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Abstract
The immune systems are fundamentally vital for evolution and survival of species; as such,

selection patterns in innate immune loci are of special interest in molecular evolutionary

research. The interferon regulatory factor (IRF) gene family control many different aspects

of the innate and adaptive immune responses in vertebrates. Among these, IRF3 is known

to take active part in very many biological processes. We assembled and evaluated 1356

base pairs of the IRF3 gene coding region in domesticated goats from Africa (Nigeria, Ethio-

pia and South Africa) and Asia (Iran and China) and the wild goat (Capra aegagrus). Five
segregating sites with θ value of 0.0009 for this gene demonstrated a low diversity across

the goats’ populations. Fu and Li tests were significantly positive but Tajima’s D test was

significantly negative, suggesting its deviation from neutrality. Neighbor joining tree of IRF3
gene in domesticated goats, wild goat and sheep showed that all domesticated goats have

a closer relationship than with the wild goat and sheep. Maximum likelihood tree of the gene

showed that different domesticated goats share a common ancestor and suggest single ori-

gin. Four unique haplotypes were observed across all the sequences, of which, one was

particularly common to African goats (MOCH-K14-0425, Poitou and WAD). In assessing

the evolution mode of the gene, we found that the codon model dN/dS ratio for all goats was

greater than one. Phylogenetic Analysis by Maximum Likelihood (PAML) gave aω0 (dN/dS)

value of 0.067 with LnL value of -6900.3 for the first Model (M1) whileω2 = 1.667 in model

M2 with LnL value of -6900.3 with positive selection inferred in 3 codon sites. Mechanistic

empirical combination (MEC) model for evaluating adaptive selection pressure on particular
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codons also confirmed adaptive selection pressure in three codons (207, 358 and 408) in

IRF3 gene. Positive diversifying selection inferred with recent evolutionary changes in

domesticated goat IRF3 led us to conclude that the gene evolution may have been influ-

enced by domestication processes in goats.

Introduction
Domesticated goats are very important livestock diversity; they play significant roles in the
economy of many developing countries, particularly as source of organic protein in food, and
savings for poor rural farmers. They are widely distributed across most continents of the world
[1], over different ecological and geographic areas including humid tropical rain forest, hot
desert regions, and cold to hypoxic high altitude regions, defying harsh environmental condi-
tions and surviving under poor agrarian conditions [2].

Acquisition of new functions in genes is credited to adaptive selection pressures [3] in close
association with phenotypes and fitness of organisms [4,5,6]. Adaptive selective pressure on
genes has also been reported to be indicators of functional adaptations developed during the
evolution of species that has the tendency of promoting species functional diversification [7].

The interferon regulatory factor (IRF) gene family control many different aspects of the
innate and adaptive immune responses in vertebrates along with cells reactions to stress [8].
Approximately ten members of this gene family have been elucidated in many vertebrate spe-
cies along with other related genes [9]. Among these, IRF3 is known to play significant roles in
many biological activities. First of all, IRF3 serves as innate immune receptor activated upon
recognition of specific pathogen-associated molecular patterns (PAMPs) [8, 10]. Secondly, it
plays active role in many toll-like receptors (TLR) signaling pathways [11, 12, 13] and also
influences many different cellular processes such as cell death and metabolism [14]. Its activi-
ties have also been associated with a number of health indices in humans, mice, sheep and cat-
tle [15].

Selection patterns in innate immune loci are of special interest in molecular evolutionary
research because immune systems are fundamentally vital for evolution and survival of species
[16]. Understanding the evolutionary footprint of IRF3 gene will therefore provide valuable
information for reconstructing evolutionary history and adaptation process of the species, and
may provide useful insights into the design of marker-assisted selection and breeding for
genetic improvement in goats. In this study, we investigated the molecular evolutionary signa-
tures that may exert selection processes in the IRF3 gene in goats and identified evolution foot-
prints that may influence adaptation to different environments.

