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Abstract

Myeloid dendritic cells (mDCs) contribute to both HIV pathogenesis and elicitation of antivi-
ral immunity. Understanding how mDC responses to stimuli shape HIV infection outcomes
will inform HIV prevention and treatment strategies. The long double-stranded RNA
(dsRNA) viral mimic, polyinosinic polycytidylic acid (polylC, PIC) potently stimulates DCs to
focus Th1 responses, triggers direct antiviral activity in vitro, and boosts anti-HIV responses
in vivo. Stabilized polylCLC (PICLC) is being developed for vaccine adjuvant applications in
humans, making it critical to understand how mDC sensing of PICLC influences HIV infec-
tion. Using the monocyte-derived DC (moDC) model, we sought to describe how PICLC
(vs. other dsRNAs) impacts HIV infection within DCs and DC-T cell mixtures. We extended
this work to in vivo macaque rectal transmission studies by administering PICLC with or
before rectal SIVmac239 (SIVwt) or SIVmac239ANef (SIVANef) challenge. Like PIC,
PICLC activated DCs and T cells, increased expression of a437 and CD169, and induced
type | IFN responses in vitro. The type of dsRNA and timing of dsRNA exposure differen-
tially impacted in vitro DC-driven HIV infection. Rectal PICLC treatment similarly induced
DC and T cell activation and pro- and anti-HIV factors locally and systemically. Importantly,
this did not enhance SIV transmission in vivo. Instead, SIV acquisition was marginally
reduced after a single high dose challenge. Interestingly, in the PICLC-treated, SIVANef-
infected animals, SIVANef viremia was higher, in line with the importance of DC and T cell
activation in SIVANef replication. In the right combination anti-HIV strategy, PICLC has the
potential to limit HIV infection and boost HIV immunity.
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Introduction

Myeloid dendritic cells (mDCs) orchestrate immune responses to infections at mucosal sites.
Immature mDCs sample mucosal surfaces for invading pathogens and upon encounter,
decrease their sentinel function in favor of T cell interaction and activation to initiate and regu-
late effective immunity. mDCs are among the first leukocytes to encounter HIV during sexual
transmission [1] and are crucial in establishing antiviral immunity against HIV [2, 3]. Yet, HIV
has co-opted the sentinel and immunoregulatory functions of mDCs to disseminate virus and
expand infection [3-7]. Immature mDCs isolated from blood [8], immature monocyte-derived
DCs (moDCs) that are used to model mDCs in vitro [9-12], and Langerhans cells (LCs) [13]
can all capture HIV. They efficiently transfer infectious particles to CD4" T cells across the
DC-T cell infectious synapse in trans while immature moDCs (iDCs) also become productively
infected at a low level, supplying virus to T cells in cis [2-6, 8-12]. Cis transfer is thought to
contribute especially to long-term viral transmission [11, 12, 14, 15].

mDC responses to stimuli differentially shape innate and adaptive immunity and influence
HIV susceptibility [2, 6, 11, 16]. Diverse microbial products, cytokines, endogenous ligands,
and pathogens mature mDCs to differing degrees and with different qualities, giving rise to
diverse DC phenotypes that variably direct T cell fate, HIV capture, and the outcome of HIV
infection in DCs and the CD4" T cells they encounter [2, 11, 13, 17-27]. Another layer of com-
plexity in the outcome is imparted by the timing of DC maturation with respect to HIV and T
cell exposure [17, 28].

Polyinosinic polycytidylic acid (polyIC, shortened throughout to PIC) is a valuable tool
for dissecting the nuances of DC-driven HIV transmission and replication and a potent
immunostimulatory agent for focusing Th1 responses in vivo [29-31]. We have previously
shown that this long dsRNA viral mimic completely shuts down HIV infection of virus-bear-
ing iDCs [32] through a mechanism involving type I IFN-induced activation of APOBEC3G
(A3G) and A3A [32-35]. However, PIC-matured DCs (picDCs) and picLCs capture more
HIV than their immature counterparts and more efficiently drive infection in T cells in trans
[13, 16]. picDCs were recently shown to express increased levels of the interferon (IFN)-
inducible macrophage marker CD169, and this facilitated HIV capture [18, 19, 36]. DCs
matured with lipopolysaccharide (LPS) also captured HIV in a CD169-dependent manner,
resulting in increased trans infection of autologous CD4" T cells and T cell lines [18, 19].
Though a similar mechanism has been surmised for both TRIF-dependent TLR ligands [19],
the importance of CD169-mediated HIV capture in picDC-driven HIV infection was not
reported [13, 19].

Despite an expansive body of research, PIC is not suitable for clinical development as it is
subject to serum nuclease activity in primates in vivo [37]. PolyICLC (PICLC) is a clinical
grade modified formulation of PIC (stabilized with poly-L-lysine and carboxymethylcellulose
[38]) that preserves immunomodulatory activities [37, 39, 40]. It induces mucosal and systemic
innate antiviral responses in rhesus macaques [41, 42] and humans [43], has demonstrated
safety and anti-neoplastic and IFN-inducing activity in humans, and is actively being devel-
oped as an adjuvant for antiviral and anti-cancer vaccines and therapeutics [29, 30, 37, 43-46]
as well as a potential HIV latency reversing agent [47]. In macaques, PICLC induces type I [FN
[38], possesses antiviral activity [48] and has been dosed as an adjuvant [25, 27, 29, 30, 41, 42,
49, 50]. However, whether or not prophylactic use of PICLC can affect SIV transmission
directly in vivo has not been examined.

Depending on their length and structure, dsSRNAs can bind multiple pattern recognition
receptors (PRRs; e.g. TLR3, MDA-5, and RIG-I). PIC and PICLC are both recognized ligands
for TLR3 and MDA-5 [37, 51-54] though this is less extensively characterized for PICLC [55],
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and another PIC derivative developed for clinical use, polyIC;,U, only binds TLR3 [37, 50, 55,
56]. It is possible that PICLC may stimulate mature DCs with different characteristics from the
parent PIC [37, 53, 56] and may promote divergent outcomes for HIV replication. Another
dsRNA, polyadenylic polyuridylic acid (polyAU, PAU), similarly promotes DC and T cell acti-
vation, directs Th1-focused antigen-specific immune responses in mice, and possesses anti-
tumor activity in humans [57, 58]. However, like polyIC,,U, PAU signals only through TLR3
and additionally has not been studied in the context of DC-driven HIV transmission. The
effects of PICLC vs. other dsRNAs on the DC-T cell environment need to be characterized in
vitro to best understand the biology pertinent to clinical progression of PICLC.

Herein, we sought to characterize how PICLC (vs. other dsRNAs) matures DCs and impacts
viral capture and infection therein and in the DC-T cell milieu in vitro. In order to assess the
importance of DC function in mucosal HIV acquisition in vivo and potentially identify a role
for PICLC-mediated mDC maturation in tipping the balance between protection and transmis-
sion, we examined how PICLC impacts rectal SIV transmission in macaques, a model which
recapitulates the role of mDCs in HIV infection [5]. Since Nef facilitates HIV replication in the
DC-T cell milieu [59, 60], and SIVANef requires mature DCs for replication in the DC-resting
T cell milieu and T cell activation in iDC-T cell mixtures [61], we compared the effects of
PICLC on SIV containing wild type Nef (SIVwt) with these effects on an attenuated virus lack-
ing full length Nef, SIVANef. The results reveal complex differential effects of PICLC in vitro
(viral inhibitory vs. enhancing) that depended on when PICLC was added to DC-T cell co-cul-
tures. In vivo findings largely corroborated these in vitro results, suggested potentially diverging
effects of PICLC on SIVwt and SIVANef replication, and highlighted the importance of CD169
as a biomarker in HIV pathogenesis although not as a predictor of mucosal acquisition of
infection.

Materials and Methods
Viruses

HIV3g, (HIV, lots P4143, P4237, and P4239) stocks were provided by the Biological Products
Core of the AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD).
Stocks were sucrose density gradient purified [62] and stored at -80°C, and titers were con-
firmed by titration on TZM.bl cells (ATCC, Mannassas, VA) [63].

Stocks of SIVwt and SIVANef were grown for these studies in freshly isolated rhesus
macaque peripheral blood mononuclear cells (PBMCs, obtained from SIV-uninfected
macaques assigned to these studies and housed at Tulane National Primate Research Center
(TNPRC)-see below) from single donors [23, 64]. The cells (10° cells/ml) were cultured in R10
media (RPMI 1640 (Cellgro, Fisher Scientific, Springfield, NJ) containing 10% fetal bovine
serum (FBS, Gibco, Life Technologies, Waltham, MA) and 100 U/ml penicillin/ 100 pg/ml
streptomycin (Gibco) supplemented with 5 pg/ml phytohaemagglutinin (PHA, Sigma-Aldrich,
St. Louis, MO) for 3 days at 37°C, washed, and cultured an additional 3 days in R10 with 10%
IL-2 (Schiapparelli Biosystems, Fairfield, NJ). Cells were adjusted to 10° cells/ml and inoculated
with 610 50% tissue culture infectious doses (TCIDs,) stock SIV/10° cells for SIVwt and 1220
TCIDs, stock SIV/10° cells for STVANef. Both stocks were used in prior studies [20, 61] and re-
titered prior to inoculating cells for new stocks. Cell counts were adjusted to 10° cells/ml on
day 4 and day 7 post-infection, and the whole supernatant containing virus was harvested on
day 8 and centrifuged at 1500 rpm for 10 minutes to remove cellular debris. Aliquots (1ml)
were stored at -80°C. Virus titer was determined in CEMx174 (ATCC) cells by p27 ELISA
quantification (ZeptoMetrix, Buffalo, NY) and syncytia scoring after 14 days with the calcula-
tion method of Reed and Meunch [65].
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dsRNAs

The dsRNAs utilized for these studies were PIC (InvivoGen, San Diego, CA), PICLC (Oncovir,
Washington, DC), and PAU (InvivoGen). Their sizes (alongside the size of low molecular
weight (LMW) PIC (InvivoGen)) were characterized by electrophoresis on 0.8% agarose gels in
comparison with the 1 kb Plus DNA ladder (Invitrogen, Life Technologies, Waltham, MA).

