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Abstract

Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the
largest spatial scale, freshwater organisms can become genetically isolated by their high
mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of
aquatic plants is expected to be stronger across than alongside mountain ridges whereas
the heterogeneity of habitats among populations and temporary droughts may influence
connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even
for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pecti-
nata) giving structure to various aquatic habitats. We compared the level of genetic diversity
in a heterogeneous series of aquatic habitats across Iran and tested their differentiation
over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir),
with values obtained from temperate region populations. The diversity of aquatic ecosys-
tems across and along large geographic barriers provided a unique ecological situation
within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight dis-
tances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of
alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a sepa-
rate grouping of individuals of southeastern Iranian sites and was confirmed by their differ-
ent nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit
(ESU). At the level of populations, a positive correlation between allelic differentiation Dgg;
with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites
showed 7 genetic clusters. Fst and Rst values for ten populations reached 0.343 and

0.521, respectively thereby indicating that allele length differences are more important and
contain evolutionary information. Overall, higher levels of diversity and a stronger differenti-
ation was revealed among Iranian P. pectinatus than previously observed for temperate
European regions, due to regional differences across mountain ranges over long distances.
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Introduction

Biogeographic barriers for freshwater biota can be considered at three spatial scales, namely
inter and within basin and continental. At the largest spatial scale, freshwater organisms are
isolated by their high mountain ranges, inability to cross oceans and vast deserts [1]. Gene flow
between populations of aquatic plants is restricted by the discontinuous nature of their habitat
embedded in another terrestrial landscape and as such, lakes or rivers could be considered as
islands of suitable habitats. Under an Island Migration Model, increasing geographical distance
between populations is expected to lead to enhanced genetic isolation, which essentially corre-
sponds to a stepping-stone population structure and requires that dispersal is primarily local
rather than long-distance [2, 3, 4, 5, 6].

Besides merely distance as a limit to connectivity, especially large deserts and mountain
ranges act as additional natural barriers. The flora of the mountains provides many examples
of subspecies with populations and very closely related species that show restricted gene flow
due to these inherent geographic barriers [7, 8]. Isolation by distance is stronger across than
alongside mountain ridges [9, 10, 11].

Drought as a climatic event is one of the most threatening challenges that occur due to cli-
matic change and global warming [12]. The heterogeneity of habitats and environment among
populations probably influence gene flow in disrupting or dispersal, resulting in isolation by
environment (IBE) model in which genetic differentiation is positively correlated with environ-
mental differentiation [13, 14]. Drought has been a problematic phenomenon for aquatic eco-
systems in Mediterranean temporary pools [15] and in low rainfall regions e.g. Central and SW
Asia [16] during recent years because it declines water quality and decreases aquatic plant
occurrences.

The importance of submerged vegetation in aquatic ecosystems management and biodiver-
sity has been highlighted [17, 18, 19]. Many aquatic plants have mixed modes of reproduction
and different models of dispersal [20, 21]. In submerged water plants (macrophytes), sexual
reproduction by seeds produces new genotypes [21]. In spite of the low clonal diversity
between and within populations [20], several studies showed that aquatic plant populations
often had high clonal diversity [22, 23, 24, 25] nearly similar to non-clonal plant species [26].
Among aquatic plant taxa, fennel pondweed, Potamogeton pectinatus L. is one of most diverse
submerged aquatic species [27, 28]. This species maintains many useful physiological traits
such as tolerance to a wide range of nutrients, ability to grow in oligotrophic to eutrophic
waters [29], and utility to progress quality of water by removing nutrients [30]. These useful
traits made the species also a potentially important biotic tool for cleaning up polluted waters
by heavy metals absorption [31, 32]. Plant parts are an important source of food for many
waterfowl [23].

P. pectinatus reproduces both sexually and vegetatively through tubers emerging from the
rhizomes and acting as propagules. Asexual reproduction is thought to be responsible for short
distance dispersal while sexual reproduction with seeds is more important to ensure long dis-
tance dispersal and long-term survival [21, 29]. There are several studies about genetic varia-
tion of P. pectinatus. Hettiarachchi & Triest [33] used isozyme markers to detect genotypes
within different habitats such as freshwater and brackish water, and showed a geographic trend
in genotypes among freshwater populations. Using isozyme polymorphism, Hollingsworth
et al. [2] confirmed the importance of local clonal growth in P. pectinatus. Hangelbroek et al
[23] used RAPD markers and showed that sexual reproduction has a very important role
within a lake population. Hollingsworth et al. [2] also showed that isolation by distance was
determined as a regulatory factor for gene flow at distances of more than 1000 km along the
Atlantic and Baltic Sea coastal habitats, proposing that dispersal between populations is mainly
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by seeds. The effect of migrating waterfowls on plant distribution pattern and seed dispersal
over large distances have been reported [22, 34, 35]. Also Mader et al. [22] and King et al. [34]
who used RAPD and ISSR markers, respectively concluded that genetic distance between pop-
ulations of P. pectinatus increased with geographic distance. Following the development of
nine polymorphic microsatellite loci for P. pectinatus [36] an evolutionary divergence and less
gene flow between two types of habitat on a regional scale [37] were shown, namely for the
brackish water populations of the Baltic Sea lagoons versus freshwater inland populations of
Central Europe. Genetic differentiation of P. pectinatus but also other submerged plant taxa
was found between coastal brackish water and freshwater inland habitats in lowland regiosn of
W. Europe by Triest et al. [38]. They also detected that upstream forest ponds can be detected
as source populations and defections for clonal diversity to recolonize the stressful downstream
river habitat. A more detailed study of the clonal diversity and fine-scaled spatial structure at
individual level of P. pectinatus in river populations and managed pond [39] revealed that the
ponds populations had a higher amount of gene and clonal diversity than those of rivers. Han
et al. [40] using AFLP showed that P. pectinatus maintained a high level of variation within
and between two contrasting and distant lakes in China. Those previous studies over the last
decades confirmed that P. pectinatus has a mixed reproduction system, an overall high level of
gene diversity and an increased differentiation over long distances of hundreds of kilometers.
All previous studies were done in temperate and temperate-cold areas having many permanent
water bodies and often at close vicinity. Therefore, it can be hypothesized that P. pectinatus
populations might exhibit a stronger genetic differentiation over similar distances across
mountain ranges and in a drier climate zone with often temporary habitats of very isolated wet-
lands areas and rivers habitats that show strong fluctuations due to high evaporation levels and
use for irrigation in agriculture.

