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Abstract

The receptor for advanced glycation end products (RAGE), a transmembrane receptor in
the immunoglobulin superfamily, is involved in several inflammatory processes. RAGE
induces cellular signaling pathways upon binding with various ligands, such as advanced
glycation end products (AGEs), B-amyloids, and S100 proteins. The solution structure of
S100A12 and the V ligand-binding region of RAGE have been reported previously. Using
heteronuclear NMR spectroscopy to conduct 'H-"5N heteronuclear single quantum coher-
ence (HSQC) titration experiments, we identified and mapped the binding interface between
S100A12 and the V domain of RAGE. The NMR chemical shift data were used as the con-
straints for the High Ambiguity Driven biomolecular DOCKing (HADDOCK) calculation to
generate a structural model of the S100A12—V domain complex. In addition, tranilast (an
anti-allergic drug) showed strong interaction with S100A12 in the "H-"°N HSQC titration,
fluorescence experiments, and WST-1 assay. The results also indicated that tranilast was
located at the binding site between S100A12 and the V domain, blocking interaction
between these two proteins. Our results provide the mechanistic details for a structural
model and reveal a potential precursor for an inhibitor for pro-inflammatory diseases, which
could be useful for the development of new drugs.

Introduction

The authors of several studies have reported that members of the S100 protein family play
regulatory roles in cells, and induce cell growth and differentiation [1, 2]. S100 proteins are
small, with molecular weights of approximately 10-13 kDa. Human S100 calcium-bound
protein (S100A12) was first identified in neutrophil cells and is expressed primarily in gran-
ulocytes [3, 4]. Previous studies have indicated that members of the S100 protein family play
important roles in tumor progression, so these proteins are commonly used as tumor mark-
ers [5]. The human S100A12 protein is overexpressed in several tissues in conditions such as
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gastric carcinoma, diabetes, Crohn’s disease, and Mooren’s ulcer. These diseases are usually
related to the inflammation of cells [6-9]. The S100A12 protein expresses its bio-activity
after calcium ions bind to its EF-hand domains [10-12]. S100A 12 has different structural
states that lead to different biological functions, and these states are caused by the presence
of different metal ions [13, 14]. Calcium-binding proteins such as S100A12 expose specific
ligand-binding sites, which activate cell signaling pathways such as MAPK, NF-xB, and
ERK. Therefore, SI00A12 is recognized as an important biomarker for detecting cancer [15-
18].

The receptor for advanced glycation end products (RAGE) is a multi-ligand cell surface
receptor that consists of three parts: an extracellular domain, a transmembrane domain,
and a cytoplasmic domain. The extracellular domain belongs to the immunoglobulin super-
family [19, 20]. The V, C1, and C2 domains of the extracellular domain usually bind with
various ligands including the high-mobility group box 1 (HMGBI1) protein, advanced glyca-
tion end products (AGEs), transthyretin, DNA, and B-amyloids [21-25]. This binding
between RAGE and ligands can activate mitogen-activated protein (MAP) kinases such as
JNK, MAPK, p38, and p44/42 [26-28]. The authors of several studies have reported that the
interactions between RAGE and S100 proteins are the cause of many disorders [29]. Such
interactions induce signal transduction through the transmembrane domain and cause the
phosphorylation of the cytoplasmic domain, which then activates certain signaling path-
ways in vivo [30]. The chain of signaling cascades results in cell growth, proliferation,
tumor generation, and neurite outgrowth, and causes some inflammatory-related diseases
[31-33].

Recently, RAGE has become an important therapeutic target because it is associated with
a variety of human diseases as well as tumor growth [34-36]. To better understand the
mechanism of RAGE-ligand binding, we generated a structural model using heteronuclear
NMR spectroscopy and High Ambiguity Driven biomolecular DOCKing (HADDOCK)
structural calculations [37]. Structural studies have been carried out on the binding between
certain S100 proteins and RAGE, and on the subsequent complexes formed including
mutant (C3S) S100A6-RAGE V [38], SI00P-RAGE V [39], SI00A11-RAGE V [40], and
S100A12-RAGE C1C2 [41]. These studies revealed that the RAGE V domain binds to the
region around helix 4 of the S100 proteins. However, the RAGE V domain-binding site dif-
fers among S100 proteins. These discrepancies may be caused by differences in the net
charge, polarity, amino acid sequence, or other properties of the S100 proteins. The study on
S100A12- RAGE C1C2 also demonstrated the interaction between RAGE C1C2 and the
S100A12 surface. However, the nature of the binding region in the RAGE C1C2 domain
remains unclear.