Materials and Methods
Complete protocols for genomic sequencing and assembly, scaffold anchorage and gene anno-
tation for these genes are as published in an earlier work [17]. The sequences of 1356 base pairs
encoding region of IRF3 gene in domesticated goats from Nigeria (West Africa), Ethiopia (East
Africa), South Africa (Southern part of Africa), Iran (West Asia) and China (East Asia) and
wild goat (Capra aegagrus) were obtained from our goat resequencing data. IRF3 coding
sequences for Moroccan, Iranian goats and Ovis aries were obtained from NextGen Capra
Project (http://52.193.26.230/view/ERP001579) and GenBank, respectively. Accession num-
bers of sequences downloaded from public databases and information on resequencing data
are presented in Table 1.
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Translated sequences were aligned in the MEGA software program (version 6.0) as pub-
lished earlier [18]. The alignment was manually checked and corrected for any ambiguity. 42
sequences with the frame shift were removed because they are quite possibly from low quality
sequencing. Finally 36 sequences remained (S1 Fig) and were used for further analyses. Gene
tree was constructed by Neighbor-joining (NJ) method in MEGA 6.0 with bootstrap value set
to 1000 and sheep (Ovis aries) as the out-group. Maximum likelihood (ML) tree was inferred
using the PhyML program version 4.8 and rooted in Ovis arie, tree visualization and editing
was done with MEGA.

To test the hypothesis of neutrality operating on the gene, DnaSP v5.10.01 [19] was used to
estimate population statistics including number of segregation sites, haplotype diversity, Fu
and Li’s and Tajima’s D statistics [20] in goat sequences alone.

Adaptive selection pressure was tested using tree topology branch lengths calculated by
codeML model in PAML package version 4 [21]. The F3 × 4 codon frequency model calculated
using the nucleotide frequencies at the three codon positions was used. To detect positive selec-
tion at individual codons within the gene pair of models were compared using codeML: M1
(neutral model) was compared with M2 (adaptive model) and M7 was compared against M8
model [22]. Statistically significant evidence of positive selection was inferred with likelihood
ratio test (LRT).

The influence of positively diversifying selection on genes can be inferred when ratio (ω) of
non-synonymous (dN) to synonymous (dS) substitution rates exceeds one. The value of ω
serves as a measure of comparative evolutionary patterns of codons and lineages [23]. To fur-
ther confirm codon site selection pressure, multiple codon sequence alignments of IRF3 for
goats alone were submitted to the Selecton Server, version 2.2 (http://selecton.tau.ac.il/). Selec-
ton version 2.2 allows the ω ratio to shift among codons within the multiple sequence align-
ments (MSA) and this parameter is estimated by maximum-likelihood value via Bayesian
inference approach [24]. Additionally, the results from Selecton version 2.2 are visualized with
color scales representing the different types of selection.

Table 1. Accession Identification for goat IRF3 Sequences downloaded from NCBI and NextGen Capra Project for Moroccan and Iranian goats.

Specie Sample name Location Data Source Accession Number

Goat West African Dwarf (WAD) Nigeria Resequenced data

Red Sokoto Nigeria Resequenced data

Ethiopian_Borena Ethiopia Resequenced data

Ethiopia_Somali Ethiopia Resequenced data

Iran_Cashmere Iran Resequenced data

Iran meat goat Iran Resequenced data

South African Meat goat South Africa Resequenced data

South African poitou South Africa Resequenced data

Chinese Black Yunana (Capra
hircus)

China Resequenced data

Morocan goat (MOCH) public
databases

NextGen Capra
Project

ERS421320 ERS154595 ERS154569 ERS154584

Iranian goat (IRCH) public
databases

NCBI GenBank ERS239011 ERS239007 ERS239027 ERS239043 ERS239030
ERS239028

Wild
goat

Capra aegagrus Iran Resequenced data

Sheep Ovis aries public
databases

NCBI GenBank DQ152970.1

doi:10.1371/journal.pone.0161962.t001
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Results
To understand the pattern of evolution of the IRF3 gene in goats, we assembled IRF3 gene cod-
ing sequences in domesticated and wild goats from our resequencing data and we also used the
available sequences for the gene in public databases. To understand the basis for evolutionary
patterns in the gene in the domesticated breeds and wild goat, we conducted phylogenetic anal-
ysis of aligned gene sequences in MEGA. Gene trees were constructed by Neighbor-joining
(NJ) method in MEGA 6.0 with bootstrap value set to 1000 and Ovis aries as the out-group
(Fig 1). Maximum likelihood (ML) tree was inferred using the PhyML program version 4.8 and
rooted in Ovis arie (Fig 2). The gene trees showed closer relationships among all domesticated
goats than with the wild goat and sheep IRF3 gene. ML tree showed that the IRF3 genes in dif-
ferent domesticated goats share a common ancestor, as illustrated in the length of the tree
branches, suggesting single origin of domesticated goats.