The specific biogeographic location of Iran [41] with its several large mountain ranges and
deserts present a totally different suite of habitat types at a presumed low connectivity. The
Alborz mountain ridge is located in the north whereas the Zagros mountain region is extending
from northwest to southeast of Iran. The mountains of Kerman are located at the eastern edge
of Zagros. Dashte Kavir is a desert region in the center of Iran. These geographic characteristics
are assumed to create a differentiation and isolation between north and south populations and
thus can pose an additional barrier to dispersal besides the distance to overcome. Along the
same side of mountain ranges, these biogeographic barriers promote homogenization of
aquatic biota [42]. Additionally, the mountains of Kerman located in the southeast of Iran are
a potential barrier between north and south populations. Historically, these barriers identified
as dominant factor in determining the composition of regional organisms [43, 44]. The world’s
second largest saline lake, Urmieh lake, is located in the north west region. Iran has a great
diversity of aquatic ecosystems many of which have been recorded in the Ramsar Convention
[45]. The largest portion of freshwater bodies in Iran is composed of many large rivers and
lagoons. Different challenges such as the effects of human-based threats disrupt their ecological
characteristics [46].

Our aim was to test, by considering sites with P. pectinatus populations over a long gradient
of regions across mountain ranges as potential barriers, whether in such habitats

1. P. pectinatus can maintain its usually high levels of allele and gene diversity.

2. Differentiation over distances and across mountain ranges and around deserts would be
more pronounced and structured than in temperate regions.

Therefore we considered a sampling design with a large number of sites across the various
biogeographic regions and used the same microsatellite loci as a previous European studies,

PLOS ONE | DOI:10.1371/journal.pone.0161889 August 25, 2016 3/20



@’PLOS ‘ ONE

Strong Genetic Differentiation of Potamogeton pectinatus across Mountain Ranges in Iran

following a preliminary taxon verification with nuclear ITS and maternal chloroplast marker
genes.

Materials and Methods
The species

Fennel pondweed, P. pectinatus L. (= Stuckenia pectinata, see Lindqvist et al. [47] for taxo-
nomic revision) is a submerged aquatic plant with a nearly cosmopolitan distribution ranging
from sub-arctic to tropic regions, of different types of waterbodies and adapted to a large varia-
tion in water depth, flow regime, trophic status and salinity [48,37]. Potamogeton pectinatus
reproduces both sexually and vegetatively through propagules emerging from the rhizomes
[29]. It is an important source of food for many waterfowls [23]. This species harbors many
useful physiological traits such as tolerance to a wide range of nutrients, capability to grow in
oligotrophic to eutrophic waters [29], and ability to improve quality of water by removing
nutrients [30]. These useful traits made the species a potentially important candidate for clean-
ing up polluted waters by heavy metals absorption [31, 32].

Study area and sampling design

P. pectinatus plants were collected in 2015-2016 in thirty six sites from wetlands, lakes and riv-
ers in Iran (Table 1, Fig 1). No specific permission was required for these locations/activities
and field studies did not involved endangered or protected species. The geographic distance
between pairs of populations ranged from 20 to 1200 km. Because the populations of this spe-
cies are still declining due to human activities and recent drought in Iran; in each site we col-
lected 1-20 individual shoots (ramets) at 2-3 m intervals. Design was to cover the entire
distribution range and diversity of aquatic habitats within Iran. Our samples usually were in
the main channel in downstream parts of rivers with low speed.

Samples were dried on silica gel prior to extraction and a voucher specimen for each popula-
tion was deposited at HUI (Herbarium of the University of Isfahan). One subset (one individ-
ual from one sampling site) of the collection was used for cpDNA haplotypes and ITS
(accession number: DQ840279.1) characterization (results not shown in this paper). Identifica-
tion of P. pectinatus populations was based on cpDNA sequence variability in trnH-psbA refer-
ring to P. pectinatus haplotypes and on two nuclear spacers (ITS1 and ITS2)—as in Triest and
Sierens [49]. A more detailed study of genetic diversity and structure at the population level
was done on a subset of 10 populations where a sufficient large number of different genets
could be considered.

For each specimen we measured 29 morphological characters. Among these, the leaf apex
and leaf width (36 measurements per site) could differentiate morphologically the specimens
characterized for a nuclear ITS-A or B. B. Mean rank for Krustal-Wallis was between 1.12-3.11
mm for the group of specimens sharing ITS-B. Morphological measurements were tested for
significant differences with one-way ANOVA (Kruskal-Wallis) and pairwise Mann-Whitney U
test.

DNA extraction and microsatellite amplification

Genomic DNA was extracted from leaf tissue using CTAB by Gawel and Jarret [50] with some
modifications. All individuals were genotyped at nine nuclear microsatellite loci:

Potpect24, Potpect26, Potpect28, Potpect32, Potpect34, Potpect37, Potpect39, Potpect40,
and Potpect42 [36]. Amplification of these nine loci was not performed in three multiplex PCR
as described in Nies & Reusch [36], but into a unique multiplex PCR. This single amplification
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Table 1. Regions situation, location details and features of P. pectinatus populations in Iran, their nuclear ITS, trnH psbA haplotype length,
voucher number and type of water body and a diagnostic morphological feature.