Moroz et al. demonstrated that the oligomeric state of SI00A12 requires the presence
of zinc ions [42]. This suggests that the SI00A12 protein is a dimer at certain calcium con-
centrations (1-10 mM calcium ion). In the absence of relevant structural studies, the nature
of the interaction between the S100A12 dimer and RAGE remains unclear. Leclerc et al.
(2009) have described how surface plasmon resonance (SPR) reveals that the V domain
of RAGE binds to SI00A12 [43]. Here, we report the structure of the complex formed by
the S1I00A12 dimer and the V domain of RAGE. Furthermore, we found that tranilast (an
anti-allergic drug; please see S1 Fig for the structure) [44, 45] efficiently inhibited the cell
proliferation caused by SI00A12-RAGE V signaling transduction, indicating that it may be
a potential precursor for a therapeutic inhibitor. These results provide structural insight
into the activation of RAGE by S100A12, and reveal a useful precursor for new drug
development.
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Materials and Methods
2.1 Materials

Luria broth was purchased from Amresco. ">’NH,Cl and D,O were purchased from Cambridge Iso-
tope Laboratories. Tranilast was purchased from Sigma. The SW-480 cell line was obtained from
the American Type Culture Collection (CCL-288). The cDNA of S100A12 and the RAGE V
domain were purchased from Mission Biotech Company using vectors pET21b for SI00A12 and
pET-32b (+) for the RAGE V domain. The genes were subcloned into Escherichia coli BL21 (DE3)
(Novagen). The details of the purification process for obtaining the pure S100A12 and the RAGE V
domain proteins are given in the Supporting Information. The cell proliferation reagent WST-1 (4-
[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1,3-benzene disulfonate) was purchased
from Roche. FPS-ZM1, an inhibitor of the RAGE V domain, was purchased from Calbiochem [46].

2.2 NMR HSQC titration experiments

The HSQC spectra was collected using a Varian 700 MHz NMR spectrometer with cryogenic
probes at 298 K. All titrations were carried out using the same buffer composition (20 mM
Tris-HCI, 5 mM CaCl,, 100 mM NaCl, 10% D,0, pH 7). Hung et al. have made available the
backbone and side-chain assignments for SI00A12 in specific buffer conditions (10 mM
Hepes, 100 mM NaCl, and 0.02% (w/v) NaN3, pH 6.5) at the Biological Magnetic Resonance
Bank (BMRB) (BMRB code: 19293) [47], and the assignments for the RAGE V domain in spe-
cific buffer conditions (20 mM sodium phosphate, pH 7.5, and 100 mM Na,SO,) have been
reported by Matsumoto et al. (BMRB code: 7364) [48]. We used three-dimensional spectra
including those of HNCA, HNCOCA, HNCACB, and CBCACONH to compare the cross-
peak assignment in our study with the assignments reported by Hung and Matsumoto.

The titration experiment was performed by adding unlabeled calcium-binding S100A12 to
the °N-labeled RAGE V domain solution at molar ratios of 1:0, 1:0.33, 1:0.66, 1:1, and 1:2. The
reverse titration (‘°N-labeled S100A12 with the addition of unlabeled RAGE V domain) was
performed at molar ratios of 1:0, 1:0.25, 1:0.5, 1:0.75, and 1:1. Finally, the titration experiment
with '°N-labeled S100A12 and tranilast was performed at molar ratios of 1:0, 1:0.5, 1:1, and
1:2. By overlaying the HSQC spectra at different ratios, we identified certain residues at the
interface of the two molecules that had decreased intensity or perturbed chemical shift.