Cells for in vitro experiments

The CD14" fraction of PBMCs was isolated from buffy coats of anonymous healthy human
blood donors (New York Blood Center, New York, NY) using the MACS system (Miltenyi, San
Diego, CA) as previously described [22, 32]. iDCs were generated from these CD14" cells as
described [22, 32]. After 5 days of culture in R1 media (RPMI 1640 containing 2 mM L-gluta-
mine (Gibco), 10 mM HEPES (Gibco), 50 uM 2-mercaptoethanol (Sigma), 100 U/ml penicil-
lin/100 pg/ml streptomycin, and 1% heparinized human plasma (Innovative Research, Novi,
MI)) supplemented with recombinant human interleukin-4 (IL-4, 100 U/ml; Biosource,
Atlanta, GA) and recombinant human granulocyte-macrophage colony-stimulating factor
(GM-CSF, 1000 U/ml; Biosource), iDCs were cultured a further 48 hours in R1 with GM-CSF/
IL-4 while mature moDCs were generated by continuing the culture for 48 hours in R1 con-
taining stimuli: 10 ug/ml PIC to generate picDCs, 10 pug/ml PICLC to generate piclcDCs, and
in some donors, 10 ug/ml PAU to generate pauDCs. Immature and mature moDCs were col-
lected and their phenotype and purity analyzed by flow cytometry on a BD LSRII (BD Biosci-
ences, San Jose, CA) using software from Diva (BD) and FlowJo (Ashland, OR) for acquisition
and analysis, respectively. moDCs routinely contained less than 2% contaminating CD3" cells.

Autologous CD14  cells from the buffy coat PBMCs (NY Blood Center) were cultured for 6
days in R1 supplemented with 10 U/ml of IL-2 (Preclinical Repository, National Cancer Insti-
tute at Frederick, NCI-Frederick, MD) at 20 x 10° cells/ml before CD4" T cells were isolated by
negative selection using the human CD4" T cell isolation MACS system (Miltenyi). T cell phe-
notype and purity were analyzed by flow cytometry on the LSRIL. Freshly isolated CD4" T cells
were cultured overnight in R1 supplemented with 10 U/ml of IL-2 at 20 x 10° cells/ml.

When human or macaque PBMCs (human PBMCs from buffy coats of human donors, NY
Blood Center; macaque PBMCs from blood of macaques housed at TNPRC for these studies)
were directly subjected to dsRNA stimulation, the isolated, washed PBMCs were re-suspended
at 2 x 10° cells/ml and plated in 96-well flat-bottom tissue culture plates in 0.2 ml R1 contain-
ing 10 pg/ml PIC or PICLC vs. media alone. After 24 hours, cells from replicate wells were
pooled and processed for flow cytometry or reverse transcriptase quantitative PCR (RT-
qPCR).

DC-T cell assays

DC:s (iDCs, picDCs, piclcDCs, pauDCs) derived as described above were pulsed by incubating
with HIV (8 x 10* TCIDs,/10° DCs) for 1.5 hours at 37°C and washing as previously described
[32]. In some experiments, freshly pulsed cells were processed for flow cytometry. Alterna-
tively, pulsed DCs were re-plated in 96-well flat-bottom plates alone (3 x 10° cells/0.2 ml well
volume) or with autologous CD4" T cells (1 x 10° DCs and 3 x 10° T cells). Cultures containing
mature DCs were in R1 while iDC and iDC-T cell co-cultures had GM-CSF and IL-4 added
every 2 days. IL-2 (10 U/ml) was added every 2 days to all DC-T cell co-cultures. To evaluate
the effect of stimuli on iDC-containing cultures, PIC, PICLC, or PAU (10 ug/ml) were added
once immediately upon plating (no GM-CSF/IL-4). After 7 days, HIV infection was measured
by DNA quantitative PCR (qQPCR) on lysed cells (HIV gag vs. ALB (albumin) as a cell number
control) [32]. Within each experiment, cells from each donor under each condition were
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cultured in 2-4 replicates, and one independent PCR reaction was run on each replicate to
derive a mean for that donor. The mean of replicates for each donor is plotted in the figures. In
some cases, co-cultures were harvested after 24 hours and processed for flow cytometry or RT-
qPCR.

To infect human DCs, T cells, and DC-T cell mixtures with HIV in the absence of pulsing,
cells, virus, and stimuli were added together in 96-well flat-bottom plates at the final concentra-
tions described above without washing. When CD4" T cells were infected in the absence of
DCs, 50 U/ml IL-2 was added to the cultures every 2 days. HIV infection was measured by
qPCR after 7 days as above.

Ethics statement

Adult male Indian rhesus macaques (Macaca mulatta; mean age: 6.8 years, range: 4.4-9.4
years; mean weight: 10.6 kg, range: 6.6-13.8 kg) that tested negative by serology and virus-spe-
cific PCR for SIV, SRV, Herpes B, and STLV-1 were selected for these studies. Animal care
complied with the regulations stated in the Animal Welfare Act [66] and the Guide for the
Care and Use of Laboratory Animals [67], at Tulane National Primate Research Center
(TNPRC, Covington, LA). All macaque studies were approved by the Institutional Animal
Care and Use committee (IACUC) of TNPRC for macaques (OLAW Assurance #A4499-01)
and complied with TNPRC animal care procedures. TNPRC receives full accreditation by the
Association for Accreditation of Laboratory Animal Care (AAALAC #000594). Animals were
socially housed indoors in climate-controlled conditions and were monitored twice daily by a
team of veterinarians and technicians to ensure their welfare. Any abnormalities, including
changes in appetite, stool, and behavior, were recorded and reported to a veterinarian. They
were fed commercially prepared monkey chow twice daily. Supplemental foods were provided
in the form of fruit, vegetables, and foraging treats as part of the TNPRC environmental enrich-
ment program. Water was available continuously through an automated watering system.
Veterinarians at the TNPRC Division of Veterinary Medicine have established procedures
to minimize pain and distress through several means in accordance with the recommendations
of the Weatherall Report. Prior to all procedures, including blood draws, macaques were anes-
thetized with ketamine-HCI (10 mg/kg) or tiletamine/zolazepam (6 mg/kg). Preemptive and
post-procedural analgesia (buprenorphine 0.01 mg/kg) was administered for procedures that
could cause more than momentary pain or distress in humans undergoing the same proce-
dures. Macaques were euthanized in this study only if and when they became sick (TNPRC
IACUC-approved humane endpoint criteria) using methods consistent with recommendations
of the American Veterinary Medical Association (AVMA) Panel on Euthanasia and per the
recommendations of the IACUC. For euthanasia, animals were anesthetized with tiletamine/
zolazepam (8 mg/kg) and given buprenorphine (0.01 mg/kg) followed by an overdose of pento-
barbital sodium. Death was confirmed by auscultation of the heart and pupillary dilation. All
animals that remained healthy at the conclusion of the study were reassigned to other studies.

Animal treatments and specimen collection

PICLC acute effects. Eleven SIV-uninfected macaques were used to evaluate acute
immune changes following rectal PICLC application. To set the baseline, the macaques were
atraumatically dosed rectally with 1 ml PBS (Gibco) twice, 24 hours apart. Four hours after the
second dose, all 11 macaques were bled and from 6 animals, rectal biopsies were collected.
Twenty-four hours after PBS application, all 11 macaques were bled again, and the 5 animals
not mucosally sampled at 4 hours had rectal biopsies collected. To acquire data replicates,
another PBS application followed by 4 and 24 hour sampling was performed in the same way
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after mucosal healing (9 weeks following the first set of biopsies). After healing of the second
biopsy (4 weeks post-biopsy), all 11 macaques received rectally 2 doses of 1 mg PICLC 24
hours apart. Each dose consisted of 1 ml of 1 mg/ml PICLC prepared in PBS. Post-PICLC
blood and biopsies were collected 4 and 24 hours after the second dose in the same way as after
PBS treatments. A second PICLC application and sampling was performed 4 weeks after the
first. In a separate set of animals, PICLC was administered using 2 different regimens: single
doses of 2 mg or 4 mg. Baseline pre-treatment rectal swabs and biopsies were collected 5 weeks
before treatment, with sampling again 24 hours after treatment (pre vs. post). Samples were
available for study from 4 of the “2 mg” and 2 of the “4 mg” macaques.

All blood and biopsies were collected and shipped to the Population Council in New York
overnight and processed immediately on arrival as previously described [42, 64]. Plasmas were
isolated and stored at -80°C [64]. Isolated PBMCs [23, 64] were used immediately for flow
cytometry. Rectal swabs were cleared by centrifugation and stored at -80°C [42]. Rectal biopsies
(1.5mm x 1.5mm) were transported in L-15 media (HyClone Laboratories, Inc., Logan, UT)
supplemented with 10% FBS and 100 U/ml penicillin/100 pg/ml streptomycin and washed.
Half of the tissue pieces from the first 11 animals were placed in RNALater (Qiagen, Limburg,
Netherlands) overnight at 4°C before being transferred to storage at -20°C. The remaining
pieces were digested with collagenase II (0.5 mg/ml; Invitrogen), hyaluronidase (1 mg/ml;
Sigma), and DNase (1 mg/ml; Roche, Basel, Switzerland) in R10 for up to 2 hours shaking at
37°C. Released cells were washed, passed through a 40 um cell strainer, and re-suspended in
FACS buffer (PBS supplemented with 5% FBS and 0.1% sodium azide, pH 7.2-7.4) for flow
cytometry. For these 11 animals, rectal lymphocytes were enriched by centrifugation through
Percoll (40% Percoll [Sigma], 60% FBS in PBS) for 20 minutes at room temperature before
additional washing and passage through the cell strainer. Rectal biopsies from the latter 6 “pre
vs. post” animals were transported in L-15, digested as above (without Percoll), washed, and
stored as a dry pellet of 5-10 x 10° cells/tube at -80°C.

SIVwt challenge study. Twenty-two SIV-naive macaques were used to test potential in
vivo antiviral effects (acquisition and replication) of PICLC against SIVwt challenge (Table 1).
PICLC (1 ml of 1 mg/ml in PBS as in acute effects study) was atraumatically administered rec-
tally twice 24 hours apart to 14 of the 22 macaques. Seven of these 14 were rectally challenged
with 3000 TCIDs, SIVmac239 at the same time as the second dose (virus and PICLC mixed
together in 1 ml total volume, “coincident”). The other 7 were rectally challenged 24 hours
after the second dose with 3000 TCIDsq in 1 ml (“24h pre”). Of the 8 control macaques, 4
received 1 ml PBS twice 24 hours apart and were challenged 24 hours after the second dose
(PBS), and the other 4 received no treatment before challenge. The animals were followed for
20-24 weeks within this study except for one, FF86, which had to be euthanized at week 18 due
to simian AIDS (endpoint criterion for euthanasia). Survival time for all SIV-infected
macaques is shown in Table 1. Blood and rectal biopsies were collected periodically throughout
and processed as above (no Percoll). Overnight-shipped rectal biopsies were either digested
immediately to obtain cells for flow cytometry or washed and placed in RNALater overnight at
4°C before being transferred to -20°C for storage. Viral loads were determined in plasma from
the animals by RT-qPCR as previously described [68, 69]. Infection was defined as two conse-
cutive time points with plasma viremia >100 copies/ml or any viremia >1000 copies/ml, con-
sistent with previously defined criteria [70, 71].