To assess if the evolution of IRF3 gene in goats deviates from neutrality (Table 2), we tested
the hypothesis of neutrality with DnaSP v5.10.01 and estimated population statistics including
number of segregation sites, haplotype diversity, Fu and Li’s and Tajima’s D statistics in goat
sequences alone. Five segregating sites were observed in the coding sequences of domesticated
and wild goats. Tajima’s D was significantly negative (P< 0.05) while the Fu and Li’s tests
were significantly positive (P< 0.05). Four unique haplotypes (Hap_1, Hap_2, Hap_3 and
Hap_4) were observed across all the sequences (Table 3), of which Hap_2 was particularly
common to African goats (MOCH-K14-0425, Poitou andWAD), Hap_1 found in all domesti-
cated goats, Hap_3 in the wild goat and Hap_4 associated with sheep Ovis aries.

For further assessment of the evolution mode at the codon level, the codon models of
PAML were used to infer estimates of ω under a maximum likelihood framework for all goat
codon sequences (Table 4). Analysis was conducted using M1 versus M2 and M7 versus M8
PAML models and LRT was determined by using the likelihood logs. Model M1 gave a ω0 (dN/
dS) value of 0.067 with LnL value of -6900.3 while ω2 = 1.667 in model M2 with LnL value of
-6900.3; model M2 was judged favorable for this analysis. Model M2 demonstrated that more
than 88% of the gene was under purifying selection pressure, while about 11% was under neu-
tral selection pressure and 1% under active positive selection pressure; suggesting a small frac-
tion of sites are under positive or diversifying selection in the genes, which might have led to
the deviation from neutrality of the gene’s evolution.

Considering that PAML is prone to high false positive result, we also submitted aligned
sequences of goats to the selecton online tool (http://selecton.tau.ac.il/) that employs the mech-
anistic empirical combination (MEC) model for evaluating adaptive selection pressure in
codons. The MEC model takes into account the differences between amino acid replacement
rates. Adaptive selection pressure was inferred in three codons (207, 358 and 408) in IRF3 (Fig
3), identified under positive selection. A comparison of translated multiple sequence alignment
of domesticated goats and wild goats in MEGA, revealed unique single nucleotide polymor-
phisms (SNPs) in the domestic goats in reference with the wild goat in the selected codons.
Evolutionary changes in these codons resulted in non-synonymous changes in domesticated
goats, which coded for different amino acid between domestic and wild goats (Table 5).

Discussion
Evolutionary studies in immune system genes have been widely conducted, especially in the
toll like receptors (TLR) genes families such as the IRF gene family in many model species[15,
25, 26, 27]; however there is no published data on IRF3 gene in goats. Our aim was to reveal
evolutionary patterns and selection signatures in the goat innate immunity gene IRF3. Five seg-
regating sites and θ value of 0.0009 for this gene demonstrated a low diversity across the goats’
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Fig 1. Neighbor joining phylogenetic trees for goat IRF3 gene sequences constructed by Neighbor-
joining (NJ) method in MEGA 6.0 with bootstrap value set to 1000 andOvis aries IRF3 gene sequence
as outgroup.MOCH =Moroccan goats; IRCH = Iranian goats; WAD =West African Dwarf.

doi:10.1371/journal.pone.0161962.g001
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Fig 2. The phylogeny of goat IRF3 gene was inferred by the maximum likelihood (ML) method using
the PhyML program in MEGA software to analyze aligned sequences and this tree was rooted using
theOvis aries IRF3 gene sequence.MOCH =Moroccan goats; IRCH = Iranian goats; WAD =West African
Dwarf.

doi:10.1371/journal.pone.0161962.g002
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populations, compared with 36 segregating sites when sheep IRF3 sequence was added. This
low diversity in goat population may not be unconnected with the number of samples used in
the present study, data from a larger sample size may illuminate this farther. Neighbor Joining
(NJ) and Maximum Likelihood (ML) gene trees showed close pattern of genetic relationship
among domesticated goat, and a clear divergence between domesticated and wild goat types.
Goats used in this study were sampled from diverse ecological environments across Asia and
Africa, which may account for the genetic variation observed in the study. Four different haplo-
types were observed in the study. One was found to be common in all goats, one only in wild
goat and one particular haplotype was found only in three African domesticated goats includ-
ing a North African goat MOCH-K14-0425 and dwarf goats (Poitou and WAD) from South
Africa andWest Africa respectively. This particular haplotype may represent a conserved seg-
ment of the sequence that survives the descent of many generations of reproduction [28],
which may account for unique regional variation [29]. Also it is perhaps the product of envi-
ronmental influence and local adaptation to environmental differences peculiar to some Afri-
can goats. The dwarf goat breeds are particularly known to habit forest regions, they are hardy
and often shown tendency of going feral. Strong humoral and innate immune responses have
also been reported in these breeds [30]