2.3 Molecular docking

HADDOCK is useful software for calculating protein—protein docking. We used it to obtain
the complex structures of the SI00A12-RAGE V domain and S100A12-tranilast complexes.
The structural coordinates of calcium-binding SI00A12 were taken from the Protein Data
Bank (PDB ID: 2m9g) [47]. The structural coordinates of the RAGE V domain were also taken
from the Protein Data Bank (PDB ID: 2e5e) [48]. The input data for tranilast were obtained
from the DrugBank database (accession number: DB07615). The residues with obvious pertur-
bations or decreased intensity were identified by bar diagrams and defined as ambiguous inter-
action constraints for the residues at the interface of S100A12 and the RAGE V domain in the
HADDOCK calculation [49]. All residues were defined by NACCESS [50] to divide them into
active or passive categories in the input data for the HADDOCK program. The first calculation
contained 2,000 total structures from rigid-body docking using the standard HADDOCK pro-
tocol with optimized potential for liquid simulation (OPLSX) parameters. We used the 200
lowest energy structures for the subsequent semi-flexible simulated annealing process to opti-
mize the side-chain contacts by explicit solvent refinement. PYMOL [51] was used for all data
for structural representations.

PLOS ONE | DOI:10.1371/journal.pone.0162000 September 6,2016 3/19



@’PLOS ‘ ONE

Structural Insight into S100A12 with RAGE V Domain

2.4 Fluorescence experiments to determine the binding constant (Ky)
between two proteins

Fluorescence titration can be a useful method for measuring the binding affinity of a protein-
ligand interaction [52-54]. We used a Hitachi F-2500 fluorescence spectroscope to perform the
florescence experiments. There is no tryptophan residue in S100A12; however, there is one
tryptophan in the RAGE V domain that is exposed in the presence of a solvent. Therefore, we
utilized the absorption band of tryptophan, which is found at a wavelength of 295 nm. We
observed an emission curve in the range of 310 nm to 420 nm. The S100A12 protein was added
to the RAGE V domain solution, which had a concentration of approximately 1.5 pM. Changes
in the emission spectrum were monitored as the total concentration of SI00A12 in the complex
solution was increased (0 uM to 3.3 uM). We plotted the data as [S100A12] versus (I — I). The
program used the following equation [55] to calculate the extent of binding from the original
curve:

LN N T
(1-1,) I, -1,) (I,=1,) [S100A12]
In Eq (1), I, represents the fluorescence intensity of the solution in the absence of SI00A12;
I represents the fluorescence intensity of the solution that contained S100A12 and the RAGE V
domain; I; represents the fluorescence intensity at the end of the experiment; and Ky4 represents
the dissociation constant. The original curve was further processed by fitting to a linear curve
and the slope was calculated to obtain the dissociation constant.

(1)

A similar approach was used with tranilast. The structure of tranilast contains a benzyl
group, which exhibits obvious emission upon excitation at 333 nm. Tranilast exhibited a broad
absorption peak at 335 nm in the UV spectra. By monitoring SI00A12 at different concentra-
tions (0-7.5 uM) in solution with tranilast (at a concentration of approximately 2.5 uM) and
using an excitation wavelength of 333 nm, we obtained a curve and determined the extent of
binding between S100A12 and tranilast.

2.5 Functional in vitro study using a WST-1 assay

Previous studies have shown that binding between S100A12 and RAGE activates the NF-xB
signaling pathway [56], which is related to the survival rate and proliferation of cancer cells
[57]. Therefore, we used cell proliferation as an index for the biological functions that respond
to the downstream effects of the interactions between exogenous human S100A12 and the
RAGE V domain. The WST-1 molecule is a tetrazolium salt that can be reduced to formazan
by reductase in the mitochondria within cells [58, 59]. With the expansion of viable cells (cell
proliferation), the activity of mitochondrial dehydrogenases increases, leading to an increase in
the amount of formazan. Thus, the change in the optical density (OD) value at the appropriate
wavelength is directly related to the number of metabolically active cells in the culture.

In this study, a WST-1 cell proliferation assay was performed according to the manual
(Roche). The cells were cultured to the logarithmic growth phase, trypsinized, and seeded at a
density of 1 x 10* cells/well in a 96-well plate on the day before experiments. Subsequently, the
cells were incubated in a serum-free medium containing 0.1% bovine serum albumin (BSA) for
24 h, after which the proteins (10, 50 or 100 nM S100A12, or 1 pM RAGE V domain) or drugs
(1 uM tranilast or 1 pM FPS-ZM1) were added to the serum-starved cells, which were incu-
bated for a further 48 h. Before harvest, 1/10 volume of WST-1 was added to each well and the
cells were incubated at 37°C for a further 4 h. The medium in the cell culture plate was mixed
by gentle agitation on a shaker for 10 min. The absorbance was measured at 450 nm using a
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Synergy 2 microplate reader (BioTek Instruments, Inc.). The relative cell numbers were deter-
mined by the absorbance relative to that observed in the control [60, 61].