SIVANef challenge study. Fourteen SIV-naive macaques were used to test the antiviral
effects (acquisition and replication) of PICLC against SIVANef challenge (Table 1). As in the
“24h pre” group within the SIVwt study, PICLC (7 macaques) vs. PBS (7 macaques) was
administered twice 24 hours apart before all animals were challenged rectally with 3000
TCIDso SIVmac239ANef 24 hours after the second dose. To also explore whether PICLC

PLOS ONE | DOI:10.1371/journal.pone.0161730 September 7,2016 6/33



@‘PLOS | ONE

PolylCLC Modulates HIV Susceptibility In Vitro and In Vivo

Table 1. Rhesus macaques used in challenge studies.

Animal ID Treatment Virus SIV Anef infection® | SIVwt infection CD4 Count Survival time of SIV* (weeks post-infection)®
BL | Wk3-4° | Wk24
FI36 PICLC coincident SIVwt ND® + 807 496 518 35
FH36 PICLC coincident SIVwt ND - 801 1043 907 na®
DG72 PICLC coincident SIVwt ND + 804 334 192 36
FE87 PICLC coincident SIVwt ND - 850 1280 869 na
FH30 PICLC coincident SIVwt ND 1215 596 278 46
EK35 PICLC coincident SIVwt ND 1556 1123 966 34
CP50 PICLC coincident SIVwt ND 492 575 541 na
EJ97 PICLC 24h pre SIVwt ND + 1163 824 681 130
FH32 PICLC 24h pre SIvVwt ND - 630 1019 752 na
EB34 PICLC 24h pre SIvVwt ND - 747 960 580 na
FF57 PICLC 24h pre SIvVwt ND + 1251 626 538 43
FE39 PICLC 24h pre SIvVwt ND - 850 785 482 na
FB86 PICLC 24h pre SIVwt ND + 846 550 325 114
FT04 PICLC 24h pre SIVwt ND + 715 842 482 32
FF75 None SIvwt ND + 525 543 NA' 24
FD64 None SIVwt ND + 769 410 99 37
FC25 None SIVwt ND + 1387 1001 272 59
FN88 None SIVwt ND + 416 882 347 33
EN40 PBS SIVwt ND - 853 860 1063 na
CP74 PBS SIVwt ND - 425 329 451 na
FF86 PBS SIvVwt ND + 567 527 NA 18
CM68 PBS SIVwt ND + 460 259 223 114
CR30 PICLC 24h pre SIV ANef® - + 223 234 97 42
GA73 PICLC 24h pre SIV ANef - + 967 1076 387 76
GH44 PICLC 24h pre SIV ANef + - 1023 1022 808 112
Gl09 PICLC 24h pre SIV ANef + - 685 689 541 112
Gl67 PICLC 24h pre SIV ANef + - 1748 1260 782 112
GK52 PICLC 24h pre SIV ANef - + 812 681 312 82
GK53 PICLC 24h pre SIV ANef - - NA 1138 805 na
FE67 None SIV ANef + - 1426 934 1011 177
FF90 None SIV ANef - - 709 841 791 na
FG74 None SIV ANef + 773 806 187 29
FP31 None SIV ANef - 716 369 644 177
GM84 PBS SIV ANef - 1016 1224 1306 112
GN96 PBS SIV ANef - - 443 531 251 na
GP34 PBS SIV ANef + + 847 605 522 82

&For each virus, positive infection status determined by two consecutive positive time points above 100 copies/ml or any time point above 1000 copies/ml

[70, 71].

PSIVwt-challenged macaques had CD4 count at Wk 3. SIVANef-challenged macaques had CD4 count at Wk 4.

®Macaques were monitored closely within this study for 20—24 weeks and then SIVwt-infected animals continued to be cared for until they were euthanized

due to simian AIDS. Uninfected animals were transferred to other studies. SIVANef-infected macaques were transferred to another study in which they were
necropsied on a set date: GH44, Gl09, Gl67, GM84.
9ND indicates no SIVANef challenge was performed.
®na indicates not applicable.

'NA indicates the sample was not available.

9AIl macaques challenged with SIVANef were subsequently challenged with SIVwt 12 weeks later.

doi:10.1371/journal.pone.0161730.t001

impacted SIVANef-induced immune responses that protect from subsequent exposure to
SIVwt, we challenged the STVANef-infected and uninfected macaques rectally with 3000
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TCIDso SIVwt 12 weeks after SIVANef challenge. Challenging SIVANef-uninfected macaques
with STVwt alongside provided an internal control for SIVwt infection. Samples were collected
and the animals were followed for 20-24 weeks post-SIVwt as described above. Plasma viral
loads were determined by discriminatory RT-qPCR in nef [24, 72]. Survival time is noted in
Table 1. None of these 14 animals became sick during the study follow up period.

Flow cytometry

Cell suspensions (human: DCs, DC-T cell mixtures, CD4" T cells, PBMCs; macaque: PBMCs,
rectal cells) were stained with the LIVE/DEAD Aqua viability dye (Aqua; Molecular Probes,
Life Technologies, Carlsbad, CA) according to the manufacturer’s instructions. DCs and DC-T
cell mixtures were blocked with 1 pg/sample human IgG (Jackson ImmunoResearch, West
Grove, PA) before staining when using a DC panel. Surface staining was performed for 20 min-
utes at 4°C after which cells were washed and fixed in 2% paraformaldehyde. When anti-CCR5
was included in the panel, the cells were incubated with the antibody mix for 5 minutes at
room temperature before being transferred to 4°C. Antibodies (listed below) were all from BD
Biosciences unless noted.

Human DCs were surface stained with combinations of: anti-HLA-DR Qdot™605 (Invitro-
gen) or BV605, anti-CD25 PE-Cy7, anti-CD80 APC-Alexa780 or APC-H7, anti-CD83 PE
(Beckman Coulter, Brea, CA), anti-CD86 PE or eFluor710 (eBioscience, San Diego, CA), anti-
CD206 PE, anti-CD209 APC, anti-CD11c PE-Cy7 or AF700 (eBioscience), anti-CD4
PerCP-Cy5.5, anti-CCR5 PE-Cy7 (antibody from NIH AIDS Reference and Reagent Program
conjugated to PE-Cy7 in house with a kit from Innova Biosciences [Cambridge, United King-
dom] according to the manufacturer’s instructions), anti-o,f,; PE or APC (Non-human Pri-
mate Reagent Program), anti-CD103 FITC (eBioscience), anti-MAdCAM-1 PE (BioRad,
Philadelphia, PA), and anti-CD169 PE or APC (clones 7D2 and 7-239 from Santa Cruz Bio-
technologies, Dallas, TX and Biolegend, San Diego, CA, respectively). Anti-CD3 V450 was
used to measure T cell contamination of DC preparations.

Human CD4" T cells were surface stained with combinations of: anti-CD3 V450, anti-CD4
PerCP-Cy5.5, anti-CD25 APC, anti-HLA-DR Qdot™605 or BV605, anti-CD45RO APC, anti-
CCR5 PE-Cy7 (prepared as for DC staining), anti-0,f; PE, and anti-CD69 APC-Cy7. Anti-
CD8 APC-Cy7 was used to measure CD8" T cell contamination of isolated CD4" T cells.

Intracellular staining to detect HIV p24 was performed following surface staining. HIV-
pulsed DCs (immediately after the pulse or after an overnight incubation) or DC-T cell mix-
tures (after overnight incubation) were surface stained as above, and then cell membranes were
fixed and permeabilized by 20 minutes incubation at 4°C with Fix/Perm buffer (BD), and cells
were incubated with anti-HIV-1 p24 PE or FITC (KC57, Beckman Coulter) in PermWash
buffer (BD) for 20 minutes at room temperature. Cells were washed, re-suspended in Perm-
Wash bulffer, and flow cytometry data were acquired the same day. For p24 detection, non-
pulsed cells labeled with anti-p24 were used as the control instead of pulsed cells labeled with
isotype [10].

Macaque blood DCs were examined by surface staining PBMCs with Aqua followed by the
lineage-excluding combination of anti-CD3, anti-CD14, and anti-CD20 all in FITC (Lin), anti-
HLA-DR PerCP-Cy5.5, anti-CD11c PE-Cy7, anti-CD123 PE or PerCP-Cy5.5, anti-CD80
APC-H7, and anti-CCR7 APC. Macaque blood and rectal T cells were examined by surface
staining PBMC or rectal cell suspensions with Aqua followed by anti-CD3 V450, anti-CD4
PerCP-Cy5.5, anti-CD69 APC-Cy7, anti-CCR7 APC, CD95-FITC, and anti-o,f; PE.

The gating strategy for human DCs was large cells (FSC-A/SSC-A) — singlets (FSC-A/
FSC-H) — live cells (Aqua’) — HLA-DR". The gating strategy for CD4" T cells was small cells
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(FSC-A/SSC-A) — singlets — live cells — CD4" T cells (CD3"CD4"). For DC-T cell co-cul-
tures, CD4" T cells were also examined in conjugates by gating on large cells (FSC-A/SSC-A)
— live cells — CD4" T cells (CD37CD4"). CD8" T cells (from macaque in vivo samples only)
were gated as CD3"CD4" live cells. The gating strategy for human and macaque blood mDCs
was lymphocytes (FSC-A/SSC-A) — singlets — live cells — DCs (CD3 CD14 CD20" [Lin]
HLA-DR*) — mDCs (CD11c¢*™CD123"). Blood pDCs (macaque) were gated as
CD11c'CD123* DCs. For all in vitro experiments, at least 100,000 and up to 200,000 live cells
(DCs) or CD4" T cells (DC-T cell co-cultures) were acquired. From in vivo samples, 50,000
Lin'HLA-DR™ DCs or 100,000 CD4" T cells could usually be acquired.