Fu and Li’s tests were significant and positive while Tajima’s D test was significant but nega-
tive, indicating a deviation from neutrality and suggesting positive selection in the gene [31].
The influence of positive diversifying selection in genes can be inferred, when ratio of non-syn-
onymous (dN) to synonymous (dS) substitution rates exceeds one [32]. Inferred dN/dS ratio
greater than one detected by codon models of PAML attests to the positive selection pressure
in the IRF3 gene. Although only about 1% of the codon sites in of gene were inferred to be
under positive selection, this explains the observed deviation from neutrality of the gene’s evo-
lution. Possible reason for evolution of adaptive selection in the gene might have resulted from
adaptation to different environments. Goats, particularly the domesticated ones have always

Table 2. Population statistics and neutrality test in IRF3 gene in goats alone and goats with Sheep.

Population statistics Neutrality test

Sequences M S Ps θ Tajima’s D P- Value Fu & Li’s P- Value

Goats only 41 5 0.004 0.0009 -1.807 0.035 1.543 0.025

Goats and sheep 42 36 0.218 0.006 -2.551 0.01 1.983 0.02

M = Number of sequences

S = Number of segregating sites

Ps = Population diversity

θ = Haplotype diversity.

doi:10.1371/journal.pone.0161962.t002

Table 3. Haplotypes found in different goat types.

Haplotype ID Haplotype Population where haplotye is found

Hap_1 CGACGGTCAAC All domesticated goats except MOCH-K14-0425, Poitou, WAD

Hap_2 CGACGGTCCAC MOCH-K14-0425, Poitou, WAD

Hap_3 CGTGGGTCCGT Capra_aegagrus

Hap_4 GTTGACCTCGT Ovis_aries

Hap = Haplotype

MOCH = Moroccan goats

WAD =West African Dwarf.

doi:10.1371/journal.pone.0161962.t003
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been influenced both by natural selection imposed by the environments and artificial selection
influenced by human through selective breeding for specific production functions (such as
milk, meat or both) [33]; a key factor in goat domestication. Breeding activities may have influ-
ence adaptive evolution in this gene.

Table 4. Inference of positive selection in IRF3 genes using two pairs of models in Phylogenetic Analysis by Maximum Likelihood (PAML).

Gene Model Parameter Estimates LnL LRT Positive selection codon sites

IRF3 Model1 P0 = 0.888 p1 = 0.112 -6900.3 0 Not Allowed

ω0 = 0.067ω1 = 1.000

Model2 P1 = 0.888 p2 = 0.111 p3 = 0.006 -6900.3 3

ω 1 = 0.086ω 2 = 1.667ω 3 = 1.667

Model7 p = 0.632 q = 3. 182 -6897.87 0.476 Not Allowed

Model8 p0 = 0.886 p = 0.562 q = 3.778 -6897.87 3

p1 = 0.010ω = 1.777

(ω) = ratio of nonsynonymous-to-synonymous substitutions, Purified selection (p0), neutral selection (p2), positive selection (p3), substitution ratio for all

sites, p and q = β distribution parameters, LnL = log likelihood; LRT = likelihood ratio.

doi:10.1371/journal.pone.0161962.t004

Fig 3. Selection pressures among goat IRF3 gene sequences usingmechanistic empirical
combination (MEC) model of selecton online tool. Yellow and brown highlights represent positive
selection, grey and white highlights represent neutral selection and purple highlight represent negative
selection on codons.

doi:10.1371/journal.pone.0161962.g003
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Furthermore, mechanistic empirical combination (MEC) codon site selection also con-
firmed codons 207, 358 and 408 to be under strong adaptive selection pressure. Although all
three codons were found in domesticated and wild goats, codons 207, 358 and 408 coded for
Serine, Asparagine and Asparagine respectively in domesticated goats but Tryptophan, Tyro-
sine and Aspartic acid respectively in reference with the wild goat. Evolutionary changes of the
gene in domesticated goats appeared to be more recent than in the wild goat, which may be

Table 5. Chromosome identity, number of exons andmutations in codons under positive selection pressure in IRF3 gene.