Results

3.1 Mapping the binding sites between S100A12 and the RAGE V
domain

Using a two-dimensional HSQC spectrum, we conducted the titration experiments with the
assignments reported previously by Hung et al. (S100A12) and Matsumoto et al. (RAGE V) to
map the binding region. An overlay of the spectra of the '°N- labeled S100A12 alone and the
"°N-labeled S100A12 complex with the unlabeled RAGE V domain showed that the signals of
these residues changed (either the signal was perturbed or the intensity decreased) as the pro-
tein complex formed. The perturbation and decreased intensity originated from the residues at
the interface between S100A12 and the RAGE V domain. To determine the extent of the
changes in the HSQC cross-peaks, we recorded the chemical shift of the cross-peaks in two dif-
ferent dimensions, 'H and "°N, in the spectra at a protein-ligand ratio of 1:0 (Hg, Ny) and the
complex spectra (H;, N;) at a ratio of 1:1. Next, we calculated the extent of perturbation using
the following formula [62]:

2
Chemical shift difference = \/(AH)2 + <6AEI)\I1) )

Fig 1A shows the overlay of the following two "H-""N HSQC spectra: (1) "°’N- labeled
S100A12 alone and (2) '°N- labeled S100A12 with an unlabeled RAGE V domain.

We recorded the cross-peak intensity in the HSQC spectrum of labeled SI00A12 alone (1)
and the intensity of the same cross-peak in the spectrum of S100A12 (labeled) bound with the
unlabeled RAGE V domain (I;). To identify the residues involved in SI00A12 in complex with
the RAGE V domain, we plotted bar diagrams to compare the titration results, and identified
cross-peak perturbation (Fig 1B) and decreased intensity (Fig 1C). The residues K46, N47, 148,
157, Q59, L77, A79, and 180 formed a hydrophobic region located at the linker region (residues
41-50), helix 3 (residues 51-61), and helix 4 (residues 71-85). These residues are depicted in
red in the NMR structure of SI00A12 from the Protein Data Bank (PDB ID: 2m9g), as shown
in Fig 1D.

The results of the "H-">N HSQC titration experiment using the labeled RAGE V domain
with unlabeled S100A12 revealed the six residues (W61, K62, V63, S65, R98, and Q100) in the
binding interface (Fig 2A). Most of the interaction residues are located in loop 4, which is a
flexible region. The overlaid HSQC spectra of the titration results and the bar diagram indicat-
ing decreased intensity are shown in Fig 2B. The NMR structure of the RAGE V domain (PDB
ID: 2e5e) was determined by Matsumoto et al. [48], as shown in Fig 2C. The residues exhibiting
decreased intensity (Fig 2A, red bar) reflect the binding sites on the RAGE V domain that bind
to S1I00A12. These residues are shown in yellow in Fig 2C.

3.2 Model of the S100A12—-RAGE V domain complex structure

The binding sites mapped using the results of the NMR titration experiment represent a region
of SI00A12 that forms a molecular complex with the RAGE V domain. We generated a model
of the protein complex to characterize the protein—protein interactions using HADDOCK. The
interaction residues exhibiting an intensity change or a chemical shift perturbation in the
"N-HSQC titration experiments were chosen as the input constraints for the HADDOCK cal-
culation. Most of these residues were close to each other and formed a region of binding sites
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S100A12 alone. (d) Ribbon representation of S100A12, the residues exhibiting significant changes are marked in red. H1 to H4 indicate helix 1 to helix 4 in
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doi:10.1371/journal.pone.0162000.g001

between S100A12 and the RAGE V domain. We first set up the HADDOCK calculation using
2,000 complex structures and used rigid-body minimization. The program then chose the best
400 structures by minimizing the total energy. Finally, further analysis of the torsion angle and
subsequent Cartesian dynamics were performed in a solvent (water) model to calculate the best
site for protein binding. The final results generated the best 200 structures and divided them
into a single cluster. We took the best 10 structures from the cluster and the details of the calcu-
lation are shown in Table 1.