Locality Region Long (E) Lat (N) NuclearITS | trnH-psbA Haplotype | Voucher | Water body | Mean Rank*
1-Aligoodarz N. Zagros 49.165 33.478 ITS-B 380 20157 River 1.75
2-Amirkelaieh N. Alborz 50.222 37.277 ITS-A 379 20147 Wetland 0.25
3-Azbaran N. Alborz 52.476 36.650 ITS-A 377 20152 Wetland 1.11
4-Barm N. Zagros 51.208 31.577 ITS-A 378 20174 Spring 1.12
5-Boroujen N. Zagros 51.327 31.959 ITS-B 380 20168 Stream 1.12
6-Chaghakhor N. Zagros 50.932 31.923 ITS-A 377 20169 Wetland 1.03
7-Chamaseman N. Zagros 51.223 32.3727 ITS-A 380 20164 Reservoir 0.58
8-Chamgordan N. Zagros 51.342 32.385 ITS-A 379 20160 River 0.99
9-Chamtagh N. Zagros 50.993 32.459 ITS-A 379 20159 River 0.47
10-Dahaneh sefidrood N. Alborz 50.181 37.383 ITS-A 378 20146 River 0.52
11-Delijan N. Zagros 50.682 33.990 ITS-A 378 20156 Stream 1.19
12-Dizicheh N. Zagros 51.527 32.376 ITS-A 379 20162 River 0.33
13-Gandoman N. Zagros 51.084 31.814 ITS-A 377 20172 Wetland 0.5
14-Ghoorigol W. Alborz 46.705 37.915 ITS-A 378 20145 Wetland 1.15
15-Googhar Kerman Ms 56.637 29.483 ITS-B 380 20179 River 3.11
16-Hamzeali N. Zagros 51.076 31.835 ITS-A 377 20171 Canal 1.14
17-Hasanabad SE. Zagros 53.336 29.656 ITS-A 378 20178 River 0.54
18-Hojatabad N. Zagros 50.842 32.510 ITS-A 379 20158 River 1.12
19-Izeh SW. Zagros 48.861 32.051 ITS-A 379 20167 River 1.18
20-Jarghoieh N. Zagros 52.617 32.162 ITS-A 379 20165 Wetland 0.55
21-Kaniborazan W. Alborz 45.783 36.966 ITS-A 378 20150 Wetland 1.27
22-Komjan SE. Zagros 53.148 29.669 ITS-A 378 20177 River 0.85
23-Langrood N. Alborz 50.162 37.187 ITS-A 378 20148 River 0.29
24-Miandoab W. Alborz 46.089 36.990 ITS-A 378 20149 Wetland 1.11
25-Miangaran SW. Zagros 49.870 31.882 ITS-A 379 20170 Wetland 0.28
26-Shadegan SW. Zagros 48.330 30.266 ITS-A 378 20175 Wetland 1.23
27-Shushtar SW. Zagros 48.859 32.051 ITS-A 378 20166 River 0.75
28-Siahrood N. Alborz 52.885 36.303 ITS-A 378 20155 River 0.9
29-Sivand SE. Zagros 52.923 30.113 ITS-A 378 20176 River 0.96
30-Soosangerd SW. Zagros 47.916 31.795 ITS-A 378 20173 River 1.2
31-Tonekabon N. Alborz 50.900 36.783 ITS-A 378 20151 River 0.89
32-Valasht N. Alborz 51.541 36.454 ITS-A 378 20154 Lake 0.89
33-Varnamkhast N. Zagros 51.367 32.377 ITS-A 379 20161 River 1.22
34-Vimcheh N. Zagros 51.484 32.374 ITS-A 379 20163 River 0.76
35-Yaschaman Kerman Ms 56.624 29.454 ITS-B 380 20180 Stream 2.2
36-Zaghmarz N. Alborz 52.891 36.488 ITS-A 378 20153 Wetland 1.03

*: Mean Rank compute by Kruskal-Wallis

doi:10.1371/journal.pone.0161889.t001

was made possible by the use of the QTAGEN Multiplex PCR Kit (QIAGEN) in a final volume
of 10.5 pL, as follow: 25 ng of DNA template, 5 uL 2x QIAGEN Multiplex PCR Master Mix

[QIAGEN Multiplex PCR Buffer, pH 8.7, containing dNTPs, QTAGEN HotStar Taq DNA

Polymerase, and 6 mM MgCI2 (for a final concentration of 3 mM)], 1 uL Q-Solution (59 con-

centrated proprietary QIAGEN PCR additive), 1 uL of a primer mix with 2 uM of each primer
(for a 0.2 pM final concentration of each primer) and 1 L of highly pure water obtained from
a Milli-Q Synthesis A10 (Millipore, Molsheim, France). PCR were carried out in 96-well plates

PLOS ONE | DOI:10.1371/journal.pone.0161889  August 25, 2016

5/20



@’PLOS ‘ ONE

Strong Genetic Differentiation of Potamogeton pectinatus across Mountain Ranges in Iran

45°0'0"E 50°0'0"E 55°0'0"E 60°0'0"E
< . ) o . /,Hv‘ r~~<.&. @
| Urumieh lake g (
1 n : X \ 5 B
o ]
z z
§= Alborz mountain §=
27 (o
(2] wn
w0 Kavir desert 0.
z z
° °
27 [
o o
® ®
h . = e o SYMBOLS

z M & - -
:o - { ~ il ! g ws ] - =
10 500 N { ] | ® Sampling points
% & A
Q | ———]km M