RT-gPCR

RNA was isolated from human DC, DC-T cell, and PBMC dry pellets using the RNeasy mini
kit (Qiagen) and from macaque rectal biopsy specimens stored in RNALater using the RNeasy
tissue kit (Qiagen) according to the manufacturer’s instructions. Qiashredder columns (Qia-
gen) were used to disrupt DCs, DC-T cell mixtures, and PBMCs. Rectal tissues were thawed,
washed, and homogenized using a FastPrep bead mill homogenizer with lysing matrix D (MP
Biomedicals, Irvine, CA) as previously described [42] prior to RNA isolation. Total RNA was
subjected to on-column DNA digestion with RNase-free DNase (Qiagen) and post-isolation
DNA digestion using Ambion DNA-free DNase Treatment and Removal System according to
the manufacturer’s instructions [73]. RNA was quantified on a Nanodrop 1000 spectropho-
tometer (Thermo Scientific, Wilmington, DE). For all RNAs, cDNA was synthesized using the
Superscript VILO ¢cDNA synthesis kit, and SYBR Green RT-qPCR was performed exactly as
described [73] for human IFN-a, A3A, A3G, CD317, and CD169 as well as for macaque IFN-
o, IFN-B, A3A, A3G, CD169, B7, and MAdCAM-1. Primer efficiency was determined prior to
testing mRNA expression in samples. Data were analyzed by the AACt method. The cell control
was RPL19 for human samples and GAPDH for macaque samples. The comparison control
was untreated sample from the matched donor for in vitro experiments and sample from a sin-
gle donor (same for all comparisons) for in vivo experiments. The fold difference (2703940394Cty
is reported. Primer sequences are provided in S1 Table.

Statistics

In vitro data were analyzed using non-parametric tests with a multiple comparison correction
post-test. HIV pulsing experiments included many donors but some donors for which not all
conditions could be set up due to limited cell numbers, so the Kruskal Wallis test was used with
Dunns correction. In HIV infection experiments, all conditions were set up for each donor so
the Friedman test was used with Dunns correction. In order to identify trends at the o < 0.1
level in the in vitro studies, Wilcoxon Signed Rank test was performed for datasets with a Fried-
man P < 0.10. Flow cytometry and RT-qPCR from DC and DC-T cell assays were analyzed
with Friedman test and Dunns correction. Everywhere multiple comparison correction was
used, all comparisons were made except as noted in the figure legend. Wilcoxon Signed Rank
test was used for binary comparisons within the in vitro datasets (e.g. DC vs. DC-T cell infec-
tions from the same donors, pre vs. post HIV pulse flow cytometry data, p24 in single vs. conju-
gated T cells) as well as for flow cytometry and RT-qPCR data from the same macaques treated
with PICLC vs. PBS (and pre vs. post PICLC). Spearman correlation coefficient was used to
identify correlations between parameters (e.g. viral load and gene expression). Macaque infec-
tion by treatment group was evaluated with two-sided Fisher’s exact test. Viral loads were com-
pared between treatment/virus groups with Mann Whitney test. RT-qPCR data from SIV-
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infected macaques were analyzed with Friedman and Dunns. P values are reported for P < 0.1
and were considered significant if P < 0.05.

Results

Effect of dsSRNAs on HIV infection in DC-T co-cultures is contingent on
the timing and quality of DC maturation

We have shown that PIC blocks HIV infection in DCs in vitro [32]. PICLC continues to be
developed for use in vivo, yet little information exists on its impact on in vitro DC and DC-T
cell biology to help guide development. Upon demonstrating that PICLC has a similar size to
PIC (S1 Fig), a known determinant of the downstream response [52], we asked how the timing
and quality of DC maturation by PICLC (vs. PIC) would impact HIV replication in DCs and
the DC-T cell milieu. We generated picDCs and piclcDCs by maturing iDCs with 10 ug/ml of
PIC and PICLC, respectively. This dose of PIC elicited comparable DC responses to those
observed using 25 pg/ml for picDCs in our earlier study [32]. We then analyzed the mature
DCs’ susceptibility to HIV infection and their ability to fuel HIV infection in DC-T cell co-cul-
tures. In both DCs and DC-T cell mixtures, the time of maturation in the presence of dsRNA
impacted the HIV infection outcome (Fig 1A). HIV replication was significantly restricted
when either PIC or PICLC was added to virus-bearing iDCs or when piclcDCs were pulsed
with HIV (Fig 1A, left). In contrast, picDCs matured before pulsing did not significantly
restrict virus replication and in some donors, HIV replicated better in these cells than in the
iDCs. HIV replicated significantly better in picDCs than in iDCs with PIC added. Notably, the
same was not true for piclcDCs in which HIV infection was restricted.

In virus-pulsed DC-T cell co-cultures, HIV replicated to similar levels as in pulsed iDCs
(Fig 1A right; P > 0.1 iDCs vs. iDC-T). HIV replication in the DC-T cell co-cultures mirrored
that in the DCs alone. Addition of both PIC and PICLC significantly reduced HIV infection in
virus-pulsed DC-T cell co-cultures, and HIV replication was not reduced and was sometimes
higher in mixtures of picDCs (but not piclcDCs) with T cells. HIV replication in picDC-T cell
(but not piclcDC-T cell) co-cultures was also significantly higher than when the matched
dsRNA was added to iDC-T cell co-cultures. We confirmed that pre-maturation of DCs with
PIC did not render them refractory to the antiviral effects of post-pulsing PIC (Fig 1B). Thus,
both PIC and PICLC exert potent antiviral activity in DCs and DC-T cell co-cultures when
added after HIV capture, and pre-maturation with PICLC suppresses HIV replication in DCs
and DC-T cell co-cultures unlike pre-maturation with PIC.

Since HIV infection outcomes in DC-T cell co-cultures paralleled those in DCs, we wanted
to determine if direct effects of dsSRNAs on T cells, which express MDA-5, contributed. Thus,
we directly infected T cells alongside cultures of DCs and DC-T cell mixtures, without pre-
pulsing the DCs (Fig 1C and 1D). This system can less clearly define the role of DCs in HIV
infection but more closely resembles the scenario in vivo. In CD4" T cells alone, PICLC, but
not PIC, significantly reduced HIV replication; however, the magnitude of the reduction was
small (Fig 1D).

Addition of HIV to iDC-T cell co-cultures facilitated higher levels of viral replication than
those observed in similarly infected iDCs (P = 0.016, Fig 1C). dsRNAs mediated comparable
(but less pronounced) effects on HIV replication in these DCs and DC-T cell co-cultures as in
cultures containing pulsed DCs. picDCs appeared to favor even greater magnitude HIV repli-
cation in the infection co-cultures from some donors than in the pulsed co-cultures. Although
this observation was not significant, picDCs promoted significantly greater HIV replication
than when PIC was added to the co-cultures.
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Fig 1. Synthetic dsRNAs block HIV replication in DC-T cell mixtures dependent on timing of DC stimulation and virus capture. Immature
DCs (iDCs) were exposed to 10 pg/ml PIC or PICLC for 48 hours to produce picDCs and piclcDCs, respectively, or were maintained as iDCs by 48
hours of culture in medium. (A) iDCs were pulsed with HIV, washed, and re-cultured in the presence of medium (iDC) or 10 ug/ml PIC (PIC) or
PICLC (PICLC). picDCs and piclcDCs were similarly pulsed and re-cultured in medium (picDC, piclcDC). After 7 days, the cells were lysed, and HIV
DNA was measured by gag qPCR (left). Pulsed DCs were cultured with autologous CD4* T cells for 7 days before HIV DNA was measured (right).
iDC-T cell co-cultures were left in medium or had PIC/PICLC added as for iDCs alone. For DCs and DC-T cell co-cultures, >9 donors are shown
with the medians. (B) Responsiveness of picDCs and picDC-T cell co-cultures to exogenous PIC was determined by re-culturing pulsed picDCs
(picDC) or picDCs and autologous CD4™" T cells (picDC-T) in the presence of 10 ug/ml PIC (+ PIC) vs. medium (- PIC). Four donors and the
medians are shown. (C) iDCs (in the presence/absence of 10 ug/ml PIC or PICLC), picDCs, and piclcDCs were infected directly in the plates (not
pre-pulsed) with HIV in the absence (left) or presence (right) of autologous CD4™ T cells, and HIV DNA was measured in cell lysates after 7 days (7—-
8 donors and the median). (D) CD4* T cells were infected (not pulsed) with HIV in the presence of 50 U/ml IL-2 and the absence (med) or presence
of 10 ug/ml PIC or PICLC before HIV DNA was measured in cell lysates after 7 days (6—8 donors and the median). Statistical analyses that derived
the P values shown on the panels were the Kruskal Wallis test in (A) and the Friedman test in (B-D). In all cases, the Dunns test was used for
pairwise comparisons, shown as asterisks. All Dunns comparisons were made except in the following cases: In (A) and (C), we did not compare
PIC vs. piclcDC or PICLC vs. picDC. In (B), we did not compare picDC-PIC vs. picDC-T+PIC or picDC+PIC vs. picDC-T-PIC. *P<0.05, **P<0.01,
**¥pP<0.001.

doi:10.1371/journal.pone.0161730.g001

dsRNAs promote changes in DCs associated with HIV uptake while
inducing an innate antiviral state

To dissect the effects of PIC and PICLC on HIV infection in the pulsed DC conditions, we first
determined their impact on virus capture by DCs and resulting effects on expression of poten-
tial HIV capture and infection molecules. Measuring the amount of p24 associated with pulsed
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DC:s revealed that both picDCs and piclcDCs tended to capture more HIV than iDCs, and this
was significant for picDCs (Fig 2A). Addition of PIC or PICLC to virus-loaded iDCs did not
impact the retention of p24 over time, but more p24 tended to remain associated with re-cul-
tured picDCs and piclcDCs than iDCs 24 hours post-pulse (Fig 2B, P = 0.03 picDC and
picleDC each vs iDC).