The binding sites between S100A12 and the RAGE V domain are shown in Fig 3. The 10
best structures of the SI00A12-RAGE V domain complex obtained from HADDOCK are
shown in Fig 3A. The hydrophobic residues I57 and I80 of S100A12 interacted with the hydro-
phobic residue W61 of the RAGE V domain, as shown in Fig 3B. The hydrophilic residue K46
of SI00A12 interacted with S65 of the RAGE V domain (Fig 3B). The residues Q59 of
S100A12, and R98 and Q100 of RAGE V were remote from the other two binding interfaces
(Fig 3C). The chemical shift change in these residues may have been caused by a slight confor-
mational change. The results also show the W61 residue of RAGE V located in the pocket of
the S1I00A12 surface (Fig 3D). Analysis of the average S100A12-RAGE V structure was carried
out using the PROCHECK program [63]; the results indicate a reasonable stereochemistry for
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doi:10.1371/journal.pone.0162000.g002

the structure. In the partition of the Ramachandran plot statistics, the results showed only 1.2%
residues in the disallowed region and an overall average G-Factor of 0.1. These results indicate
that the average structure was the usual region (S1 Table).

3.3 Mapping the binding sites between tranilast and S100A12 using
"H-"°N HSQC titration experiments

The ligand-protein interaction between tranilast and SI00A12 can also be identified by
"H-""N HSQC titration experiments. The "H-">N HSQC spectra of SI00A12 alone and with
tranilast were compared (as shown in Fig 4A), and the cross-peaks exhibiting chemical shift
perturbations were plotted as bar diagrams, as shown in Fig 4B. The residues that exhibited sig-
nificant changes of chemical shift were E9, T44, 148, K49, L77, A79, A81, K84, and K91 (Fig 4A
and 4B). The results indicate that some residues in this interface, such as 148, L77, A79, and
A81, were also present in the interface between S100A12 and RAGE V. For the structural calcu-
lation by HADDOCK, the input data for the ambiguous interaction restraints (AIRs) were
defined from the residues with obvious chemical shift perturbation in the HSQC titration
experiments. The HADDOCK calculation provided the 200 structures of solvent (water)
refinement. We chose the 10 best structures from the 200, as shown in Fig 4C. Tranilast is a

PLOS ONE | DOI:10.1371/journal.pone.0162000 September 6,2016
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Table 1. Results of 10 best S100A12-RAGEV structure using HADDOCK.

Parameter Value
NMR restraint

Total NOE restraints 50
Total unambiguous NOE restraints 10
Ambiguous interaction restraints (AIR) 40
CNS energy [kcal/mol] (after water refinement)

Erot -786.3+27.1
Evaw -123.1£16.2
Eeclectr -663.1+50.8
Violations(dihedral violations)

Violation >5° 0.0£0.0
Violation >10° +0.0
RMSD for idealized geometry of best 200 structure

Bond(A) 0.00292+0.00004
Angle (°) 0.428+0.006
RMSD for the best 200 structure 3.86
RMSD for the best 10 structure 2.85
PROCHECK analysis

Residues in most favored regions (%) 80.5
Residues in addition allowed regions (%) 16.8
Residues in generously allowed regions (%) 1.5
Residues in disallowed regions (%) 1.2

doi:10.1371/journal.pone.0162000.t001

hydrophobic molecule that contains a benzyl group, and the structural results showed tranilast
located on the hydrophobic region of SI00A12. There may be hydrophobic interactions
between tranilast and L77 and A79 of the SI00A12 protein, which dominated ligand-protein
binding (Fig 4D). PROCHECK analysis showed that the HADDOCK data were in a reasonable
region because the disallowable region constituted only 1.2% of the total region, and the overall
average G-Factor was -0.09 in the usual region (S2 Table).