45°00"E 50°00"E 55°00"E 60°0'0"E

Fig 1. Study area indicating 36 sites of Potamogeton pectinatus in Iran. Numbering as in Table 1. 1:
Aligoodarz; 2: Amirkelaieh; 3: Azbaran; 4: Barm; 5: Borujen; 6: Chaghakhor; 7: Chamaseman, 8:
Chamgordan; 9: Chamtagh; 10: Dahaneh sefidrood; 11: Delijan; 12: Dizicheh; 13: Gandoman; 14: Ghoorigol;
15:Googhar; 16: Hamzeali; 17: Hasanabad; 18: Hojatabad; 19: 1zeh; 20: Jarghoieh; 21: Kaniborazan; 22:
Komjan; 23: Langrood; 24: Miandoab; 25: Miangaran; 26: Shadegan; 27: Shushtar; 28:Siahrood; 29: Sivand;
30: Soosangerd; 31: Tonekabon; 32: Valasht; 33: Varnamkhast; 34: Vimcheh; 35: Yaschaman; 36:
Zaghmarz.

doi:10.1371/journal.pone.0161889.g001

on a MyCycler TM thermal cycler (BIO-RAD) under the following conditions: 15 min dena-
turing at 95'C, [3000 denaturing at 94'C, 1.5 min annealing at 57'C and 1 min extension at
72'C] x 30 cycles and a final extension step at 72'C for 10 min. PCR were carried out in 96-well
plates on a MyCycler TM thermal cycler (BIO-RAD) under the following conditions: 4 min
denaturing at 94'C, [3000 denaturing at 94'C, 1 min annealing at 57'C and 1 min extension at
72'C] x 30 cycles and a final extension step at 72'C for 30 min. PCR products were run on
ABI3730XL sequencer (Macrogen, Seoul, Korea) and fragments were scored with GeneMarker
V2.20 (SoftGenetics LLC, State College, USA). Although P. pectinatus is hexaploid, the identi-
fied primer pairs amplify microsatellite loci that are “diploids”, confirming the observations of
Nies & Reusch [36, 37]. To explain this phenomenon, these authors support the idea that the
time that has elapsed after the polyploidisation event was sufficient to cause genetic divergence
of the microsatellites on the different sets of homologous chromosomes [37]. After excluding
forty eight repeated multilocus genotypes (MLGs) from the data set, we calculated genetic
diversity measures on 133 individuals using FSTAT 2.9.3 [51] and GenAlex 6.5 [52]. At locus
level, we estimated the number of alleles (A), effective number of alleles (Ae), observed hetero-
zygosity (Ho), expected and unbiased expected heterozygosity (He and uHe), Nei’s heterozy-
gosity at subpopulation level (Hs) and total (Ht), Wright’s F statistics [53] with inbreeding
coefficient (Fyg), total inbreeding (Frr), subpopulation differentiation (Fst) and gene flow (Nm)
using GenAlex. Weir & Cockerham [54] estimation of Fir (CapF), Fis (small f) and Fsr (Theta)
following Rousset [55] were calculated with FSTAT. Inbreeding values for the total populations
are given by small f and jackknifed over loci (FSTAT).
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We tested for recent bottlenecks in each population under the two-phase model (TPM)
with 95% single-step mutations and 5% multiple-step mutations (Wilcoxon’s test 1-tailed)
using bottleneck 1.2.02 [56]. Genetic structure was assessed with a three-level analysis of
molecular variance (AMOVA) [57] using hierarchical and standardized fixation indices for 5
regions, 10 populations and 68 individuals (GenAlex). Pairwise FST-values were calculated
between all pairs of populations and tested for significant differentiation using 999 permuta-
tions. Isolation-by-distance between pairs of populations and their geographical distances was
tested with ©/1- © considering straight flight distances, log transformed [55] between popula-
tions in a Mantel test using 1000 randomizations [58]. An estimator of actual differentiation
D, [59] was calculated between all pairs of populations using SMOGD [60] and used in a
Mantel test with log transformed straight flight distances. To infer the population structure on
basis of assignment of individual genotypes into groups, a Bayesian clustering method [61] was
carried out using STRUCTURE version 2.3. We tested for the number of clusters (K) in ten
independent runs from 1 to 14 (10,000 burn-in, 10,000 Markov chain Monte Carlo replicates
in each run), without using sampling site as a prior to assess convergence of the estimated In
probability of data, In (PD). Runs were carried out assuming admixture and an independent
model of allele frequencies. The number of clusters was determined from the K with the highest
posterior probability and using the second-order rate of change of the likelihood function AK,
as suggested by Evanno et al. [62]. For testing the evidence of scoring error, Evidence of large
allele dropout and Evidence of null allele we used Micro-checker 2.2 software. Also we used
POPTREE2 [63] software for cluster analysis. Isolation by distance and Rgy was tested by calcu-
lating multilocus estimates of kinship coefficient (Fij) between all pairs of individuals imple-
mented in the software SPAGeDi v1.4 [64].

Results

The haplotypes obtained from amplified product lengths of TrnH-PsbA showed congruent dif-
ferences for Aligoodarz (1), Borujen (5), Googhar (15) and Yaschaman (35) when compared to
all other populations. Morphological measurements between this group (mean rank of 1.12-
3.11 mm) and specimens from other sites (mean rank of 0.25-1.27 mm) were significant

with one-way ANOVA (Kruskal-Wallis) (P = 0.036) and pairwise Mann-Whitney U test

(P =0.012). The lowest morphological value was 0.25 mm (2-Amirkelaieh) whereas the highest
value 3.11 mm (15-Googhar).