CD169 was previously shown to be responsible for increased virus capture by picDCs vs.
iDCs [19]. Similarly in our model, DC maturation by PIC increased CD169 surface expression
on DCs, the frequency of CD169"" cells, and the level of CD169 mRNA (Fig 2C-2E). We
measured the decrease in surface expression of CD169, which is suggestive of receptor internal-
ization or usage, and found that on iDCs, which expressed low levels of CD169, surface CD169
expression did not reliably decrease upon HIV pulsing. However, surface expression on picDCs
did tend to decrease after HIV pulsing and picDCs that expressed the highest levels of CD169
dropped their surface expression of the receptor most strongly upon HIV pulsing though these
trends were not significant (Fig 2F). Importantly, CD169 was comparably upregulated on
picleDCs (Fig 2C-2E), which did not capture as much virus as picDCs (Fig 2A) and which did
not as strongly decrease CD169 expression after HIV pulsing (Fig 2F). Examining expression
of CD209, CD206, and CCR5 following HIV capture revealed that change in surface expression
of HIV capture and infection molecules varied considerably between donors and maturation
conditions (S2 Fig). piclcDCs significantly reduced expression of surface CD206 after HIV
pulsing (S2 Fig), suggesting that CD206 may be utilized for HIV capture on these cells. In gen-
eral, each molecule’s level of surface expression tended to be associated with the extent of its
decreased surface expression upon HIV binding.

To further explore how PICLC (vs. PIC) impacted HIV uptake, transfer, and replication, we
more extensively defined the DC phenotypes. As previously shown for PIC [32], both long
dsRNAs induced partial phenotypic maturation characterized by increased CD80, CD83,
CD86, and HLA-DR, decreased CD206, and little change in CD25 (Fig 3A and S3 Fig). How-
ever, activation was generally stronger in picDCs than piclcDCs, especially with respect to
increases in CD80, CD83, and CD86. Contrasting our previous results showing a mild effect of
PIC on CD209 expression [32], herein at a lower dose of dsSRNA, maturation had no significant
effect on CD209. In addition, analysis of trends suggested that PIC, but not PICLC, may have
increased CD4 expression (P = 0.063 picDC vs. iDC) and the frequency of CCR5™" cells
(P =0.003 picDC vs. iDC, Fig 3B) while PICLC significantly reduced overall CCR5 per cell
expression (Fig 3A).

We recently showed that DCs imprinted with a semi-mature mucosal-like phenotype upon
retinoic acid (RA) conditioning drive infection in DC-T cell co-cultures in a manner involving
MAdCAM-1, the natural ligand for the gut homing integrin, o4, [24]. To investigate if the
trend for increased infection in picDC-T cell co-cultures was similarly associated with a muco-
sal DC phenotype, we measured the expression on dsSRNA-matured DCs of MAACAM-1, af37,
and another mucosal homing integrin, CD103. picDCs and piclcDCs exhibited the mucosal-
like phenotype, having increased expression of CD103, MAdCAM-1, and 043, (Fig 3A). As for
the maturation markers, the difference between iDCs and dsRNA-matured DCs was greater
for picDCs than piclcDCs. Thus, maturation by both long dsRNAs imparted DCs with a sur-
face phenotype promoting HIV capture and DC-T cell transfer, which was more pronounced
for PIC than PICLC. PIC, but not PICLC, also induced a phenotype promoting DC infection.

Since PIC triggers antiviral responses in DCs [32], we investigated if PICLC differentially
mediated antiviral effects alongside the differences in maturation by quantifying the induction
of the type I IEN pathway. As expected, DC maturation by these dsRNAs induced expression
of type I IFN and downstream IFN-inducible antiviral host factors including A3A, A3G, and
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CD317/tetherin (Fig 3C) [32, 74, 75]. In contrast to the effects on maturation, PICLC was the
stronger inducer of IFN-a though this was less evident at the level of IFN-stimulated genes.
Since PIC and PICLC are both ligands for TLR3 and MDA-5, it is possible that differential
effects of the dsRNAs could be due to triggering DCs through different PRRs despite the simi-
lar size of the molecules [52, 53, 55]. Thus we also examined the effect of the TLR3-only agonist
PAU, a dsRNA smaller than PIC or PICLC (S1 Fig) in this system. Interestingly, PAU did not
inhibit HIV replication in iDCs or iDC-T cell mixtures, and HIV replicated better in pauDCs
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Fig 2. Role of HIV capture by CD169 in dsRNA-mediated effects on HIV infection in DCs and DC-T cell
co-cultures. HIV p24 expression was analyzed in DCs after pulsing (A) immediately (8—15 donors, median)
or (B) after 24 hours of culture in media orin 10 pg/ml PIC or PICLC (6 donors, median). In a separate set of
donors, CD169 surface expression was evaluated by flow cytometry as the (C) geometric mean fluorescence
intensity (GMFI) on total DCs (17 donors, median) and (D) the percent of CD169"" DCs (17 donors,
median). (E) CD169 mRNA expression was evaluated in DCs by RT-qPCR (8 donors, median). (F) The GMFI
of CD169 on DCs was compared immediately before and after HIV pulsing (9 donors). In (A-E), statistical
analyses that derived the P values shown on the panels were performed using the Friedman test in with post-
tests performed using Dunns (significance shown by asterisks). In (B), Dunns post-test did not include PIC
vs. piclcDC or PICLC vs. picDC comparisons. In (F) analyses were done using Wilcoxon Signed Rank test.
*P<0.05, ** P<0.01, *** P<0.001.

doi:10.1371/journal.pone.0161730.g002
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Fig 3. Synthetic dsRNAs induce varying levels of DC maturation, HIV-capture molecules, and antiviral factors. The surface phenotype of DCs
generated as in Fig 1 was assessed. (A) The GMFI of the indicated markers was measured on the total DC population (21—43 donors with median
except for MAACAM-1 and CD4 with 5-6 donors). (B) The frequency of CCR5"9" DCs within the total DC population (41 donors with median). (C)
mRNA levels of IFNa, A3A, A3G, and CD317 in DC lysates (8 donors with median). In (A-C), statistical analyses that derived the P values shown on
the panels were performed using the Friedman test in with post-tests performed using Dunns (significance shown by asterisks). All Dunns
comparisons were performed. *P<0.05, **P<0.01, ***P<0.001.

doi:10.1371/journal.pone.0161730.g003

and in some donors also replicated better in pauDC-T cell co-cultures than in paired cultures
with iDCs (Fig 4A). Notably however, PAU did not upregulate CD169 expression (Fig 4B).
PAU also did not phenotypically mature the DCs (no change in CD80, CD83, CD86, CD25,
HLA-DR, or CD206); did not induce the mucosal phenotype (no change in o,f; or CD103);
did not affect expression of CD4 or CCR5; and did not induce A3A or A3G (S3 Fig).

dsRNA-matured DCs promote HIV replication in conjugated T cells

To determine how the aforementioned effects of dsSRNAs on DCs impacted co-cultured CD4"
T cells and HIV therein, we measured the effects of dSSRNAs and dsRNA-matured DCs on (1)
DC-T cell conjugate formation, (2) p24 levels in the single and conjugated T cells, and (3) the
T cell phenotype 24 hours after DC-T cell co-culture. PICLC and piclcDCs had no impact on
conjugate frequency; however, the frequency of DC-T cell conjugates was significantly greater
in the presence of picDCs than when PIC was added to iDC-T cell co-cultures (Fig 5A). The
highest median level of p24™ single T cells and conjugates was also found in co-cultures
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Fig 4. PAU promotes CD169-independent HIV replication in DCs and DC-T cell mixtures. (A) picDCs and pauDCs
were generated and pulsed with HIV and 7 day cultures were established as described for picDCs and piclcDCs in Fig 1.
Results from HIV gag gPCR are shown for each condition as a percent of the infection in the iDC (left) or iDC-T cell (right)
control. More than 9 donors are shown with the median for each condition. (B) GMFI of CD169 is shown on the differently
matured vs. immature DCs for 10 donors (shown with the median). In (A-C), the statistical analyses used the Friedman test
with Dunns post-test. In (A), Dunns post-test did not include PIC vs. pauDC or PAU vs. picDC comparisons. *P<0.05,
**P<0.01, ***P<0.001.

doi:10.1371/journal.pone.0161730.g004
containing picDCs. In the single T cells, this was significantly greater than when PIC was

added to the co-cultures and in conjugates, it was significantly greater than in co-cultures with
iDCs (Fig 5B). Although the difference was less pronounced than with the picDCs, piclcDC-
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Fig 5. dsRNAs mediate changes in HIV location and T cell phenotype within co-cultures. HIV-pulsed DCs were co-cultured with autologous
CD4* T cells in the presence or absence of dsRNAs as in Fig 1. After 24 hours, cells were collected, surface stained, and intracellularly stained for
p24. (A) Conjugate frequency within DC-T cell co-cultures was defined as the proportion of live CD3"CD4™ large cells in the co-cultures (see
Methods). (B) Frequency of p24* cells within the populations of free T cells (single) and conjugated T cells (conj). (C) CD69 GMFI and (D) the
percentage of 0,8, "9"CD45RO* CD4* T cells were monitored within the single and conjugated T cell populations. For (A-D), 5 donors and the
medians are shown, and the Friedman test with Dunns post-test was used to analyze the data. Dunns post-test excluded comparisons of PIC vs.
piclcDC and PICLC vs. picDC. *P<0.05, **P<0.01.

doi:10.1371/journal.pone.0161730.9g005
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containing co-cultures also tended to have more p24™ conjugated cells than co-cultures con-
taining iDCs (P = 0.063 vs. iDC-T). Addition of PIC (but not picDCs) significantly increased
CD69 expression (Fig 5C) and tended to decrease the frequency of 0B, CD45RO™ memory
single T cells (P = 0.011 vs. iDC-T, Fig 5D). In contrast, conjugates from picDC-T cell co-cul-
tures, which contained the highest p24 levels, expressed low levels of CD69 and high frequen-
cies of 0,4B,"8"CD45RO" cells. Thus, the timing and quality of DC maturation governed DC-T
cell communication, T cell activation, and the location and levels of HIV replication at this
early time point. The levels of HIV seen in T cells 24 hours after initiating the co-culture were
not predicted by the effects of DC-mediated T cell activation or induction of an HIV-suscepti-
ble phenotype but did predict the levels of HIV replication seen by qPCR after 7 days. Parallel-
ing what was observed in the DCs, when PIC and PICLC were added to co-cultures, they
significantly increased the transcript levels of IFN-o and A3G, with PICLC the more potent
antiviral stimulus (54 Fig).