3.4 Fluorescence measurements

There are three tryptophan residues in the RAGE V domain at positions 51, 61, and 72.
According to NACCESS analysis, residues 51 and 72 are buried inside the RAGE V domain,
and W61 is exposed on the outside of the RAGE V domain. Moreover, W61 is the only trypto-
phan that is located in the interface region of the RAGE V domain. Therefore, we monitored
protein excitation at 295 nm, and a decrease in fluorescence intensity at 350 nm indicated
changes in polarity around W61. The charge surrounding W61 became more positive (Fig 3D).
The titration curve indicated a decrease in intensity when the S100A12 protein was added to
the solution. However, the fluorescence intensity of tranilast increased when the SI00A12 pro-
tein was added. This result relates to the fluorescence of tranilast, which can absorb at 333 nm;
however, the quantum yield of tranilast is very low. It seems that the increase in fluorescence
intensity is caused by S100A12 binding with tranilast. The binding of SI00A12 and tranilast
resulted in less absorption at 333 nm for tranilast. These results were further processed to gen-
erate a linear curve. A dissociation constant (K4) of approximately 3.1 + 1.4 uM was calculated
for SI00A12 binding with RAGE V, and a K4 of 6.1 + 1.4 uM was calculated for S100A12 bind-
ing with tranilast. The diagrams and curves of the fluorescence results of SI00A12 titrated with
the RAGE V domain and S100A12 titrated with tranilast are shown in Fig 5. The results show
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yellow (RAGE V domain) sticks. (c) Electrostatic surface representation of the binding interface of S100A12 with the RAGE V domain (cyan ribbon). The
positive region is colored blue and the negative region is red. (d) Expanded picture showing the binding region of W61 of RAGE V with the S100A12 surface.
The atoms in S100A12 and the RAGE V domain are colored gray (protons), red or yellow (carbon atoms), and blue (nitrogen atoms).

doi:10.1371/journal.pone.0162000.g003

the binding affinity between S100A12 and the RAGE V domain, which was in the micromolar
range, also indicating the stability and formation of the protein complex.

3.5 Functional studies of S100A12 with the RAGE V domain and
tranilast

With increasing concentration of SI00A12 (10, 50, 100 nM, as shown in Fig 6A, lanes 2, 3, and
4), the SW480 cells grew quickly indicating that the signaling pathway for cell proliferation had
been activated by S100A12. Treatment with 1 uM of the RAGE V domain (Fig 6A, lane 5) as a
competitor with RAGE on the cell membrane showed an obvious decrease in S100A12-induced
cell proliferation activity, whereas treatment with RAGE alone did not alter cell viability. The
further treatment of SW480 cells with 1 uM tranilast obviously disrupted S100A12-induced
cell proliferation, whereas treatment with tranilast alone had no effect (Fig 6A, lane 6). These
results demonstrate that tranilast can effectively block interactions between S100A12 and the
RAGE V domain. To determine whether S100A12-induced cell proliferation is mediated by
the RAGE pathway, FPS-ZM1 (a RAGE-specific inhibitor), was used to abrogate the interac-
tion between S100A12 and RAGE. The result showed that addition of 1 uM FPS-ZM1
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Fig 4. Analysis of the "H-">N HSQC spectra of the labeled S100A12 in complex with the ligand (tranilast). (a) Overlay of the "H-'>N HSQC spectra of
0.5 mM "®N-labeled S100A12 (red) and S100A12 in complex with 0.5 mM tranilast (green). The results only indicate chemical shift changes and the cross-
peaks are marked as cyan boxes. (b) Bar diagram of the cross-peak chemical shift perturbation plotted using HSQC titration data. The green line represents
the threshold of selected residues that showed obvious changes in chemical shift, and the selected residues are shown in red. (c) Overlay of the lowest
energy conformations of the clusters obtained from the HADDOCK calculation showing the binding region of tranilast. (d) Ribbon representation of S100A12,
with the selected residues marked in red. Tranilast is shown in green, and the atoms in S100A12 and tranilast are colored gray (protons), red or green
(carbon atoms), pink (oxygen atoms), and blue (nitrogen atoms).

doi:10.1371/journal.pone.0162000.g004

significantly reduced S100A12-induced cell proliferation (Fig 6B, lane 2 and lane 3), suggesting
that the signal transduction of cell proliferation requires S100A12 binding to the RAGE V
domain on the cell membrane.

Discussion

RAGE is an important extracellular receptor that can interact with S100 proteins and initiate
the transduction of cellular signals. The proteins of the S100 family are known to be important
factors in cancer cell proliferation. Several studies on S100 proteins such as S100A6 [38], S100P
[39], SI00A11 [40], and S100B [64] have been carried out to identify the regions through
which they bind to RAGE V. In this study, we have provided insight into the interaction
between S100A12 and the RAGE V domain. Using the NMR '"H-">N HSQC titration method,
we showed that interaction takes place through an interface between the hydrophobic region of
S100A12 and a loop region of the RAGE V domain.