Chromosome ID No of Exons Codon under selection Mutation Mutation Type Domesticated goats Affected

18 8 207 W(TGG)!S(ACC) NS all domestic goats

358 T(ACC)!N(AAC) NS MOCH-AA11-2174

MOCH-AA6-2031

MOCH-AA7-2034

MOCH-AA9-2152

MOCH-AB10-2181

MOCH-H19-1343

MOCH-J17-1355

MOCH-J18-1324

MOCH-H19-1309

MOCH-K15-0440

IRCH-B4-5209

IRCH-B5-5032

IRCH-C3-5039

IRCH-C6-5204

IRCH-C7-5144

IRCH-D5-5240

IRCH-D6-5189

IRCH-E5-5053

IRCH-E6-5087

IRCH-E7-5193

IRCH-F11-5140

Ethiopia_Somali

Iran_Cashmere

Nigeria_Red_Sokoto

Nigeria_WAD

T(ACC)!Deletion NS MOCH-AB11-2160

MOCH-AB11-2167

MOCH-K13-0366

IRCH-B3-5131

IRCH-C5-5206

IRCH-D7-5132

IRCH-F3-5044

Ethiopian_Borena

408 D(GAC)!N(AAC) NS all domestic goats

MOCH = Moroccan goats

IRCH = Iranian goats

WAD =West African Dwarf

NS = Non-Synonimous.

doi:10.1371/journal.pone.0161962.t005
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connected with common domestication processes in domesticated goats. These codons proba-
bly play major roles in adaptive immune response. Adaptive selection has been reported to
occur when a new or previously rare mutation bestows fitness benefit on individuals. Positively
selected gene regions influence protein coding, host defense against pathogens, reproduction,
speciation and adaptation to a new environment [34, 35, 36]. Although IRF3may not be
directly involved in pathogen recognition, it has been reported to be active in signaling plat-
form for transcriptional activities and many pathways involving resistance to viral infection
[13, 37, 38]; these evidences suggest that the activation of these transcription factors is a precur-
sor of other interferons and pathways implicated in adaptive immune responses intonation
[37].

Remarkably, adaptive selection has been suggested to be connected with acquisition of new
functions in genes [3] in connection with phenotypes and organism’s fitness [4, 5, 6]. This
selective pressure has also been connected with functional adaptations gained in active evolu-
tion of species; which have the tendency of promoting functional diversification in species [7].
We therefore postulate that adaptive evolution observed in IRF3 in domesticated goats is prob-
ably the result of the breeding processes associated with domestication.

IRF3 gene has been reported to be involved in encoding proteins in connection with fun-
damental interactions between organisms and their environments [21] as such adaptive
evolution of the gene may have taken place as a key factor in the evolution of goats for sur-
vival of unfriendly pathogenic environments during the process of domestication, when
goats were bred for different functional purposes in various ecological environments. In
support of this, a study based on TLR2 genes published elsewhere [15], proposed that rumi-
nant species are actively undergoing differential selective pressures. This process is attrib-
uted in part to direct selective breeding; resulting in population reduction and reduced
effective population size of many ruminants species, which in turn may mirror initial
domestication, breed formation or selection for specialized (e.g for meat, milk or fiber) [39].
An alternative proposal by Cui [40] is that breeding operations indirectly impacted changes
in host-pathogen interactions suggesting that increased animal stocking density, pathogen
transmission and load may also have increased selection for rapid adaptation in host and
pathogen genes.

Conclusion
IRF3 gene have been widely studied in many species. However, to the best of our knowledge,
the first report on adaptive selection of the gene in goats. The gene is showed low diversity in
goats. Various analyses conducted in this study implicated positive or adaptive selection in the
gene. Active adaptive evolution observed in IRF3 gene suggested that the gene has experienced
positive selection particularly in codons 207, 358 and 408. Our results suggest that adaptive
evolution occurred in these codons in IRF3 gene as a result of breeding processes associated
with domestication and that these genes may play important role in response to changing path-
ogenic pressure and adaptation. This gene may be promising target for further studies aiming
at linking genetic variation to pathogen susceptibility in ruminants and other vertebrate groups
that are threatened by emerging infectious diseases.

Supporting Information
S1 Fig. Aligned sequences of IRF3 gene used in the study. The gene is located on chromo-
some 18 and contains 8 exons.
(DOCX)
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