To validate that the effects of dSRNAs observed in the reconstructed DC-T cell system were
relevant in a mixed leukocyte population of in vivo-derived cells, we cultured unfractionated
human PBMCs overnight with PIC or PICLC vs. media and measured mDC and CD4" T cell
activation after 24 hours. In agreement with the results from the DC-T cell model, expression
of CD169, a4B;, and CD80 by CD11c™8"LinHLA-DR" mDCs and CD69 expression by CD4*
T cells were more effectively upregulated by PIC than PICLC (S5 Fig). PICLC had little, if any,
effect on CD169 expression in the mixed cell population. Taken together, these in vitro results
demonstrate that PIC is a more potent DC maturation and T cell activation stimulus than
PICLC in vitro while PICLC is a more potent activator of the IFN antiviral pathway. Both
dsRNAs can exert powerful antiviral responses to block HIV infection when introduced at the
right time.

PICLC activates macaque DCs and T cells in vivo

Knowing that PICLC has differential effects on moDC biology that influence HIV replication
in DCs and DC-T cell mixtures in vitro, and that PICLC is being used clinically, we were inter-
ested to examine its effects in vivo on mucosal DC-T cell biology and HIV transmission. Add-
ing to what is known about secretion of antiviral cytokines by macaque DCs treated with
PICLC [30], we found that like human mDCs, macaque mDCs upregulated CD169 in response
to in vitro PIC but not PICLC treatment (S5 Fig). We then administered PICLC rectally to
macaques and monitored cell subsets in blood and rectal mucosa 4-24 hours post-exposure in
comparison with prior placebo (PBS) treatment of the same animals (S6 Fig). Rectal PICLC
increased the frequency and activation state (CD80 and CCR?7 expression) of circulating
CD11c™8" mDCs (Fig 6A) and bystander CD123* plasmacytoid DCs (pDCs, S7 Fig) within 4
hours of exposure. mDC (but not pDC) activation returned to baseline by 24 hours. PICLC
also activated CD4" T cells (CD69 and CCR?7 expression) and increased the frequency of

0,8, " CD4*CDY5" memory T cells in peripheral blood and rectal mucosa within 4 hours of
exposure, for up to at least 24 hours (Fig 6B and 6C). Importantly, despite the phenotypic acti-
vation of peripheral blood cells, no changes in plasma Th1 cytokines or chemokines were
detected (S1 Methods, S8 Fig).

We examined expression of other genes within the rectal tissue by RT-qPCR. Paralleling the
in vitro results, PICLC increased CD169, 7 and MAdCAM-1 (Fig 6D). However, we could not
detect any impact of rectal PICLC on the type I IFN pathway, measured by transcription of
IFN-o, IFN-B, A3A, and A3G. To determine if this was a true lack of IFN induction in response
to mucosal PICLC in vivo or if it could be a dose effect or masked by the low frequency of
responding cells in the tissue, we measured expression of these genes in another cohort of
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macaques treated with 2mg or 4mg single doses of PICLC 24 hours earlier (56 Fig). We found
larger increases in CD169, 7, and MAdCAM-1 as well as an increase in A3G and a marginal
increase in A3A that were not detected in the first study (Fig 6E). IFN-o and IFN-B expression
tended to be higher 24 hours after PICLC treatment, but this was not significant in the small
number of animals that were available to be tested, and no samples were collected from earlier
time points (e.g. 4 hours) when these mRNAs might have been more abundant. We did not
test for IFN proteins in rectal swab fluid from these animals, but protein levels were shown to
parallel mRNA levels in previous work [76].

Rectal PICLC tends to decrease SIV acquisition and increases SIVANef
replication

Paralleling the in vitro findings, rectal PICLC induced a mixture of responses locally and sys-
temically that on their own can drive or inhibit HIV in the DC-T cell milieu. To determine
which effects would prevail in determining immunodeficiency virus transmission across the
rectal mucosa, we treated naive macaques with PICLC or placebo (PBS) and challenged them
with STVwt (S9 Fig). Since the timing of DC maturation directed the in vitro infection results,
treating with PICLC after SIV challenge would have most closely paralleled the best inhibition
of HIV we saw in vitro. However, this approach seemed less viable in vivo where virus rapidly
disseminates from the site of challenge to invade multiple tissue layers. Instead, we compared
application of PICLC coincident with SIVwt vs. 24 hours earlier. Pre-treatment with PICLC in
mice has been shown to effectively inhibit influenza infection [77]. Of the 8 control animals, 6
became productively infected with SIVwt (75% infection rate) after a single high dose challenge
(Fig 7A). PICLC application reduced this to 4 of 7 (57% infection rate) in both groups (coinci-
dent and 24h pre, 8 of 14 total), but this was not significant (P = 0.65 for each and when test
groups were pooled). Two macaques in the coincident group, 1 in the 24h pre group, and 1 in
the PBS group experienced very low-level infection with plasma viremia nearing 100 copies/ml
on a few sporadic time points, but this did not meet our criteria for a productive infection (see
Methods and Table 1) [70, 71]. Rectal PICLC exerted no significant influence on SIVwt viral
replication in the periphery during either acute or chronic infection although macaques that
became infected following the PICLC 24 hour pre-treatment tended to have less SIVwt circu-
lating in blood over the course of infection than untreated macaques (Fig 7B and 7C). Rectal
PICLC had no significant impact on peripheral CD4" T cell depletion in infected animals
(Table 1). Of note, measurement of plasma IFN-o levels revealed a tendency for plasma IFN-o
to decrease rather than increase following co-administration of rectal PICLC and SIVwt.
Plasma IFN-a levels did not correlate with infection outcome (S1 Methods, S10 Fig). Rectal
fluid and tissue levels of IFN-o could not be measured around the time of challenge.

To discern whether the effects of PICLC on DC and T cell activation would be revealed as
differences in transmission of SIVwt vs. SIVANef (viruses with distinct activation requirements
for replication), we challenged another group of macaques rectally with a single high dose
SIVANef challenge 24 hours after rectal PICLC vs. PBS dosing (S8 Fig). We used the 24 hour
timing because pre-treatment with PICLC gave similar results as coincident exposure, PICLC
reduced SIVANef infection to 3 of 7 (43% infection rate) vs. 5 of 7 controls (71% infection
rate), which was similar to what we observed in the case of SIVwt challenge and was not signifi-
cantly different (P = 0.59) (Fig 7D and 7E). Notably, among animals that became infected with
SIVANEf, those treated with PICLC exhibited a peak viral load that was significantly higher
than that of the controls (Fig 7F left). Two of the 3 PICLC-treated SIVANef-infected macaques,
but none of the 5 controls, also exhibited persistent SIVANef viral replication (>100 copies/
ml) later than week 12 (Fig 7E and 7F middle), and by area under the curve (AUC) analysis,
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Fig 6. Rectally applied PICLC induces rapid local and systemic immune changes. Macaques (n = 11) were bled 4 hours (4h) and 24h
after rectal PBS vs. PICLC application. Either 4h (n = 6) or 24h (n = 5) after receiving treatment, rectal biopsies were also collected. (A) Blood

PLOS ONE | DOI:10.1371/journal.pone.0161730 September 7,2016

18/33



el e
@ ' PLOS ‘ ONE PolylCLC Modulates HIV Susceptibility /In Vitro and In Vivo

mDCs were characterized at the indicated times post-treatment by their frequency (%Lin"HLA-DR*CD1 1chi9h) and expression of CD80 and
CCRY. (B) Blood and (C) rectal CD4* T cells were characterized by their expression of CD69 and CCR7 and the frequency of a,8,""CD95*
cells. (D) mRNA levels of the markers shown were measured in rectal tissue. (E) In a separate group of macaques biopsied 5 weeks before
(Pre) and 24 hours after (Post) a single rectal application of 2 mg (filled symbols) or 4 mg (open symbols) PICLC, mRNA levels of the markers
from (D) were measured in cells isolated from rectal tissue. In (A-E), statistical analyses using the Wilcoxon Signed Rank test compared the
post-PICLC time points with control post-PBS time points in each animal. *P<0.05, **P<0.01, ***P<0.001.

doi:10.1371/journal.pone.0161730.g006

SIVANef-infected animals that received PICLC had significantly higher viral loads than con-
trols overall (Fig 7F right). Four of the 5 SIVANef-infected PBS-treated macaques actually
completely controlled replication of the virus within 6 weeks (Fig 7E).

SIVANEef replication correlates with protection from pathogenic SIV infection [70, 78]. To
determine if the increased SIVANef replication in PICLC-treated macaques improved the pro-
tective effect against SIVwt, we re-challenged all the animals rectally with SIVwt 12 weeks after
SIVANef challenge (S9 Fig). We recently showed that SIVANef infection by the rectal route
completely protects against rectal SIVwt acquisition 15 weeks post-SIVANef [79], and we
selected a slightly earlier time point in order to see if PICLC might decrease breakthrough
SIVwt transmission. In the PICLC group, the 4 animals that did not become infected with
SIVANef became infected with STVwt, and virus replicated normally (Fig 7E right). All 3
PICLC-treated SIVANef-infected macaques were protected from SIVwt (Fig 7G) though 2 of
them experienced increased SIVANef replication following SIVwt challenge (Fig 7E right). Nei-
ther of the SIVANef-uninfected macaques in the control group became infected with STVwt;
one of these manifested a blip in SIVANef viremia 2 weeks post-SIVwt challenge, suggesting
the possibility of a highly controlled low-level SIVANef infection in this animal though no SIV
gag DNA was ever detected in PBMCs from this animal. Unlike the 3 PICLC-treated SIVANef-
infected macaques that were completely protected from SIVwt, 2 of the 5 PBS-treated
macaques infected with SIVANef were not protected from SIVwt (Fig 7G). One of these did
not control SIVANef viremia; the other had the lowest (<10* copies/ml) and latest (week 4)
SIVANef peak viremia (Fig 7E and 7F). In both of these animals, SIVwt viremia was truncated,
indicating an effect of SIVANef in modulating the SIVwt infection post-acquisition (Fig 7E
left).