Microsatellite loci properties

As the primers were previously developed and used on European Potamogeton pectinatus pop-
ulations, we tested these cross-amplified loci with microchecker, but there was no evidence for
null alleles, large allele dropout or scoring error due to stuttering. Over all sites and loci, the
nine microsatellite loci revealed a total of 130 alleles. The mean number of alleles was highest
for potpec 39 (3.3) and lowest for potpec24 (1.9) with an overall observed heterozygosity
(Ho = 0.2-0.7) nearly similar to the overall expected heterozygosity (He = 0.3-0.7) (Table 2).
Out of 181 ramets in 36 sites, 133 genets (MLG) were obtained with re-encounters only
occurring within a same site Table 3). Despite the small number of ramets available per site
(2-15), the obtained number of genets remained between 2-11, thereby giving a range of values
for clonal richness from 0-1 (Table 3). The mean number of alleles varied from 1.3-5.2, the
effective number of alleles from 1.5-4.0. Considering these 36 sites, their number of private
alleles ranged between 0-7, the observed heterozygosity between 0.2-0.7, unbiased expected
heterozygosity from 0.111-0.815. For ten populations, allelic richness was between 1.5-3.6
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Table 2. Features of 9 microsatellite loci for Potamogeton pectinatus as observed in 36 sites of this study Total number of alleles (A), overall
observed heteroygosity (H,) and overall expected unbiased heterozygosity (uHg), are given for 36 sites.

Locus Primer sequence Repeat motif Range A Ho uHg Gen Bank accession no.

Potpect24 |F Ned- TCAGTGAAAGAAAGCCAGGA (GA)n 132-186 1.9 0.210 0.314 AY568087
R GGGCTTATGGCGTTATCAA

Potpect26 |F Fam-GTATAGGCGAGGTGCGAGAG (CT)n 234-250 24 0.595 0.541 AY568088
R CTTCATGTCGACCACCTTCC

Potpect28 |F Fam-TCGTTTCCTCCATTCGTAGG (GA)n 164-187 25 0.684 0.560 AY568089
R AATAAAAAGGGCCCAGACC

Potpect32 | F Hex-CAGCAAACGAAACAACCAAA (GA)n 202-247 2.3 0.251 0.433 AY568090
R AAAAGAAGCCGTTGTTTACAGAG

Potpect34 | F Fam-GTAAGGCAAGCAGCGTCAAC (GA)n 223-251 3.0 0.612 0.639 AY568091
R GTTTGTGAGCTAGCGGGAAG

Potpect37 |F Hex-CACTTCCTCTGTGCTGCTTG (CT)n 137-177 2.6 0.609 0.614 AY568092
R GCGTGCTCTTCCTGAGTTCT

Potpect39 | F Hex-TCACAACACCTCACCCAGAA (GA)n 212-246 3.3 0.621 0.629 AY568093
R CCATTTCCATTCCTCACTGC

Potpect40 |F Ned-AAATCTCCAAATATTTCCACTGTTG (GA)n 179-208 25 0.556 0.542 AY568094
R CAAAGATTGAGCTCCCCAAA

Potpect42 | F Ned-TTAGCAAGTGGGTGGGTTTC (CT)n 177-208 3.1 0.761 0.706 AY568095

RTGCACTCGTGTGTCTCTTCC
doi:10.1371/journal.pone.0161889.t002

whereas the inbreeding coefficient Fg was estimated -0.077-0.846. The populations of Azbaran
(3), Vimcheh (34) and Izeh (19) showed evidence of recent bottleneck events (Table 3).

From the 10 considered populations, the percent of individuals assigned to the same popula-
tion was higher (76%) than those assigned to other populations (24%). The populations of
Amirkelaieh (2), Azbaran (3) and Kaniborazan (21) did not share any allele.

A Neighbor Joining tree of microsatellite gene diversity was congruent with the P. pectinatus
identity of nuclear ITS and trnH-psbA (380 bp length) for the samples from Hamzeali (16)
Borujen (5), Googhar (15), and Yaschaman (36) (Fig 2).

A PCoA at the level of all individuals revealed a gradient along a first axis that explained
28.9% of all variation but where several individuals were clearly separated as a group (Figs 3
and 4). Most of these individuals were also tested for ITS and showed the ITS-B sequence. A
PCoA confined to ten populations that explained 28.8% of all variation revealed a very clear
separation of most populations from each other. A gradient can be observed from individuals
of N. Alborz, around lake Urumieh, S.E. Zagros, N. Zagros and SE Zagros to Kerman mountain
ranges.

Percentage of variation explained by the first three axes in PCoA at 10 populations is
28.80% and 17.94% for first and second axes, respectively.

The range of Fs was between 0.156-0.595 among the ten populations. The lowest Fgr was
between Izeh (19) and Amirkelaieh (2) and the highest was between Azbaran (3) and Yascha-
man (35) (Table 4).

The range of D, values were between from 0.001 to 0.925. There was no relationship at all
between Fst and D, (Pearson correlation = 0.007) indicating that allelic differentiation can be
more important as an explanatory variable of IBD. There was a positive relationship between
Fsr and geographic distance (R*=0.35 and P = 0.01) but there was an improved positive corre-
lation between D and Ln (1+Km) (P = 0.01, R* = 0.56) (Fig 5).
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Table 3. Clonal diversity (N, G, R) and gene diversity measures of Potamogeton pectinatus individuals at 36 sites with mean number of alleles
(Na), effective number of alleles (Ae), number of private alleles (PA), observed heterozygosity (Ho), unbiased expected heterozygosity (uHe); and
for 10 sites considered as populations the inbreeding coefficient (F,s) Bottleneck test and allelic richness (Ar).