By comparing with other studies on SI00-RAGE, we labeled the S100 protein-binding
region in the RAGE V domain structure (PDB code: 2e5e) [48], as shown in the Supporting
Information. SI00A12 is similar to SI00A11, with binding sites at residue 61 to 65, which is a
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Fig 5. Fluorescence measurements of S100A12 with the RAGE V domain and tranilast. (a)
Fluorescence curve of the titration between S100A12 and the RAGE V domain. The initial concentration of
the RAGE V domain was 1.5 uM; this was titrated with S100A12 at a concentration of 0—4.5 uM. (b) Curve
showing the titration of the RAGE V domain with S100A12 with changes in fluorescence intensity. (c) Linear
curve showing the dissociation constant to be 3.1 + 1.4 yM. The original curve was further processed and
calculated using Eq (1). To fit to a linear curve, some outlying points were removed. (d) Fluorescence curve of
the titration between S100A12 and tranilast. The initial concentration of tranilast was 2.5 yM; S100A12 was
added at a concentration of 0—7.5 uM to measure the emission changes. (e) Curve showing the titration of
tranilast with S100A12. (f) Linear curve showing the dissociation constant to be approximately 6.1 + 1.4 uM.
Some points were removed to fit to a linear curve. For all fluorescence experiments, each titration was
replicated three times and the error bars are shown on the curves.

doi:10.1371/journal.pone.0162000.g005

flexible loop. There are hydrophobic interactions between the RAGE V domain and S100A12
(or S100A11). For S100B and mutant S100A6, the binding surface on the RAGE V domain is
located at a region with more positive charge, which binds to the negative region of S100B (or
mutant S100A6). However, some hydrophobic residues in the RAGE V domain constitute the
hydrophobic patch that interacts with the hydrophobic residues in S100B (or mutant S100A6).
Similarly, the basic residues (R48, K52, K62, R98, R104, and K110) and hydrophobic residues
(L53, G56, W61, V63, P66, G68, P71, and M102) on the surface of the RAGE V domain inter-
act with S100P. However, except for the mutant SI00A6-RAGE V complex, the interface
between the S100 proteins and the RAGE V domain contains a C-terminal hydrophobic sur-
face at helix 4, which plays an important role in binding with the target proteins. For instance,
Y88 and F89 at the C-terminal of S100P play an important role in binding with the cytoskeletal
protein ezrin [65]. The actin-capping protein CapZ (TRTK12) interacts with the hydrophobic
region-containing helix 4 of S100B [66]. The binding surface between annexin I and S1I00A11
is also hydrophobic [67]. From the fluorescence experiment, we determined that the dissocia-
tion constant was approximately 3.1 + 1.4 pM for SI00A12-RAGE V interaction, which is
close to the binding affinity of other S100-RAGE V complexes in the micromolar range.

(a) (b)

WST-1 assay WST-1 assay
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Fig 6. Functional assay of S100A12 with the RAGE V domain and tranilast. (a) SW480 cells were treated with 0 nM (control), 10 nM, 50 nM, or 100 nM
S100A12. Cell proliferation was determined after the SW480 cells had been starved of serum for 24 h (lanes 1-4) by adding the WST-1 agent and measuring
the optical density. The effects of the other treatments (S100A12 plus 1 yM RAGE V domain and S100A12 plus 1 uM tranilast) on cell proliferation activity
were measured for a further 48 h (lanes 5-6). Neither tranilast nor RAGE V domain alone had an effect on cell proliferation activity (lanes 7-8). (b) The
serum-starved SW480 cells were treated with 100 nM S100A12, 100 nM S100A12 plus 1 pM FPS-ZM1, or 1 pM FPS-ZM1 for 48 h. The relative cell numbers
were determined by WST-1 cell proliferation assay. This experiment was replicated four times and the mean + standard deviations (SDs) are shown in the
plot.

doi:10.1371/journal.pone.0162000.g006
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RAGEV . RAGEYV

S100A12 dimer

Fig 7. Overlay of the following two complex structures: (1) the S100A12 (green) and RAGE V domain (cyan) complex; and (2) the S100A12—
tranilast complex (S100A12 is shown in green and tranilast is shown in red and blue). It is clear that tranilast blocks the binding sites (magenta)
between S100A12 and the RAGE V domain.