Rectal CD169 and 37 expression differently correlate with viral load
during SIV infection

In addition to capturing HIV on DCs, CD169 is increased during inflammatory processes and
is upregulated on monocytes in vivo during HIV [80, 81] and SIV [82] infection and correlates
with viral load [80]. Although PICLC-induced changes in vivo, including an increase in CD169
expression, were not associated with increased transmission of either SIVwt or SIVANef, we
sought to determine whether CD169 expression was differentially affected by SIVwt and SIVA-
Nef infection, independent of PICLC treatment. Monitoring CD169 expression in rectal tissues
from macaques infected with SIVwt vs. SIVANef revealed that while expression tended to be
higher within 6-8 weeks following both SIVwt and SIVANef infections (and was not different
between SIVwt and SIVANef), expression continued to increase during chronic infection only
in SIVwt-infected animals (Fig 8A). By contrast in macaques infected with SIVANef, CD169
expression in rectal tissue during the chronic phase was as low as in uninfected macaques. In
inguinal LNs from these animals, CD169 expression was even lower in chronic SIVANef infec-
tion than in the absence of infection while the elevation in CD169 expression during chronic
SIVwt infection was less pronounced (Fig 8B). As expected based on the transmission data, rec-
tal tissue expression of CD169 at baseline did not correlate with peak viremia in either SIVwt
or SIVANef-infected macaques (Fig 8C and 8D left), and baseline CD169 expression did not
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Fig 7. Rectal PICLC modestly decreases SIV transmission but increases SIVANef replication in infected animals and
promotes the vaccine effect. (A) Macaques were rectally challenged with 3000 TCIDsq SIVmac239 (SIVwt) coincident with

(n =7, “Coincident”) or 24 hours after (n = 7, “24h pre”) rectal PICLC or 24 hours after rectal PBS (n = 8). The fraction of PBS vs.
PICLC-treated macaques that became infected is shown as a percent, and the number of animals infected is above each bar.
(B) SIV RNA copies/ml were measured over time in each animal shown in (A). (C) Plasma viremia in infected animals in each
group is shown at peak (highest observed viremia, 2—4 weeks post-challenge in all macaques, left) and 16 weeks post-
challenge (middle), and as the area under the curve (AUC) of viremia over the whole observation period (right). The timing of
PICLC administration is denoted by the symbols used in (B). (D) Macaques were rectally challenged with 3000 TCIDs,
SIVmac239ANef (SIVANef) 24 hours after rectal PICLC (n =7) or PBS (n = 7). 12 weeks after SIVANef challenge, all animals
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were rectally challenged with 3000 TCIDs, SIVwt. The fraction of PBS vs. PICLC-treated animals that became infected with
SIVANEef is shown as a percent, and the number of SIVANef-infected macaques is above each bar. (E) SIV RNA copies/ml of
SIVANef (open symbols) and SIVwt (filled symbols) were measured over time in each animal. The two SIVANef-infected
macaques not protected from SIVwt are shown in red. (F) SIVANef plasma viremia in each group is shown at peak (2—4 weeks
post-challenge, left) and 16wks post-challenge (4 weeks post-SIVwt challenge, middle), and as AUC (right). The two
macaques not protected from SIVwt are shown in red. (G) Fraction of SIVANef-infected animals that subsequently also
became infected with SIVwt is shown by treatment group. In (C) and (F), P values were derived from Mann Whitney test
comparisons of the control group with each of the treated groups.

doi:10.1371/journal.pone.0161730.g007

predict SIV acquisition (Fig 8E). However, late in SIVwt infection, CD169 levels correlated
with plasma viral load (Fig 8C and 8D, right). This was not the case for SIVANef infection, but
most of the animals controlled infection below the limit of detection at this time, and the
macaque with the highest CD169 level did have the highest SITVANef viral load (Fig 8D, right).

Having previously shown that the frequency of blood memory CD4" T cells expressing high
levels of a4, both predicted SIV susceptibility and correlated with the frequency of these cells
in rectum [83], we also examined expression of B, in the rectal tissue. In contrast to CD169,
baseline tissue B, expression correlated with peak SIVANef viral load and tended to correlate
with peak SIVwt viral load. Although baseline expression did not significantly predict acquisi-
tion of either virus, there was a trend towards higher B, expression in the macaques that
became infected with SIVwt (Fig 7G). Of note, baseline expression of B; and CD169 in rectal
tissue was highly correlated (Fig 7H).

Discussion

Although innate immunity and accompanying inflammation are the first line of defense
against viral exposure at mucosal surfaces, the detrimental association between mucosal
inflammation and HIV susceptibility has been largely thought to outweigh any potential pro-
tective effects of a heightened DC-driven innate response [7, 84]. However, recent studies show
that early, appropriately timed IFN-o treatment of SIV-exposed macaques prevents systemic
infection [85], innate responses are present in highly exposed HIV seronegative subjects [86],
and DCs from HIV-infected elite controllers have increased expression of ISGs [87]. These
results are recalibrating the thinking around immune activation and setting the stage for fur-
ther exploration into how to properly harness DCs and the type I IFN response as a component
of approaches for HIV prevention and therapy. PICLC is being developed for clinical use in
several arenas [37] including as a latency-reversing drug along the lines of TLR7 agonists [47,
88-90], and PIC is a superior TLR-based adjuvant for eliciting HIV-specific T cell responses
[25]. Yet PICLC’s direct impact on HIV transmission in vivo has until now not been deter-
mined, and no studies have compared PICLC with PIC head to head in vitro. Thus, we sought
to achieve two objectives: (1) to use the in vitro moDC-CD4" T cell model of mucosal transmis-
sion of a CCR5-tropic virus to explore how DC maturation by PICLC might influence the out-
come of HIV infection in DCs and DC-T cell co-cultures, and (2) to directly relate these
findings to effects of PICLC in vivo against rectal SIV transmission. We found that PICLC (1)
induced type I IEN responses and DC and T cell activation in vitro and in vivo; (2) shut down
HIV infection in the DC-T cell environment; (3) modestly though non-significantly, reduced
SIV acquisition in macaques in the absence of any additional immunogen; and (4) increased
SIVANef replication in SIVANef-infected animals, which may have improved their protection
from SIVwt. More broadly, we demonstrated that maturation of DCs with dsRNAs induced a
mixture of effects on the DCs’ capacity to capture, become infected by, and replicate HIV, as
well as to interact with and activate T cells and induce antiviral responses. The dsRNA used
and the timing of stimulation relative to virus exposure governed differential effects on HIV
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Fig 8. Rectal CD169 and 3; expression correlate with systemic virus replication but do not predict infection.
CD169 mRNA levels were measured in (A) rectal tissues and (B) inguinal LNs from macaques infected with SIVwt and
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SIVANEf at different times post-infection and in uninfected macaques (baseline of the infected and other macaques that
did not become infected within the study). Correlations between rectal CD169 level and viral replication in (C) SIVwt and
(D) SIVANef-infected macaques are shown. (E) Relationship between baseline rectal CD169 expression and infection
outcome for SIVwt and SIVANEef. (F) Correlation between baseline rectal 8 level and peak viral loads in SIVwt and
SIVANef-infected macaques is shown. (G) Relationship between baseline rectal 8, level and infection outcome. (H)
Correlation between rectal CD169 and 3, levels at baseline for all animals challenged with SIVwt and SIVANef. In (A-H),
samples from all challenged macaques were not available at every time point. In (A-B), statistical analyses used the
Kruskal Wallis test and Dunns post-test. In (A), Dunns comparisons not made were SIVwt W8 vs. SIVANef W20 and
SIVwt W28 vs. SIVANef W6. In (C), (D), (F), and (H), Spearman correlation coefficient was determined. *P<0.05,
**P<0.01, ***P<0.001.

doi:10.1371/journal.pone.0161730.g008

replication. Our results are consistent with previous reports on the timing of DC maturation
and type I IFN responses in vitro [17, 28] and in vivo [85], and underscore the complex biology
of DC-driven HIV infection.

When PICLC and PIC were added to DCs or DC-T cell mixtures, both exerted potent
restriction to HIV replication. Despite the two dsRNAs having similar lengths, PICLC induced
the stronger antiviral response. Only piclcDCs were resistant to HIV infection though they still
transferred virus to T cells, albeit less efficiently than picDCs. The divergent results for picDCs
vs. piclcDCs (alone and in co-culture with T cells) could be related to (1) the more effective
induction of HIV capture and infection molecules on picDCs; (2) the larger amount of virus
captured by and replicating in those cells; (3) contributions of cis and trans transfer in picDC-T
cell mixtures; and (4) the greater antiviral impact of PICLC on DC and T cell infection. That
less pronounced effects of the dsRNAs were observed in the infection vs. the pulse model may
be simply because in the former, virus was not limiting in the culture so any effects on HIV
capture and infection of DCs would be muted.

Overall, PIC and PICLC exerted similar effects on DC maturation and HIV infection in
vitro, but there were some differences that suggest a role for persistence of PICLC as well as
potential differences in receptor utilization and downstream signaling. Although PIC can rec-
ognize TLR3 and MDA-5 in vitro [51, 52, 91], it was reported that PIC-mediated DC matura-
tion was optimal only when both TLR3 and MDA-5 were engaged [92]. Maturation has been
shown to require IFN signaling [50, 92, 93], and we also previously showed that blockade of
the IFN receptor abrogated PIC-mediated protection from HIV in iDCs [32]. In mice, TLR3
was dispensable while MDA-5 was required for IFN induction by PIC [29, 51, 56]. In our
study, PICLC mediated a strong IFN response in DCs and DC-T cell mixtures, even stronger
than PIC, and despite the lack of large changes in DC surface phenotype.

To definitively assign roles of TLR3 and MDA-5 in the effects of PIC and PICLC on HIV
replication and DC phenotype in our work would require knockdown experiments. These
methods are difficult in DCs, especially so when the genes of interest are IFN-related as off tar-
get IFN-related effects are often observed [32]. Nonetheless, knockdown can be done in DCs
[94] and would clarify these results. Using PAU, which engages TLR3 but not MDA-5, we
found that PAU did not induce type I IFN, did not impact HIV replication in iDCs or iDC-T
cell co-cultures, and did support HIV replication within DCs and co-cultured T cells when
used to pre-mature the cells (pauDCs). This was not likely a dose effect; being that PAU is
smaller than PIC/PICLC, 10 pg/ml would have delivered a larger molar quantity of dsRNA.
Interestingly, enhanced HIV infection by PAU occurred in the absence of DC activation or any
increase in capture/infection molecules, including CD169. Thus, while TRIF-dependent TLR
ligands have been implicated similarly in regulating CD169 expression [14, 19], not all TLR3
ligands increase CD169, and additional molecules must be involved in the DC-T cell interplay
that drives infection. Fittingly in our experiments, CD169 appeared to be utilized most strongly
when it was most expressed while other molecules (e.g. CD206 or CD209) may have been used
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when they were more highly expressed. Taken together, our results suggest that the IFN
response and potentially also utilization of MDA-5 play major roles in HIV restriction by
dsRNA in vitro in opposition to the phenotypic changes in DCs that facilitate HIV infection
and T cell transfer.