Pop code No ramets (N) | No genets (G) | Clonal richness (R)| Na | Ae | PA | Ho | uHE Fis Bottleneck (TPM) Ar
Wilcoxon

1-Aligoodarz 7 2 0.2 1.8(1.7| 1 [0.333(0.463| NA NA NA
2-Amirkelaieh 10 8 0.7 44129| 2 |0.664|0.644 | 0.021 0.450 3.2
3-Azbaran 10 4 0.3 1.9/1.8| 0 |0.667|0.414 | 0.846* 0.004* 1.9
4-Barm 3 3 1 34/29| 0 |0593|0.756| NA NA NA
5-Borujen 2 2 1 1.3/13| 0 |0.111[0.111 NA NA NA
6-Chaghakhor 4 3 0.7 19117 1 [0.296|0.385 NA NA NA
7-Chamaseman 3 3 1 20/16| 0 |0.296/0.430| NA NA NA
8-Chamgordan 2 2 1 17117 2 |0.667|0.519| NA NA NA
9-Chamtagh 2 2 1 24122 1 [0.389|0.667 NA NA NA
10-Dahaneh 3 2 0.5 22|20 0 |0.556(0.537| NA NA NA
sefidrood
11-Delijan 4 4 1 32|27 2 |0.778|0.679 NA NA NA
12-Dizicheh 2 2 1 3.0/28| 0 |0.611/0.815| NA NA NA
13-Gandoman 2 2 1 26|23 1 |0.500(0.630, NA NA NA
14-Ghoorigol 6 3 0.4 18|17 1 [0.704 | 0.452 NA NA NA
15-Ghooghar 3 3 1 1.7(15]| 0 [0.241(0.300( NA NA NA
16-Hamzeali 2 2 1 11(11] 0 [0.111|0.111 NA NA NA
17-Hasanabad 2 1 0.0 1717 0 |0.667(0.667| NA NA NA
18-Hojatabad 2 2 1 1.7(16| 0 [0.500(0.407| NA NA NA
19-Izeh 14 6 0.4 44135 1 |0.593|0.709 | -0.077 0.007* 3.4
20-Jarghoieh 4 4 1 32|26| 1 |0.472|0567| NA NA NA
21-Kaniborazan 15 11 0.7 39|29| 7 |0.763(0.619| 0.177* 0.069 2.8
22-Komjan 5 5 1 27|25 1 |0.717|0.574 | 0.217* 0.349 2.5
23-Langrood 5 3 0.5 27|25 0 |0.630/0.556| NA NA NA
24-Miandoab 6 6 1 42|31| 5 |0.494(0.618|-0.269* 0.307 2.6
25-Miangaran 3 2 0.5 1.7(16| 0 [0.611(0.426| NA NA NA
26-Shadegan 3 2 0.5 1.7(15]| 0 [0.444(0.389| NA NA NA
27-Shushtar 11 8 0.7 52|40 3 |0.679(0.741 | 0.183* 0.477 3.6
28-Siahrood 5 2 0.2 29(27| 0 |0.778(0.778| NA NA NA
29-Sivand 5 3 0.5 31|27 0 |0.796|0.737| NA NA NA
30-Soosangerd 5 5 1 3.3/2.8| 2 |0.683|0.639 | 0.296* 0.222 2.9
31-Tonekabon 2 1 0.0 1.8(1.8| 0 [0.778(0.778 NA NA NA
32-Valasht 7 4 0.5 28|23 0 |0.648|0.525| NA NA NA
33-Varnamkhast 4 3 0.7 3.1/28| 2 |0.389|0.737| NA NA NA
34-Vimcheh 6 6 1 3.8/2.1| 2 |0.433|0.521 |-0.299* 0.006* 2.6
35-Yaschaman 9 9 1 28(16| 0 |0.228(0.311 | 0.091 0.059 1.5
36-Zaghmarz 3 3 1 3.0/27| 0 |0.778/0.704| NA NA NA
Mean/total 5 3.7 0.7 2.6(22|0.97|054 [0.55

* indicates populations with significant F\g (p <0.05).

doi:10.1371/journal.pone.0161889.t003

An AMOVA showed that the percentage of molecular variance among regions and popula-
tions were 15% and 18%, respectively (Table 5).
The genetic structure of 10 populations of Potamogeton pectinatus in Iran showed 6 genetic
clusters (Fig 6). The samples from Yaschaman (35) are placed separately.
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Fig 2. Neighbor joining tree of microsatellite diversity in 36 sites of P. pectinatus.

doi:10.1371/journal.pone.0161889.g002

Genetic analyses for 10 populations at 5 distance classes showed that Fsr and Rgr values
were 0.343 and 0.485, respectively. Table 6 indicated special genetic structure analysis for these

classes.

The higher values for Rgy indicated that allele length differences are more important over
the entire study area and evolutionary significant through low historical connectivity. In the
second distance class, Fst and Rt had a similar value (0.32-0.33). In the largest distance class,
the Rgr value (0.698) and Fer value (0.496) were highest. Also in all distance classes, except sec-
ond distance class, the values for Rgt were significantly higher than for Fsr. Fsr for all loci
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Fig 3. PCoA grouping of 133 individuals from 36 sites. The samples from Aligoodarz (1), Borujen (5), Googhar
(15), and Yaschaman (36), Hamzeali (16) are grouped separately (ITS B). (symbols of sites situated along the
same mountain range share a same color).

doi:10.1371/journal.pone.0161889.g003

P(1-sided test, H1: obs>exp) between neighboring populations of Izeh and Shushtar was not
significant. Genetic analyses at the individual level in 5 distance classes showed that pairwise
correlation coefficients of allele size are significant for upper distance classes (beyond 610 km).

Discussion
Allele and gene diversity

In spite of preliminary studies on the vegetative mode of reproduction of P. pectinatus and pre-
vious genetic studies on submerged aquatic plants based on dominant markers [29, 33, 2], as
well as in other studies on co-dominant markers [36, 39] a high level of allelic and gene diver-
sity was shown. Several studies showed that aquatic plant populations often had high clonal
diversity [22, 23, 24, 25] nearly similar to non-clonal plant species [26]. Among aquatic plant
taxa, fennel pondweed, P. pectinatus L. is one of most diverse submerged aquatic species [27,

PLOS ONE | DOI:10.1371/journal.pone.0161889 August 25, 2016 11/20
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doi:10.1371/journal.pone.0161889.g004

