CS [22] and the proposed methods for CS image
recovery. The TV method for CS recovery can’t work well due to less measurements. The
close-ups of Number image and Book image obtained by the TV method are indistinct and
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lose much structured information. The NLR-CS-baseline method gives rise to some artificial
shadow like fog as shown in the close-up of Number image. It is well known that the NLR-CS
method is a very competitive method for CS recovery due to its remarkable performance. For
these test images in Fig 3, however, the performance of the NLR-CS method is undesirable.
Obviously, our approach achieves the best visual quality and highest PSNR value among all
test methods. Noteworthily, the better performance of our approach compared with the
NLR-CS-baseline method verifies that the SRF function Eq (8) is a more accurate surrogate for
the rank than the nuclear norm. Moreover, Table 1 displays the PSNR values and the SSIM val-
ues obtained by all test methods.

Although the proposed method leads to a non-convex optimization problem, we can see that
the proposed method for CS image recovery converges in a few iterations in Fig 4. In the follow-
ing subsection, we will verify that the proposed method is also robust in a noisy situation.

Noisy experiments for CS recovery
In the noisy experiments, we add Gaussian noise with 0.05 standard deviation to the original
images. Firstly, we recover the Head image fromM = 0.15Nmeasurements and the Boat image
fromM = 0.2Nmeasurements by randomly sampling their Fourier transform coefficients
respectively. The restoration results by the TV [38], BM3D-CS [16], NLR-CS-baseline [22],
NLR-CS [22] and the proposed methods are presented in Fig 5. Clearly, the restored Head
image becomes blocky obtained by the TV method, and contains heavy noise obtained by the
NLR-CS-baseline method. Meanwhile, some edges in the close-up of the restored Head image
achieved by the NLR-CS method are unclear, and the close-up of Head image generated by the
BM3D-CS method is blurring. However, compared with other methods, the reconstructed

Fig 2. The test images: (a) Book; (b) Barbara; (c) Plane; (d) Boat; (e) Number; (f) Moonscape; (g) Head.

doi:10.1371/journal.pone.0162041.g002
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Fig 3. Reconstructed images by randomly sampling. From top to bottom for each column: Number image,
close-up of the red rectangle of Number image, Moonscape image, close-up of the red rectangle of
Moonscape image, Book image, close-up of the red rectangle of Book image. From left to right for each row:
the original image, the TV method, the NLR-CS-baseline method, the NLR-CSmethod, the proposed
method.

doi:10.1371/journal.pone.0162041.g003

Table 1. The PSNR (dB) and SSIM values of the restoration results achieved by the TVmethod [38], the NLR-CS-baseline method [22], the NLR-CS
method [22] and the proposedmethod for noiseless images.

Image Number of measurements Method PSNR (dB) SSIM

Number M = 0.05N TV 24.10 0.6545

NLR-CS-baseline 26.29 0.8970

NLR-CS 26.70 0.9407

proposed 29.04 0.9497

Moonscape M = 0.1N TV 26.41 0.5450

NLR-CS-baseline 30.19 0.7037

NLR-CS 29.92 0.7004

proposed 30.95 0.7143

Book M = 0.05N TV 32.41 0.7304

NLR-CS-baseline 37.41 0.9371

NLR-CS 38.44 0.9430

proposed 39.77 0.9528

doi:10.1371/journal.pone.0162041.t001
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Head image by the proposed approach returns the clearer edges and less noise. For the Boat
image, we can see that the proposed approach also outperforms the other test methods with
the better visual quality, the higher PSNR and SSIM values. Thus the proposed method with
less measurements is robust in noisy situation.

Fig 4. PSNR value vs. Iteration plots for the proposedmethod and the NLR-CSmethod. (a) Book
image, measures numberM = 0.05N (b) Number image, measurements numberM = 0.1N.

doi:10.1371/journal.pone.0162041.g004

Fig 5. Reconstructed images by randomly sampling. From top to bottom for each column: Head image, close-up of the red rectangle of
Head image, Boat image, close-up of the red rectangle of Boat image. From left to right for each row: the original image, the TV method, the
NLR-CS-baseline method, the NLR-CSmethod, the BM3D-CSmethod, the proposed method.

doi:10.1371/journal.pone.0162041.g005
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Secondly, we recover the Boy image fromM = 0.24N (65 radial lines) measurements and
the Barbara image fromM = 0.29N (80 radial lines) measurements by pseudo-radial sampling
their Fourier transform coefficients. The pseudo-radial sampling way generates streaking
artifacts leading to more difficult image reconstruction than randomly sampling way. We
illustrate the performance results of all the test methods in Fig 6. Visually, the close-ups of
Plane image generated by the TV, NLR-CS-baseline, NLR-CS and BM3D-CS methods are
blurring. Nevertheless, the close-up of Plane image obtained by our approach is good with
less noise and higher PSNR value. The close-ups of Barbara image achieved by the NLR-CS-
baseline method and the NLR-CS method create some artificial strips, which do not exist in
the original Barbara image. The bad performance may be caused by the pseudo-radial sam-
pling way or noise. The texture of restored Barbara image by BM3D method is lost. However,
the proposed approach removes the artifacts and a lot of noise returning a better result,
which demonstrates its robustness. In addition, Table 2 displays the PSNR and SSIM values
obtained by all test methods. To sum up, the proposed approach outperforms other compet-
ing methods for CS image reconstruction by both randomly sampling and pseudo-radial
sampling schemes.

Fig 6. Reconstructed images by pseudo-radial sampling. From top to bottom for each column: Plane image, close-up of the red rectangle of Plane
image, Barbara image, close-up of the red rectangle of Barbara image. From left to right for each row: the original image, the TV method, the NLR-CS-
baseline method, the NLR-CSmethod, the BM3D-CSmethod, the proposed method.

doi:10.1371/journal.pone.0162041.g006
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Conclusion
To better exploit the nonlocal sparsity of similar patches and non-convexity of rank minimiza-
tion, in this paper, we use the non-convex SRF function surrogating the rank as a low-rank reg-
ularization for CS image recovery. This SRF function can better approximate the rank than
the standard nuclear norm and the logdet function. We propose an efficient algorithm in the
framework of alternative minimization method, which divides this CS problem into the SRF
minimization subproblem and the least square subproblem. With respect to the minimization
subproblem of the SRF function, we adopt the gradient descent method to solve it since it is
differentiable. Simultaneously, the clear image is reconstructed by solving the least square sub-
problem using the ADMMmethod. Both noiseless and noisy numerical experiments demon-
strate that the proposed approach achieves the better performance and vision quality under the
lower sampling rate situation. In the future, we would like to explore better surrogates for the
rank to improve performance, and solve other practical problems.
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Head M = 0.15N random TV 23.07 0.5489

NLR-CS-baseline 27.15 0.6508

NLR-CS 27.20 0.6515

BM3D-CS 27.56 0.7203

proposed 27.76 0.6615

Boat M = 0.2N random TV 22.90 0.5313

NLR-CS-baseline 27.60 0.7091

NLR-CS 27.62 0.7093

BM3D-CS 27.75 0.7281

proposed 27.98 0.7397

Plane M = 0.2N pseudo-radial TV 25.86 0.6410

NLR-CS-baseline 28.64 0.8657

NLR-CS 28.98 0.8866

BM3D-CS 28.55 0.8203

proposed 29.38 0.9014
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BM3D-CS 28.62 0.8093
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