The potential for different PRR requirements, and downstream effects in vitro and in vivo
[51], underscore the importance of testing DC activation strategies in animal models. Ulti-
mately, our studies with PICLC in the DC-T cell model supported the in vivo findings but addi-
tionally revealed in vitro/in vivo differences. PICLC significantly effected local and systemic
changes in DC and T cell biology in vivo and induced antiviral responses that slightly reduced
both wt and ANef SIV infections although the effect, if any, was too small to achieve signifi-
cance with the number of animals used. The lack of significant effect was not likely due to the
PICLC dose, which was based on our previous work in macaques [41, 42, 64] and doses being
developed for adjuvant purposes in humans [43], or the double dosing technique, which mir-
rors a prime boost vaccination strategy [50] and is often utilized for dsSRNA delivery [42, 50,
64]. Human volunteers exhibited peak responses approximately 24 hours after single subcuta-
neous injection [43], mirroring the acute response to mucosally administered PICLC here in
macaques. Importantly, the high dose challenge model utilized could have overwhelmed our
ability to see a small effect of PICLC. Previous work failed to demonstrate efficacy of intravag-
inally delivered TLR7/9 ligands against high dose intravaginal SIVmac251 challenge despite
inducing IFN-o and other antiviral cytokines [76]. Notably in that study, repeated pre-chal-
lenge treatment with either TLR7 or TLR9 ligands increased SIV set point viral load, pointing
to the impact of HIV-augmenting effects of DC maturation and innate immune stimulation
(including IFN induction). In our study, the antiviral responses appeared weaker in vivo than
in vitro (at the times examined) while PICLC still established an activated immune environ-
ment characterized by increased expression of T cell and DC activation markers, CD169, 043,
and MAdCAM-1, which encourage DC-driven HIV replication in vitro [24].

PICLC likely induced type I IFN production from multiple cell types in the rectal tissue
including NK cells [29], but we did not explore the relative contribution of different cell types
to effects on SIV infection in this study. It is worthwhile noting that rectal PICLC resulted in
phenotypic activation of circulating pDCs, most likely through bystander effects but potentially
through engaging MDA-5 within pDCs in the tissue. Activation of pDCs very early in acute
infection could lead to IFN-mediated protection, but alternatively, could drive immune activa-
tion fueling virus amplification. Importantly, we did not observe an increase in the plasma lev-
els of IFN-o or any Th1 cytokines resulting from rectal PICLC administration, and in fact
observed a decrease in plasma IFN-o. after rectal PICLC. Together with phenotypic activation
of pDCs, these data suggest pDCs may have been recruited to the rectal mucosa where they
may have participated locally in protection. Unfortunately, we were unable to take acute muco-
sal samples from challenged animals, precluding any correlations between specific local
immune changes and SIV transmission. Exploring SIV exposure at different times relative to
PICLC treatment (e.g. PICLC treatment acutely following SIV challenge [85]) might impact
the infection outcome; future studies are needed to address this.

We utilized both pathogenic STVwt and non-pathogenic SIVANef infections to try to tease
out roles of mDCs in SIV transmission. DC and T cell activation by PICLC may help to explain
the increased SIVANef (but not SIVwt) replication in the animals that became infected even
though the frequency of SIVANef infection was not reduced. Interestingly, immune activation
as measured by CD169 expression did not parallel the heightened viral replication in these ani-
mals either in blood or LNs. Since SIV Nef counteracts tetherin [95], and differential tetherin-
mediated restriction could have resulted in differences between SIVwt and SIVANef replication
after PICLC treatment. However, we expected viremia to be truncated more by PICLC rather
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than boosted. Pre-challenge PICLC also could have impacted establishment of the SIV reser-
voir and this could have uniquely affected SIVwt and SIVANef replication. Future studies are
needed to address these possibilities. STVANef replication is also a well-recognized determinant
of the vaccine effect against pathogenic SIV [70, 78, 96, 97], in agreement with the trend
towards better protection alongside higher viral replication in the PICLC-treated SIVANef-
infected macaques. Mechanistically, SIVANef-mediated protection from SIVwt is associated
with LN SIV-specific T cell responses and SIVANef persistence there [70] as well as non-neu-
tralizing antibody-dependent functions systemically [96] and in the mucosa [98]. Identifying
whether and how these correlates were impacted by PICLC was beyond the scope of this study
and their study would require future exploration.

Heightened rectal CD169 expression by PICLC did not increase rectal SIV susceptibility in
vivo. Instead, paralleling expression on CD14" monocytes in blood [82], CD169 was a bio-
marker of immune activation during pathogenic SIVwt infection in mucosa and LNs. The dif-
ference in CD169 levels between SIVwt and SIVANef infections agrees with other data on
CD169 in animals infected with pathogenic vs. nonpathogenic SIVs [99]. In contrast to
CD169, baseline expression of B, correlated with peak viremia. Memory CD4" T cells express-
ing high levels of a4 are highly susceptible to HIV infection in DC-T cell mixtures in vitro
[23, 100]; the proportion of these cells correlates with mucosal SIV susceptibility in vivo [83];
and antibody blockade of 0,43, significantly reduces mucosal SIV transmission [101] and thera-
peutically reduces plasma and gastrointestinal SHIV viral load [102]. Lack of a strong associa-
tion between baseline B, level and outright infection in this study could simply be due to the
fact that we examined B, mRNA in tissue rather than expression of o, protein on T cells
[83]. The correlation between acute viral replication and ; but not CD169 suggests a greater
importance of B, in determining mucosal HIV transmission and initial amplification in vivo.

Our studies add to a body of work revealing the complex interactions between HIV, DCs,
and T cells and how the quality and timing of dsSRNA DC maturation dictate downstream
events, resulting in a push-pull between blockade to and enhancement of infection. We have
shown that PICLC can be used topically at the site of mucosal HIV exposure without promot-
ing infection and potentially reducing it. This opens the door for future applications of PICLC
to modulate immunobiology for limiting HIV spread and supports the continued development
of PICLC as a vaccine adjuvant.

Supporting Information

S1 Fig. Size differences of dsRNAs utilized in the study. dsRNAs (0.5 pg for all except PICLC
which was 10 pg) were separated on an 0.8% agarose gel at 90 V constant. More PICLC was
loaded onto the gel since stabilization with poly-L-lysine/carboxymethylcellulose impairs visu-
alization. PIC, PAU, and PICLC were electrophoresed alongside a low molecular weight form
of PIC called LMW, as a comparison for a low molecular weight dsRNA species. Band sizes
were estimated using the 1kb plus DNA ladder (Invitrogen).

(TTF)

S2 Fig. Internalization of potential HIV capture molecules after HIV pulsing. The GMFI of
each molecule shown was compared on DCs immediately before and after HIV pulsing (9
donors for CD209 and CCRS5; 7 donors for CD206).

(TIF)

S3 Fig. Extended DC phenotype. (A) Surface staining and flow cytometry as in Figs 2 and 3
were used to determine the GMFI of the markers shown for iDCs, picDCs, piclcDCs, and
pauDCs. (B) Proportion of CCR5" 8" DCs as determined in Fig 3. (C) mRNA RT-qPCR for
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A3A and A3G performed as in Fig 3.
(TIF)

S4 Fig. Antiviral responses in DC-T cell co-cultures. (A) mRNA RT-qPCR was performed
for IFN-0, A3A, and A3G as in Fig 3.
(TIF)

S5 Fig. In vitro activating effect of dsSRNAs on human and macaque blood mDCs and CD4"*
T cells. (A) GMFI is shown for the markers indicated in human blood mDCs. (B) CD69 GMFI
in human blood CD4" T cells. (C) CD169 GMFI and percent CD169™" cells in macaque
blood mDCs parallel findings in human PBMCs.

(TIF)

S6 Fig. PICLC acute effects study design. (A) Macaques were administered 1 ml PBS rectally
twice 24 hours apart and were then bled and biopsied in the rectal mucosa 4 vs. 24 hours later.
After mucosal healing, the macaques were similarly administered 1 mg (in 1ml) PICLC and
bled and biopsied. (B) Macaques were biopsied and rested before 2 mg or 4 mg single doses of
PICLC were rectally administered. The macaques were biopsied in rectal mucosa 24 hours
later.

(TTF)

S7 Fig. Rapid bystander activation of blood pDCs in response to rectal PICLC. Blood pDCs
in the macaques described in Fig 6 were characterized at the indicated times post-treatment by
their frequency (%Lin' HLA-DR*CD123") and expression of activation markers. *P<0.05,
**P<0.01, ***P<0.001.

(TTF)

S8 Fig. Rectal PICLC does not induce a systemic pro-inflammatory response. Pro-inflam-
matory cytokines in the plasma of the macaques described in Fig 6 were measured by Luminex
assay (see S1 Methods) in duplicate or triplicate. The post-PICLC (4 hours and 24 hours) data
for each animal were normalized against the animal’s post-PBS data and shown as a fold differ-
ence vs. baseline. No significant differences were detected.

(TTF)

S9 Fig. SIV challenge study schematics. Macaques were treated rectally twice over 24 hours
with PICLC (1 mg each dose). They were challenged with SIVmac239 (SIVwt) coincidentally
with (coincident, A) or 24 hours after (24h pre, B) the second dose of PICLC and followed for
5 months. (C) Macaques were treated rectally twice over 24 hours with PICLC (1 mg each
dose) and challenged with STVmac239ANef (SIVANef) 24 hours after the second dose. Twelve
weeks later, the macaques were challenged with SIVwt and followed for 5 months.

(TIF)

$10 Fig. IFN-a in plasma of PICLC-treated SIVwt challenged macaques. IFN-o levels in
plasma of SIVwt, PICLC-treated macaques were measured by ELISA as described in S1 Meth-
ods. Black symbols indicate animals challenged coincidentally with PICLC application, and red
symbols indicate animals challenged 24 hours after the second PICLC application. Infected
and uninfected animals are denoted by closed and open symbols, respectively. The lower limit
of quantification of the assay was 25 pg/ml (upper dashed line) and standard curve could be
calculated with a low range dilution down to 15 pg/ml (lower dashed line).

(TIF)

S1 Methods. Detection of soluble immune factors.
(DOCX)
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S1 Table. Primer sequences for Sybr Green RT-qPCR.
(DOCX)
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