28]. Across the wide study area we observed 130 different alleles for 133 individuals whereas
Triest et al [39] and Nies & Reusch [36] observed 56 and 65 alleles with microsatellites, respec-
tively in a much larger amount of individuals. This can be explained from the geographic dis-
tances that reached only up to 250 km whereas our study covered sites at distance up to1200
km, potentially leading to detection of much more allelic variants and a greater isolation by dis-
tance between populations. The lower number of samples per site clearly allowed to obtain
many more alleles than in temperate regions and to detect relevant genetic structures in agree-
ment with biogeography and mountain ranges, the sample size did not prevent us from observ-
ing the strong differentiation (with more samples/site, alleles would remain different across
sites and regions). Other researchers also used the low sample size for example Rodriguez-
Bonilla et al [65] in genetic diversity evaluation of sweet potato in Puerto Rico used 137 landra-
ces, Population Genetics study of the Sao Tome Caecilian (Gymnophiona: Dermophiidae:
Schistometopum thomense) revealed strong geographic structuring with 138 specimens by

Table 4. Pairwise Population significance Fst (below diagonal) and D.¢; (above diagonal) values.

Amirkelaieh |Azbaran |lzeh Kaniborazan |Komjan |Miandoab |Shushtar |Soosangerd |[Vimcheh |Yaschamn
- 0.253 0.374 0.513 0.735 0.340 0.607 0.439 0.467 0.699 Amirkelaieh

0.301 - 0.799 0.675 0.775 0.621 0.829 0.779 0.875 0.925 Azbaran
0.156 0.422 - 0.461 0.450 0.474 0.084 0.012 0.216 0.440 Izeh
0.250 0.419 0.201 - 0.657 0.538 0.679 0.622 0.679 0.864 Kaniborazan
0.299 0.485 0.233 0.307 - 0.636 0.336 0.566 0.347 0.478 Komijan
0.240 0.401 0.235 0.287 0.298 - 0.629 0.476 0.645 0.779 Miandoab
0.197 0.385 - 0.263 0.206 0.241 - 0.004 0.461 0.536 Shushtar
0.196 0.456 - 0.293 0.303 0.266 0.008 - 0.356 0.511 Soosangerd
0.258 0.516 0.135 0.348 0.248 0.339 0.208 0.238 - 0.103 Vimcheh
0.404 0.595 0.312 0.447 0.415 0.461 0.340 0.398 0.207 - Yaschaman

doi:10.1371/journal.pone.0161889.1004
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Fig 5. Relationship between D.¢; and geographic distance Ln(1+km) at population level.

doi:10.1371/journal.pone.0161889.9005

Stoeltin et al [66], Jackrel and Wootton [67] used low sample size in assessment variation of
riparian plants within and among species shapes river communities.

Under an Island Migration Model, increasing geographical distance among populations is
expected to lead to enhanced genetic isolation, which essentially corresponds to a stepping-
stone population structure and requires that dispersal is primarily local rather than long-dis-
tance [2, 3,4,5,6]. Maximum geographic distance can have a strong effect on among population
diversity [68]. With regard to genetic differentiation, observed Fgr value in this study was 0.5

Table 5. AMOVA result for 6 mountainous regions.

Source df SS MS Est. Var. %
Among Regions 5 126.974 25.395 0.609 15%
Among Pops 4 50.167 12.542 0.725 18%
Among Indiv 58 152.654 2.632 0.000 0%
Within Indiv 68 179.000 2.632 2.632 66%
Total 135 508.794 3.966 100%
F-Statistics Value P(rand > = data)

Frt 0.153 0.001

Fsr 0.216 0.001

Fst 0.336 0.001

Fis 0.000 0.493

Fit 0.336 0.001

Frt max 0.259

F'rt 0.593

doi:10.1371/journal.pone.0161889.t005
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doi:10.1371/journal.pone.0161889.g006

that was relatively high due to spatial differences of studied populations and stochastic founder
events as in Triest et al [39] and Nies & Reusch [36]. However, the allelic differentiation (D)
was much more pronounced because of the large amount of alleles detected across the different
areas. Also the He value in our study is higher than in central or western Europe [36, 39].
Genotypic variation and recombination in P. pectinatus due to sexual reproduction is most
likely explaining the observed high genetic diversity [22, 23]. The mixed mode of reproduction
in P. pectinatus has an important effect on its genetic structure [20] and we also observed some
clonal repeats among ramets within a site. P. pectinatus is a polymorphic species with high phe-
notypic plasticity [28]. As a phenotypic plasticity phenomenon, the plants may produce more

seeds that can lead to high genetic diversity and heterozygosity [69,70].

Table 6. Spatial genetic structure analysis for 5 distance classes (using 10 populations).

Dist classes 1 2 3 4 5
Max distance 340 570 610 796 1308
Mean distance 178 472 600 687 1022
Fst 0.2174* 0.3254 0.3154 0.3629 0.4958**
Rst 0.3202* 0.3293* 0.4955 0.5818** 0.6975**

* are significant values lower than average;
** are significant values higher than average.

doi:10.1371/journal.pone.0161889.t006
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Geographic differentiation/IBD?/Connectivity

With regard to our results, we found strong genetic differentiation between Iranian sites of
Potamogeton pectinatus. Mountains act as strong genetic barriers but river valleys recognized
as corridors for gene flow [10]. The distribution of Iranian Potamogeton seems to be linked to
mountain regions as indicated by the STRUCTURE results (for 10 populations) (Fig 6) and by
the PCoA at individual level (for all 36 sites) (Fig 3). We obtained clear groups according to
their ‘Mountain positions™: NE Alborz (3); NW Alborz (2); alongside of Urmieh lake (21, 24);
SW Zagros (19, 27, 30), SE Zagros (22), N Zagros (34) and Kerman (35). Also allelic differenti-
ation (D values) showed very low or absent connectivity across mountains north (Albroz)
and south (Zagros/Kerman).