doi:10.1371/journal.pone.0162000.g007

The interaction between SI00A12 and RAGE V activates several downstream signaling
pathways resulting in different biological responses in cells. For example, in 1999 Hofmann
et al. [56] reported that SI00A12 causes an inflammatory reaction in cells by its interaction
with RAGE. Kang et al. [68] also showed that S100A12-RAGE binding activated the ERK1/2
and NF-kB signal pathways, resulting in high levels of mucin 5AC (MUC5AC), which is
related to chronic obstructive pulmonary disease (COPD). In our current study, tranilast and
FPS-ZM1 significantly reduced S100A12-induced cell proliferation (Fig 6A and 6B), suggesting
that, at least in part, SI00A12-induced cell proliferation takes place through activation of the
RAGE pathway. In this study, we further evaluated a useful drug, tranilast, and used 'H-""N
HSQC titration to show that it interacts with SI00A12. As shown in Fig 7, we overlaid the two
complex structures obtained in this study: (1) the SI00A12 and RAGE V domain complex
(shown in cyan); and (2) the SI00A12 (green) and tranilast (red and blue) complex. This figure
clearly shows that tranilast can block binding between S100A12 and the RAGE V domain.
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Moreover, using fluorescence titration measurement we obtained the dissociation constants
for both S100A12-RAGE and S100A12-tranilast. Although the K of tranilast was lower than
that of RAGE V with S100A12, it still represents a potential precursor for the development of
new inhibitors. Further evaluation using the WST-1 assay indicated that tranilast efficiently
inhibited cell proliferation in vitro. Our results have provided structural insight into the
S100A12-RAGE V complex and identified a precursor for the development of new drugs.
These results may be useful for the generation of therapies that focus on RAGE and S100 pro-
tein-related diseases.

Supporting Information

S1 Fig. Molecular structure of tranilast.
(TTF)

S2 Fig. Analysis by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS)
to confirm the molecular weight of S100A12.
(TTF)

S3 Fig. Analysis by electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS)
to confirm the molecular weight of the RAGE V domain. The molecular weight difference
was approximately 2.6 Da owing to a disulfide bond inside the V domain of RAGE.

(TTF)

$4 Fig. Analysis of the "H-">N HSQC spectra of the labeled RAGE V domain with tranilast.
Overlay of the "H-""N HSQC spectra of 0.5 mM *N-labeled RAGE V domain (red) and
RAGE V domain titrated with 0.5 mM tranilast (green).

(TIF)

S5 Fig. Replications of the fluorescence titration experiment on S100A12-tranilast. We
replicated the experiment with 2.5 uM tranilast and titrated with S100A12 protein. We colored
the linear curve in a different color for each replication. The dissociation constant was approxi-
mately 6.1 + 1.4 uM.

(TIF)

S6 Fig. Replications of the fluorescence titration experiment on S100A12-RAGE V
domain. We replicated the experiment with the 1.5 utM RAGE V domain and titrated with
S100A12 protein. We colored the linear curve in different colors for each replication. The dis-
sociation constant was approximately 3.1 + 1.4 uM.

(TIF)

S7 Fig. Binding interface of RAGE V domain with different S100 proteins. We used the
RAGE V domain from the Protein Data Bank (PDB code: 2e5e) and labeled the binding sites
with different colors (red: SI00A12; blue: S100A11; purple: mutant S100A6; and yellow:
S100P).

(TIF)

S1 File. Expression and purification of S100A12 and the V domain of RAGE.
(DOCX)

S1 Table. Analysis of the S100A12-RAGE V domain by PROCHECK. The picture shows the
rationalization of the residues in the complex structure and the data indicate the percentage of
allowed and disallowed regions. Only 1.2% (4 residues) were disallowed. Furthermore, the
G-Factors also indicate that the result is a reasonable region because the overall average was
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only 0.1 (larger than -0.5, which signifies an unusual result).
(TIF)

S2 Table. Analysis of the S100A12-tranilast complex by PROCHECK. The diagram was
constructed on the PROCHECK website. The picture shows the rationalization of the residues
in the complex structure and the data indicate the percentage of allowed and disallowed
regions. Only 1.24% (2 residues) were disallowed. Furthermore, the G-Factors also indicate
that the result is a reasonable region because the overall average was only -0.09 (larger than
-0.5, which signifies an unusual result).

(TTF)
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