A strong correlation between genetic and geographic distances revealed a pattern of IBD
across the distribution range of P. pectinatus in Iran. We found a strong positive correlation
between D, and geographic distances (Fig 5). The differentiation was larger for populations
separated by the Alborz mountains than those separated by the Zagros mountains.

In spite of short (direct flight) distances between some populations, a high level of differenti-
ation occured because of dispersal barriers such as Alborz mountain (Amirkelaieh (2),
Azbaran(3)) or (Kaniborazan (21); Miandoab (24)). The highest differentiation was between
Azbaran and Yaschaman (Fgp = 0.595; Dy = 0.925) (Table 4). The combination of Alborz
mountain, Kerman mountains and Kavir desert most likely explain this value.

There is however some connectivity between both sides of Zagros mountains namely
between SW Zagros (19, 25, 27, 30) and N Zagros (4, 5, 6, 7, 8,9, 18 etc.). This area in Iran was
reported as a route for bird migration [71]. It thus can be assumed that e.g. between Izeh and
Isfahan this route forms a ridge between high Zagros and low Zagros. Equally important could
be the wider pass with upstream rivers reaching geographically rather close towards the water-
shed. A connectivity over longer distance exists between Vimcheh in Isfahan (N. Zagros) and
Yaschaman (Kerman) with the corridor on the same side of the mountain area as a probable
explanation (= ITS-B and cpDNA-380), together with the bird migration maintaining this con-
nectivity. The connectivity along the same side of Zagros Mts is higher than for all other pair-
wise comparisons. The populations South of Zagros Mts, showed low differentiation between
SW Zagros and SE Zagros and this was confirmed by the STRUCTURE results. Recent studies
also indicate a plant species migration along altitudinal gradients [11]. A study of the popula-
tion genetic diversity of Rhodiola dumulosa (Crassulaceae) between rivers in Mountains ridges
also showed strong differentiation [5]. From that PCoA of individuals, there is a clear geo-
graphical gradient along the first axis and corresponding to their position alongside or across
mountains.

Microsatellites with dispersal evidence from maternal cpDNA of trnH-
psbA

The most common haplotype (cp 378) can be observed in most regions but cp 379 in only two
regions (NW Alborz;up of Lake Urmieh and N.Zagros) despite their large allelic differentiation
of microsats. Thus the mutation of the chloroplast mononucleotide repeat (1 base only) is most
likely independent as event in both regions and not an indication of long distance dispersal.
Another shorter variant (cp377) also occurs in only two regions (NE of Alborz and N.Zagros
but remain very different for their microsats. So again, it most likely is an independent muta-
tion event in both regions and not necessarily an indication of long distance dispersal. How-
ever, the haplotype variant cp380 and combined with a unique nuclear ITS-B variant could be
an indication of historical dispersal over longer distances. These slow evolving genes are similar
but the faster evolving microsats show large differences between pop 1, 5 and 15/35. Therefore,
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we assume that the isolation of 15/35 is not a recent one. Potamogeton represents the largest
genus in Potamogetonaceae, including about 100 species and 50 interspecific hybrids world-
wide. Hybridization therefore can be another complexity that is thought to be relatively fre-
quent, because complex series of polyploidy and aneuploidy are present within the genus [28].
The hexaploid P. pectinatus having 78 chromosomes could form hybrids with other linear
leafed taxa such as P. filiformis and P. amblyphyllus [72]. This issue might have an effect on the
genetic diversity of Potamogeton populations. In our study we have detected only P. pectinatus
haplotypes in correlation with specific microsatellite alleles for each site. No chloroplast cap-
ture was found. Consequently, we assume the absence of hybrid specimen in our samples.

Habitat

It is proven that habitat diversity often makes ecological barriers against gene flow that leads to
interpopulation genetic separation [73,74]. Different populations produce different selection
pressures in the presence of environmental conditions [75,73]. Iran has different ecological
conditions that lead to different plant vegetations and biogeographic regions. In recent years,
changing environmental conditions such as global warming, drought or in some cases grazing
by fishes could be interesting for knowing how genetic diversity is retained in such situations
[74]. Iran lies in a region that confronts droughts. This phenomenon could have led to the bot-
tleneck effect in Vimcheh and Izeh because of temporary habitats at low level of river water. In
Azbaran, there is a high level of fish grazing pressure and also probably water bird feed on
seeds and tubers that might have led to repeated bottlenecks (Table 3). The highest allelic and
heterozygosity level was observed in N.Alborz and Kaniborazan population in West of Alborz-
Azarbayejan Province. These provinces is documented to harbor the largest ecological diversity
of Iran. Assignment of individuals to the own Kaniborazan population was highest because
this population had the highest number of private alleles. In aquatic ecosystems, flow regimes
and seasonal changing of water level lead to spread the seed to different habitats, inducing
genetic diversity of aquatic populations [40]. Our results showed few shared alleles giving a
stronger population genetic structure. The flora of the mountains provides many examples of
closely related species or subspecies with populations that show limited gene flow due to these
inherent geographic barriers [7,8]. In this study the individuals corresponding to populations
of Aligoodarz, Borujen, Yaschaman and Googhar were separated from other P. pectinatus pop-
ulations with 100% bootstrap. Additional evidence from ITS and cpDNA was provided and
indicated these as an evolutionary significant unit (ESU). The morphological characters such
as leaf sheath, width of leaf and tip of leaf were different from all other populations. These pop-
ulations clearly belong to an evolutionary lineage within P. pectinatus and do not represent
another species (e.g. P. amblyphyllus) because their ITS in a NJtree was separated (97% boot-
strap) from P. amblyphyllus (S. amblyophylla) of NCBI (next paper under submission).

As a conclusion, when considering P. pectinatus populations over a long gradient of regions
across mountain ranges and around deserts in Iran, their genetic differentiation over distances
was more pronounced and structured than for temperate regions. However, across such habi-
tats P. pectinatus maintained an even higher level of allele and gene diversity than in temperate
regions.
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